Wang L, Chen Y, Song Y, Chen Y, Liu X (2008) GC-MS of volatile components of Schisandra chinensis obtained by supercritical fluid and conventional extraction. J Sep Sci 31(18):3238–3245
Article
CAS
Google Scholar
Wang L, Song Y, Cheng Y, Liu X (2008) Orthogonal array design for the optimization of supercritical fluid extraction of tanshinones from Danshen. J Sep Sci 31(2):321–328
Article
CAS
Google Scholar
Wang Y, Zhang Y, Ji L, Hu Y, Zhang J, Zhang C, Ding G, Chen L, Kamijima M, Ueyama M, Gao Y, Tian Y (2017) Prenatal and postnatal exposure to organophosphate pesticides and childhood neurodevelopment in Shandong, China. Environ Int 108:119–126
Article
CAS
Google Scholar
Zhao HX, Zhao SC, Deng LG, Mao JS, Guo CY, Yang GS, Lu X (2013) Rapid determination of organonitrogen, organophosphorus and carbamate pesticides in tea by ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). Food Anal Method 6(2):497–505
Article
Google Scholar
Araki A, Miyashita C, Mitsui T, Goudarzi H, Mizutani F, Chisaki Y, Itoh S, Sasaki S, Cho K, Moriya K, Shinohara N, Nonomura K, Kishi R (2018) Prenatal organochlorine pesticide exposure and the disruption of steroids and reproductive hormones in cord blood: the Hokkaido study. Environ Int 110:1–13
Article
CAS
Google Scholar
Gil Garcia MD, Dahane S, Arrabal Campos FM, SociasViciana MM, Garcia MA, Femandez I, Martinez Galera M (2017) MCM-41 as novel solid phase sorbent for the pre-concentration of pesticides in environmental waters and determination by microflow liquid chromatography-quadrupole linear ion trap mass spectrometry. Microchem J 134:181–190
Article
CAS
Google Scholar
Tu W, Lu B, Niu L, Xu C, Lin C, Liu W (2014) Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos. Ecotox Environ Safe 107(107):186–191
Article
CAS
Google Scholar
Singh A, Mudawal A, Shukla RK, Yadav S, Khanna VK, Sethumadhavan R, Parmar D (2015) Effect of gestational exposure of cypermethrin on postnatal development of brain cytochrome P450 2D1 and 3A1 and neurotransmitter receptors. Mol Neurobiol 52(1):741–756
Article
CAS
Google Scholar
Liu D, Min S (2012) Rapid analysis of organochlorine and pyrethroid pesticides in tea samples by directly suspended droplet microextraction using a gas chromatography-electron capture detector. J Chromatogr A 1235(8):166–173
Article
CAS
Google Scholar
Han Y, Song L, Liu S, Zou N, Li Y, Qin Y, Li X, Pan C (2018) Simultaneous determination of 124 pesticide residues in Chinese liquor and liquor-making raw materials (sorghum and rice hull) by rapid multi-plug filtration cleanup and gas chromatography-tandem mass spectrometry. Food Chem 241:258–267
Article
CAS
Google Scholar
Ghobadi M, Yamini Y, Ebrahimpour B (2015) Extraction and determination of sulfonylurea herbicides in water and soil samples by using ultrasound-assisted surfactant-enhanced emulsification microextraction and analysis by high-performance liquid chromatography. Ecotox Environ 112:68–73
Article
CAS
Google Scholar
Bartosz W, Marcin W, Wojciech C (2014) Development of hollow fiber-supported liquid phase microextraction and HPLC-DAD method for the determination of pyrethroid metabolites in human and rat urine. Biomed Chromatogr 28(5):708–716
Article
CAS
Google Scholar
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Zenezini Chiozzi R, Lagana A (2018) Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta 179:792–802
Article
CAS
Google Scholar
Bagheri H, Yamini Y, Safari M, Asiabi H, Karimi M, Heydari A (2016) Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. J Supercrit Fluid 107:571–580
Article
CAS
Google Scholar
Smith PA, Thompson MJ, Edwards JW (2002) Estimating occupational exposure to the pyrethroid termiticide bifenthrin by measuring metabolites in urine. J Chromatogr B 778(1–2):113–120
Article
CAS
Google Scholar
Zhang P, Yu Q, He Y, Zhu W, Zhou Z, He L (2017) Chiral pyrethroid insecticide fenpropathrin and its metabolite: enantiomeric separation and pharmacokinetic degradation in soils by reversephase high-performance liquid chromatography. Anal Methods 9(30):4439–4446
Article
CAS
Google Scholar
Galera MM, Jlm V, Frenich AG, Mdg G (1996) Determination of cypermethrin, fenvalerate and permethrin in soil and groundwater by high-performance liquid chromatography using partial lest-squares regression. J Chromatogr A 727(1):39–46
Article
Google Scholar
Wang K, Xie X, Zhang Y, Huang Y (2018) Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid–liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem 240:1233–1242
Article
CAS
Google Scholar
Mekebri A, Crane DB, Blondina GJ, Oros DR, Rocca JL (2008) Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. B Environ Contam Tox. 80(5):455–460
Article
CAS
Google Scholar
Colume A, Cardenas S, Gallego M, Valcarcel M (2001) A solid phase extraction method for the screening and determination of pyrethroid metabolites and organochlorine pesticides in human urine. Rapid Commun Mass Sp. 15(21):2007–2013
Article
CAS
Google Scholar
Wang H, Hu L, Li W, Yang X, Lu R, Zhang S, Zhou W, Gao H, Li J (2017) In-syringe dispersive liquid–liquid microextraction based on the solidification of ionic liquids for the determination of benzoylurea insecticides in water and tea beverage samples. Talanta 162:625–633
Article
CAS
Google Scholar
Vichapong J, Burakham R, Srijaranai S (2016) Ionic liquid-based vortex-assisted liquid–liquid microextraction for simultaneous determination of neonicotinoid insecticides in fruit juice samples. Food Anal Method. 9(2):419–426
Article
Google Scholar
Wang L, Zhang D, Xu X, Zhang L (2016) Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging. Food Chem 197(Pt A):754–760
Article
CAS
Google Scholar
Zhang Y, Zhang Y, Zhao Q, Chen W, Jiao B (2016) Vortex-assisted ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the determination of triazole fungicides in fruit juices. Food Anal Method 9(3):596–604
Article
Google Scholar
Boonchiangma S, Ngeontae W, Srijaranai S (2012) Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Talanta 88(88):209–215
Article
CAS
Google Scholar
Wu T, Liu Y, Yang Z, Gao H, Zhou Z (2012) Determination of pyrethroid pesticides in environmental samples using ionic liquid dispersive liquid–liquid microextraction. J Brazil Chem Soc 23(7):1327–1333
Article
CAS
Google Scholar
Yan H, Liu B, Du J, Yang G, Row KH (2010) Ultrasound-assisted dispersive liquid–liquid microextraction for the determination of six pyrethroids in river water. J Chromatogr A 1217(1):5152–5157
Article
CAS
Google Scholar
Farajzadeh MA, Khoshmaram L, Nabil AAA (2014) Determination of pyrethroid pesticides residues in vegetable oils using liquid–liquid extraction and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection. J Food Compos Anal 34(2):128–135
Article
CAS
Google Scholar