Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150:243–50.
Article
CAS
PubMed
Google Scholar
Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Carriere M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;431:197–208.
Article
CAS
PubMed
Google Scholar
Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2004;105:1025–102.
Article
CAS
Google Scholar
Grace AN, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surfaces A PhysicochemEng Aspects. 2007;297:63–70.
Article
CAS
Google Scholar
Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci. 2003;100:9138–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.
Article
CAS
PubMed
Google Scholar
Davies J, Daavies D. Origin and evolution of antibiotics resistance. Microbial Mol Biol. 2010;74:417–33.
Article
CAS
Google Scholar
Kriegeskorte A, Peters G. Hoorizontal gene transfer boosts MRSA spreading. Nat Med. 2012;18:662–3.
Article
CAS
PubMed
Google Scholar
Hugehes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Gen. 2015;16:459–71.
Article
CAS
Google Scholar
Mwangi MM, Wu SW, Zhou Y, Sieradzki K, De-Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Sigga ED, Tomasz A. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole genome sequencing. Proc Natl Acad Sci. 2007;104:9451–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Li D, Zhao L, Fleming J, et al. Genome sequencing of 161 Mycobacteriumtuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Gen. 2013;45:1255–60.
Article
CAS
Google Scholar
Chen Y, Yu M, Zhu Z, Zhang L, Guo Q. Optimization of potassium chloride nutrition for proper growth, physiological development and bioactive component production in Prunella vulgaris L. PLoS ONE. 2013;8:e66259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harput US, Saracoglu I, Ogihara Y. Effects of two Prunella species on lymphocyte proliferation and nitric oxide production. Phytotherapy Res. 2006;20:157–9.
Article
Google Scholar
Fazal H, Abbasi BH, Ahmad N, Ali M. Exogenous melatonin trigger biomass accumulation and production of stress enzymes during callogenesis in medicinally important Prunella vulgaris L. (Selfheal). Physiol Mol Biol Plants. 2018;24:1307–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Zhu Z, Guo Q, Zhang L, Zhang X. Variation in concentrations of major bioactive compounds in Prunella vulgaris L. related to plant parts and phenological stages. Biol Res. 2012;45:171–5.
Article
PubMed
CAS
Google Scholar
Shinwari ZK, Watanabe T, Rehman M, Youshikawa T. A pictorial guide to Medicinal Plants of Pakistan. Kohat: KUST; 2006.
Google Scholar
Liu GM, Jia XB, Wang HB, Feng L, Chen Y. Review about current status of cancer prevention for the chemical composition or composition and function mechanism of Prunella vulgaris. J Chin Med Mater. 2009;3:1920–6.
Google Scholar
Rasool R, Kamili AN, Ganai BA, Akbar S. Effect of BAP and NAA on shoot regeneration in Prunella vulgaris. J Nat Sci Math. 2009;3:21–6.
Google Scholar
Huang R, Zha M, Yang X, Huang J, Yang Y, Chen B, Ji G. Effects of Prunella vulgaris on the mice immune function. PLoS ONE. 2013;8:e77355.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golembiovska OI, Tsurkan AA. Anthocyanins profiling of Prunella vulgaris L. grown in Ukraine. Pharma Innov J. 2013;2:13.
Google Scholar
Psotová J, Kolář M, Soušek J, Švagera Z, Vičar J, Ulrichová J. Biological activities of Prunella vulgaris extract. Phytother Res Intern J Devoted PharmacolToxicol Eval Nat Prod Deriv. 2003;17:1082–7.
Google Scholar
Horikawa K, Mohri T, Tanaka Y, Tokiwa H. Moderate inhibition of mutagenicity and carcinogenicity of benzo [a] pyrene, 1, 6-dinitropyrene and 3, 9-dinitrofluoranthene by Chinese medicinal herbs. Mutagen. 1994;9:523–6.
Article
CAS
Google Scholar
Lou H, Zheng S, Li T, Zhang J, Fei Y, Hao X, Pan W. Vulgarisin A, a new diterpenoid with a rare 5/6/4/5 ring skeleton from the Chinese medicinal plant Prunella vulgaris. Org lett. 2014;16:2696–9.
Article
CAS
PubMed
Google Scholar
Tabba HD, Chang RS, Smith KM. Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antiviral Res. 1989;11:263–73.
Article
CAS
PubMed
Google Scholar
Park SJ, Kim DH, Lee IK, Jung WY, Park DH, Kim JM, Ko KH. The ameliorating effect of the extract of the flower of Prunella vulgaris var. lilacina on drug-induced memory impairments in mice. Food Chem Toxicol. 2010;48:1671–6.
Article
CAS
PubMed
Google Scholar
Feng L, Au-Yeung W, Xu YH, Wang SS, Zhu Q, Xiang P. Oleanolic acid from Prunella vulgaris L. Induces SPC-A-1 cell line apoptosis via regulation of Bax, Bad and Bcl-2 Expression. Asian Pac J Cancer Prev. 2011;12:403–8.
PubMed
Google Scholar
Rasool R, Ganai BA, Akbar S, Kamili AN, Masood A. Phytochemical screening of Prunella vulgaris L.-an important medicinal plant of Kashmir. Pak J Pharm Sci. 2010;23:399–402.
CAS
PubMed
Google Scholar
Qiang Z, Ye Z, Hauc C, Murphy PA, McCoy JA, Widrlechner MP, Hendrich S. Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers. J Ethnopharmacol. 2010;137:1107–12.
Article
CAS
Google Scholar
Ahmad N, Abbasi BH, Fazal H, Khan MA, Afridi MS. Effect of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum L. CR Biol. 2014;337:19–28.
Article
Google Scholar
Fazal H, Abbasi BH, Ahmad N, Noureen B, Shah J, Ma D, Chuanliang L, Akbar F, Uddin MN, Khan H, Ali M. Biosynthesis of antioxidative enzymes and polyphenolics content in calli cultures of Prunella vulgaris L. in response to auxins and cytokinins. Artif Cell Nanomed Biotechnol. 2020;48:893–902.
Article
CAS
Google Scholar
Rahman LU, Shah A, Khan SB, Abdullah M, Hussain AH, Han C, Qureshi R, Ashiq MN, Zia MA, Ishaq M, Kraatz H. Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J Appl Electrochem. 2015;45:463–72.
Article
CAS
Google Scholar
Fazal H, Ahmad N, Ullah I, Inayat H, Khan L, Abbasi BH. Antibacterial potential in Parthenium hysterophorus, Stevia rebaudiana and Ginkgo biloba. Pak J Bot. 2011;43:1307–13.
Google Scholar
Fazal H, Ahmad N, Abbasi BH, Abbas N. Selected medicinal plants used in herbal industries; their toxicity against pathogenic microorganisms. Pak J Bot. 2012;44:1103–9.
Google Scholar
Parekh J, Chanda S. In vitro antimicrobial activity of Trapa natans L. fruit rind extracted in different solvents. Afr J Biotechnol. 2007;6:766–70.
Google Scholar
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9(6):e1403.
PubMed
PubMed Central
Google Scholar
Conlon EM, Liu XS, Lieb JD, Liu JS. Integrating regulatory motif discovery and genome-wide expression analysis. Proc Natl Acad Sci. 2003;100:3339–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazal H, Abbasi BH, Ahmad N, Ali M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol. 2016;180:1076–92.
Article
CAS
PubMed
Google Scholar
Rasool R, Ganai BA, Kamili AN, Akbar S, Masood A. Antioxidant and antibacterial activities of extracts from wild and in vitro-raised cultures of Prunella vulgaris L. Med Aroma Plant Sci Biotechnol. 2010;4:20–7.
Google Scholar
Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chem Rev. 2008;77:233.
Article
CAS
Google Scholar
Yallappa S, Manjanna J, Dhananjaya BL. Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochimica Acta Part A Mol BiomolSpect. 2015;137:236–43.
Article
CAS
Google Scholar
Tabrizi NS, Tazikeh M, Shahgholi N. Antibacterial properties of au-ag alloy nanoparticles. Inter J Green Nanotechnol. 2012;4:489–94.
Article
CAS
Google Scholar
Bankura K, Maity D, Mollick MMR, Mondal D, Bhowmick B, Roy I, Chattopadhyay D. Antibacterial activity of Ag–Au alloy NPs and chemical sensor property of Au NPs synthesized by dextran. Carb Pol. 2014;107:151–7.
Article
CAS
Google Scholar
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-strategies to fight multidrug resistant bacteria “A Battle of the Titans. Front Micrbiol. 2018;9:1441.
Article
Google Scholar
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227.
Article
CAS
Google Scholar
Durán N, Durán M, De Jesus MB, Seabra AB, Favaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed: Nanotechnol Biol Med. 2016;12:789–99.
Article
CAS
Google Scholar
Mahalingam S, Xu Z, Edirisinghe M. Antibacterial activity and biosensing of PVA-lysozyme microbubbles formed by pressurized gyration. Langmuir. 2015;31:9771–80.
Article
CAS
PubMed
Google Scholar
Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS. 2013;121:1–58.
Article
CAS
Google Scholar
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug DelivRev. 2013;65:1803–15.
Article
CAS
Google Scholar