Na CW, Park SY, Chung JH, Lee JH: Transformation of ZnO nanobelts into single-crystalline Mn3O4 nanowires. ACS Appl Mater Interfac. 2012, 4: 6565-6572. 10.1021/am301670x.
Article
CAS
Google Scholar
InglerJr WB, Baltrus JP, Khan SUM: Photoresponse of p-type zinc-doped iron(III) oxide thin films. J Am Chem Soc. 2004, 126: 10238-10239. 10.1021/ja048461y.
Article
Google Scholar
Wang J, Chong PF, Ng SC, Gan LM: Microemulsion processing of manganese zinc ferrites. Mater Lett. 1997, 30: 217-221. 10.1016/S0167-577X(96)00200-5.
Article
CAS
Google Scholar
Toberer ES, Löfvander JP, Seshadri R: Topo-chemical formation of mesoporous MnO crystals. Chem Mater. 2006, 18: 1047-1052. 10.1021/cm052255n.
Article
CAS
Google Scholar
Toberer ES, Schladt TD, Seshadri R: Macroporous manganese oxides with regenerative mesopores. J Am Chem Soc. 2006, 128: 1462-1463. 10.1021/ja0579412.
Article
CAS
Google Scholar
Deng H, Li X, Peng Q, Wang X, Chen J, Li Y: Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie (Inter Ed). 2005, 44: 2782-2785. 10.1002/anie.200462551.
Article
CAS
Google Scholar
Patrice R, Dupont L, Aldon L, Jumas JC, Wang E, Tarascon JM: Structural and electrochemical properties of newly synthesized Fe-substituted MnO2 samples. Chem Mater. 2004, 16: 2772-2782. 10.1021/cm0401239.
Article
CAS
Google Scholar
Li H, Li J, Xu Q, Yang Z, Hu X: A derivative photoelectrochemical sensing platform for 4-nitrophenolate contained organophosphates pesticide based on carboxylated perylene sensitized nano-TiO2. Anal Chim Acta. In press, http://dx.doi.org/10.1016/j.aca.2012.12.038.
Rahman MM, Khan SB, Marwani HM, Asiri AM: Selective iron(III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry. Chem Centr J. 2012, 6: 158-10.1186/1752-153X-6-158.
Article
Google Scholar
Sampieri Á, Lima E: On the acid–base properties of microwave irradiated hydrotalcite-like compounds containing Zn2+ and Mn2+. Langmuir. 2009, 25: 3634-3639. 10.1021/la803920c.
Article
CAS
Google Scholar
Mugumaoderha MC, Sporken R, Ghijsen J, DeGroot FMF, Dumont JA: Phase transitions at the Mn/ZnO (0001¯) interface probed by high energy X-ray spectroscopies. J Phys Chem C. 2012, 116: 665-670. 10.1021/jp206705p.
Article
CAS
Google Scholar
Torres F, Amigó R, Asenjo J, Krotenko E, Tejada J, Brillas E: Electrochemical route for the synthesis of New nanostructured magnetic mixed oxides of Mn, Zn, and Fe from an acidic chloride and nitrate medium. Chem Mater. 2000, 12: 3060-3067. 10.1021/cm001043h.
Article
CAS
Google Scholar
Feng D, Luo W, Zhang J, Xu M, Zhang R, Wu H, Lv Y, Asiri AM, Khan SB, Rahman MM, Zheng G, Zhao D: Multi-layered mesoporous TiO2 thin films with large pore and highly crystalline frameworks for efficient photoelectrochemical conversion. J Mater Chem A. 2013, 1: 1591-1599. 10.1039/c2ta00588c.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M: Characterization and applications of as-grown β-Fe2O3 nanoparticles prepared by hydrothermal method. J Nanopart Res. 2011, 13: 3789-3799. 10.1007/s11051-011-0301-7.
Article
CAS
Google Scholar
Wu KL, Wei XW, Zhou XM, Wu DH, Liu XW, Ye Y, Wang Q: NiCo2 Alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol. J Phys Chem C. 2011, 115: 16268-16274. 10.1021/jp201660w.
Article
CAS
Google Scholar
Rahman MM, Khan SB, Faisal M, Asiri AM, Alamry KA: Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sens Actuator B Chem. 2012, 171–172: 932-937.
Article
Google Scholar
Rahman MM: Fabrication of mediator-free glutamate sensors based on glutamate oxidase using smart micro-devices. J Biomed Nanotech. 2011, 7: 351-357. 10.1166/jbn.2011.1299.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M: Fabrication of chloroform sensors based on hydrothermally prepared low-dimensional β-Fe2O3 nanoparticles. Superlatt Microstruc. 2011, 50: 369-376. 10.1016/j.spmi.2011.07.016.
Article
CAS
Google Scholar
Gomes JDA, Sousa MH, Tourinho FA, Aquino R, Silva GJD, Depeyrot J, Dubois E, Perzynski R: Synthesis of core-shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C. 2008, 112: 6220-6227. 10.1021/jp7097608.
Article
Google Scholar
Rahman MM, Khan SB, Faisal M, Asiri AM, Tariq MA: Detection of aprepitant drug based on Low-dimensional Un-doped iron oxide nanoparticles prepared by solution method. Electrochim Acta. 2012, 75: 164-170.
Article
CAS
Google Scholar
Rahman MM, Khan SB, Marwani HM, Asiri AM, Alamry KA, Al-Youbi AO: Selective determination of gold (III) ion using CuO microsheets as a solid phase adsorbent prior to ICP-OES measurements. Talanta. 2013, 104: 75-82.
Article
CAS
Google Scholar
Frenzel W, Frenzel JO, Moeler J: Spectrophotmetric determination of phenolic compounds by flow-injection analysis. Anal Chim Acta. 2006, 261: 253-
Article
Google Scholar
Penalver A, Pocurull E, Borrull F, Marce RM: Separation and determination of nitrobenzenes by micellar electrokinetic chromatography and high-performance liquid chromatography. J Chromatogr A. 2002, 953: 79-10.1016/S0021-9673(02)00113-9.
Article
CAS
Google Scholar
Castillo M, Domingues R, Alpendurada MF, Barcelo D: Persistence of selected pesticides and their phenolic transformation products in natural waters using off-line liquid solid extraction followed by liquid chromatographic techniques. Anal Chim Acta. 1997, 353: 133-10.1016/S0003-2670(97)00353-X.
Article
CAS
Google Scholar
Dzyadevych SV, Chovelon JM: A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Mater Sci Eng C. 2002, 21: 55-10.1016/S0928-4931(02)00058-9.
Article
Google Scholar
ATSDR: Toxicity FAQs nitrophenols; Agency for Toxic Substances and Disease Registry. 2001
Google Scholar
Wang SP, Chen HJ: Separation and determination of nitrobenzenes by micellar electrokinetic chromatography and high-performance liquid chromatography. J Chromatogr A. 2002, 979: 439-10.1016/S0021-9673(02)01435-8.
Article
CAS
Google Scholar
Kontsas H, Rosenberg C, Pfaeffli P, Jappinen P: Gas chromatographic–mass spectrometric determination of chlorophenols in the urine of sawmill workers with past use of chlorophenol-containing anti-stain agents. Analyst. 1995, 120: 1745-1749. 10.1039/an9952001745.
Article
CAS
Google Scholar
Brega A, Prandini P, Amaglio C, Pafuni E: Determination of phenol, m-, o- and p-cresol, p-aminophenol and p-nitrophenol in urine by high-performance liquid chromatography. J Chromatogr A. 1990, 535: 311-316.
Article
CAS
Google Scholar
Makuch B, Gazda K: Occurrence and determination of organic pollutants in tap and surface waters of the Gdańsk district. J Chromatogr A. 1996, 733: 171-10.1016/0021-9673(95)00905-1.
Article
Google Scholar
Wissiack R, Rosenberg E: Universal screening method for the determination of US Environmental Protection Agency phenols at the lower ng l−1 level in water samples by on-line solid-phase extraction–high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry within a single run. J Chromatogr A. 2002, 963: 149-10.1016/S0021-9673(02)00546-0.
Article
CAS
Google Scholar
Kaniansky D, Krcmova E, Madajova V, Masar M, Marek J: Determination of nitrophenols by capillary zone electrophoresis in a hydrodynamically closed separation compartment. J Chromatogr A. 1997, 772: 327-10.1016/S0021-9673(97)00102-7.
Article
CAS
Google Scholar
Luz RDS, Damos FS, DeOliveira AB, Beek J: Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta. 2004, 64: 935-10.1016/j.talanta.2004.04.010.
Article
CAS
Google Scholar
Hu SS, Xu CL, Wang GP, Cui DF: Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta. 2001, 54: 115-10.1016/S0039-9140(00)00658-5.
Article
CAS
Google Scholar
Barek J, Ebertova H, Mejstrik V, Zima J: Determination of 2-Nitrophenol, 4-Nitrophenol, 2-Methoxy-5-nitrophenol, and 2,4-Dinitrophenol by Differential Pulse Voltammetry and Adsorptive Stripping Voltammetry. Collect Czech Chem C. 1994, 59: 1761-10.1135/cccc19941761.
Article
CAS
Google Scholar
Ni Y, Wang L, Kokot S: Simultaneous determination of nitrobenzene and nitro-substituted phenols by differential pulse voltammetry and chemometrics. Anal Chim Acta. 2001, 431: 101-10.1016/S0003-2670(00)01319-2.
Article
CAS
Google Scholar
Lawrence NS, Pagels M, Meredith A, Jones TGJ, Hall CE, Pickles CSJ, Godfried HP: Electroanalytical applications of boron-doped diamond microelectrode arrays. Talanta. 2006, 69: 829-10.1016/j.talanta.2005.11.020.
Article
CAS
Google Scholar
Liu Y, Deng Y, Sun Z, Wei J, Zheng G, Asiri AM, Khan SB, Rahman MM, Zhao D: Hierarchical Cu2S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small. http://dx.doi.org/10.1002/smll.201300197.
Pedrosa VA, Codognoto L, Machado SAS, Avaca LA: Is the boron-doped diamond electrode a suitable substitute for mercury in pesticide analyses? A comparative study of 4-nitrophenol quantification in pure and natural waters. J Electroanal Chem. 2004, 573: 11-18.
CAS
Google Scholar
Garbellini GS, Salazar-Banda GR, Avaca LA: Sonovoltammetric determination of 4-nitrophenol on diamond electrodes. J. Braz. Chem. Soc. 2007, 18: 1095-1099. 10.1590/S0103-50532007000600002.
Article
CAS
Google Scholar
Rahman MM, Gruner G, Al-Ghamdi MS, Daous MA, Khan SB, Asiri AM: Fabrication of highly sensitive phenyl hydrazine chemical sensor based on as-grown ZnO-Fe2O3 Microwires. Inter. J. Electrochem. Sci. 2013, 8: 520-534.
CAS
Google Scholar
Organic electrochemistry: an introduction and a guide. Edited by: Lund H, Baizer MM. 1991, New York: Marcel Dekker, 411-
Google Scholar
Khan SB, Akhtar K, Rahman MM, Asiri AM, Seo J, Alamry KA, Han H: Thermally and mechanically stable green environmental composite for chemical sensor applications. New Journal of Chemistry. 2012, 36: 2368-2375. 10.1039/c2nj40549k.
Article
CAS
Google Scholar
Khan SB, Rahman MM, Jang ES, Akhtar K, Han H: Special susceptive aqueous ammonia chemi-sensor: Extended applications of novel UV-curable polyurethane-clay nanohybrid. Talanta. 2011, 84: 1005-1010. 10.1016/j.talanta.2011.02.036.
Article
CAS
Google Scholar
Khan SB, Faisal M, Rahman MM, Jamal A: Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Tot Environ. 2011, 409: 2987-2992. 10.1016/j.scitotenv.2011.04.019.
Article
CAS
Google Scholar
Cordero-Rando MD, Barea-Zamora M, Barber-Salvador JM, Naranjo-Salvador I: Electrochemical study of 4-nitrophenol at a modified carbon paste electrode. Microchim Acta. 1999, 132: 7-11. 10.1007/PL00010076.
Article
Google Scholar
Khan SB, Faisal M, Rahman MM, Jamal A: Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensors. Talanta. 2011, 85: 943-949. 10.1016/j.talanta.2011.05.003.
Article
CAS
Google Scholar
Rahman MM, Umar A, Sawada K: Development of amperometric glucose biosensor based on glucose oxidase enzyme immobilized with multi-walled carbon nanotubes at Low potential. Sens Actuator B Chem. 2009, 137: 327-333. 10.1016/j.snb.2008.10.060.
Article
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M, Asiri AM: Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method. Microchim Acta. 2012, 178: 99-106. 10.1007/s00604-012-0817-2.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M, Asiri AM: Fabrication of methanol chemical sensor based on hydrothermally prepared α-Fe2O3 codoped SnO2 nanocubes. Talanta. 2012, 95: 18-24.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M, Asiri AM: Fabrication of highly sensitive acetone sensor based on sonochemically prepared as-grown Ag2O nanostructures. Chem Engineer J. 2012, 192: 122-128.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M: Cu-doped ZnO based nanostructured materials for sensitive chemical sensor applications. ACS App Mater Inter. 2011, 3: 1346-1351. 10.1021/am200151f.
Article
CAS
Google Scholar
Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K: Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. J Environ Monit. 2009, 11: 1782-1800. 10.1039/b912860c.
Article
CAS
Google Scholar
Su S, Wu W, Gao J, Lu J, Fan C: Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem. 2012, 22: 18101-18110. 10.1039/c2jm33284a.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M: Fabrication of highly sensitive ethanol chemical sensor based on Sm-doped Co3O4 nano-kernel by solution method. J Phys Chem C. 2011, 115: 9503-9510. 10.1021/jp202252j.
Article
CAS
Google Scholar
Rahman MM, Jamal A, Khan SB, Faisal M: Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosens Bioelectron. 2011, 28: 127-134. 10.1016/j.bios.2011.07.024.
Article
CAS
Google Scholar
Zhang L, Wang JQ, Li J, Zhang S, Jiang Z, Zhou J, Cheng J, Hu T, Yan W, Wei X, Wu Z: Regulation of magnetic behavior and electronic configuration in Mn-doped ZnO nanorods through surface modifications. Chem Mater. 2012, 24: 1676-1681. 10.1021/cm203661c.
Article
CAS
Google Scholar
Swierczewska M, Liu G, Lee S, Chen X: High-sensitivity nanosensors for biomarker detection. Chem Soc Rev. 2012, 41: 2641-2655. 10.1039/c1cs15238f.
Article
CAS
Google Scholar
Lord H, Kelley SO: Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing. J Mater Chem. 2009, 19: 3127-3134. 10.1039/b814569e.
Article
CAS
Google Scholar
Zhou L, Wu HB, Zhu T, Lou XW: Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem. 2012, 22: 827-829. 10.1039/c1jm15054e.
Article
CAS
Google Scholar
Courtel FM, Abu-Lebdeh Y, Davidson IJ: ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries. Electrochim Acta. 2012, 71: 123-127.
Article
CAS
Google Scholar
Zhao J, Wang F, Su P, Li M, Chen J, Yang Q, Li C: Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy. J Mater Chem. 2012, 22: 13328-13333. 10.1039/c2jm32261g.
Article
CAS
Google Scholar
Bessekhouad Y, Robert D, Weber JV: Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today. 2005, 101: 315-321. 10.1016/j.cattod.2005.03.038.
Article
CAS
Google Scholar
Yang Y, Zhao Y, Xiao L, Zhang L: Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun. 2008, 10: 1117-1120. 10.1016/j.elecom.2008.05.026.
Article
CAS
Google Scholar
Duan J, Wang H, Wang H, Zhang J, Wu S, Wang Y: Mn-doped ZnO nanotubes: from facile solution synthesis to room temperature ferromagnetism. CrystEngComm. 2012, 14: 1330-1336. 10.1039/c1ce06221b.
Article
CAS
Google Scholar
Wang L, Liu B, Ran S, Wang L, Gao L, Qu F, Chen D, Shen G: Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. J Mater Chem A. 2013, http://dx.doi.org/10.1039/C2TA00125J.
Google Scholar
Li H, Song B, Wang WJ, Chen XL: Facile synthesis, thermal, magnetic, Raman characterizations of spinel structure ZnMn2O4. Mater Chem Phys. 2011, 130: 39-44. 10.1016/j.matchemphys.2011.04.072.
Article
CAS
Google Scholar
Kim SW, Lee HW, Muralidharan P, Seo DH, Yoon WS, Kim DK, Kang K: Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4: 505-510. 10.1007/s12274-011-0106-0.
Article
CAS
Google Scholar
Zhang G, Yu L, Wu HB, Hoster HE, Lou XW: Formation of ZnMn 2 O 4 ball-in-ball hollow microspheres as a high-performance anode for lithium-Ion batteries. Adv Mater. 2012, 24: 4609-4613. 10.1002/adma.201201779.
Article
CAS
Google Scholar
Xiao L, Yang Y, Yin J, Li Q, Zhang L: Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Pow Sour. 2009, 194: 1089-1093. 10.1016/j.jpowsour.2009.06.043.
Article
CAS
Google Scholar
Deng Y, Tang S, Zhang Q, Shi Z, Zhang L, Zhan S, Chen G: Controllable synthesis of spinel nano-ZnMn2O4via a single source precursor route and its high capacity retention as anode material forlithium ion batteries. J Mater Chem. 2011, 21: 11987-11995. 10.1039/c1jm11575h.
Article
CAS
Google Scholar
Menaka SL, Samal KV, Ramanujachary SE, Lofland G, Ganguli AK: Stabilization of Mn(IV) in nanostructured zinc manganese oxide and their facile transformation from nanospheres to nanorods. J Mater Chem. 2011, 21: 8566-8573. 10.1039/c1jm10425j.
Article
CAS
Google Scholar
Rahman MM, Khan SB, Faisal M, Rub MA, Al-Youbi AO, Asiri AM: Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2–Co3O4 nanocubes in tablet dosage forms. Talanta. 2012, 99: 924-931.
Article
CAS
Google Scholar
Zhang P, Li X, Zhao Q, Liu S: Synthesis and optical property of one dimensional spinel ZnMn2O4 nanorods. Nanoscal Res Lett. 2011, 6: 323-10.1186/1556-276X-6-323.
Article
Google Scholar
Zhao L, Li X, Zhao J: Fabrication, characterization and photocatalytic activity of cubic-like ZnMn2O4. App Surf Sci. http://dx.doi.org/10.1016/j.apsusc.2012.12.078.
Lupan O, Emelchenko GA, Ursaki VV, Chai G, Redkin AN, Gruzintsev AN, Tiginyanu IM, Chow L, Ono LK, Cuenya BR, Heinrich H, Yakimov EE: Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater Res Bull. 2010, 45: 1026-1032. 10.1016/j.materresbull.2010.03.027.
Article
CAS
Google Scholar
Marcelo G, Muñoz-Bonilla A, Fernández-García M: Magnetite-polypeptide hybrid materials decorated with gold nanoparticles: study of their catalytic activity in 4-nitrophenol reduction. J Phys Chem C. 2012, 116: 24717-24725. 10.1021/jp309145r.
Article
CAS
Google Scholar
Song P, Qin HW, Zhang L, An K, Lin ZJ, Hu JF, Jiang MH: The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x ≤ 0.3. Sens Actuator B Chem. 2005, 104: 312-317. 10.1016/j.snb.2004.05.023.
Article
CAS
Google Scholar
Lee SR, Rahman MM, Ishida M, Sawada K: Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques. Biosens Bioelectron. 2009, 24: 1877-1882. 10.1016/j.bios.2008.09.008.
Article
CAS
Google Scholar
Lee SR, Rahman MM, Ishida M, Sawada K: Development of highly sensitive acetylcholine sensor based on acetylcholine by charge transfer techniques esterase using smart biochips. Trends Anal Chem. 2009, 28: 196-203. 10.1016/j.trac.2008.11.009.
Article
CAS
Google Scholar
Han N, Chai L, Wang Q, Tian Y, Deng P, Chen Y: Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sens Actuator B Chem. 2010, 147: 525-530. 10.1016/j.snb.2010.03.082.
Article
CAS
Google Scholar
Hsueh TJ, Hsu CL, Chang SJ, Chen IC: Laterally grown ZnO nanowire ethanol gas sensors. Sens Actuator B Chem. 2007, 126: 473-477. 10.1016/j.snb.2007.03.034.
Article
CAS
Google Scholar
Tao B, Zhang J, Hui S, Wan L: An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode. Sens Actuator B Chem. 2009, 142: 298-302. 10.1016/j.snb.2009.08.004.
Article
CAS
Google Scholar
Wongrat E, Pimpang P, Choopun S: An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode. App Surf Sci. 2009, 256: 968-972. 10.1016/j.apsusc.2009.02.046.
Article
CAS
Google Scholar
Umar A, Rahman MM, Kim SH, Hahn YB: Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun. 2008, 166-169.
Google Scholar
Mujumdar S: Synthesis and characterization of SnO2 films obtained by a wet chemical process. Mat Sci Poland. 2009, 27: 123-128.
Google Scholar
Pan B, Du W, Zhang W, Zhang X, Zhang Q, Pan B, Lv L, Zhang Q, Chen J: Improved Adsorption of 4-Nitrophenol onto a Novel Hyper-Cross-Linked Polymer. Environ Sci Technol. 2007, 41: 5057-5062. 10.1021/es070134d.
Article
CAS
Google Scholar
Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M: Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C. 2010, 114: 8814-8820. 10.1021/jp101125j.
Article
CAS
Google Scholar
Hayakawa K, Yoshimura T, Esumi K: Preparation of gold − dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir. 2003, 19: 5517-5521. 10.1021/la034339l.
Article
CAS
Google Scholar
Zhang J, Chen G, Chaker M, Rosei F, Ma D: Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. App Catal B Environ. 2013, 132–133: 107-115.
Article
Google Scholar
Gangula A, Podila R, Ramakrishna M, Karanam L, Janardhana C, Rao AM: Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from breynia rhamnoides. Langmuir. 2011, 27: 15268-15274. 10.1021/la2034559.
Article
Google Scholar
Ahmaruzzaman M, Gayatri SL: Activated neem leaf: a novel adsorbent for the removal of phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solutions. J Chem Eng Data. 2011, 56: 3004-3016. 10.1021/je100937r.
Article
CAS
Google Scholar
Khan SB, Rahman MM, Akhtar K, Asiri AM, Alamry KA, Seo J, Han H: Copper oxide based polymer nanohybrid for chemical sensor applications. Int J Electrochem Sci. 2012, 7: 10965-10975.
CAS
Google Scholar
Liu XY: A novel sensor based on electropolymerization poly(safranine) film electrode for voltammetric determination of 4-nitrophenol. Bull Korean Chem Soc. 2010, 31: 1182-1186. 10.5012/bkcs.2010.31.5.1182.
Article
CAS
Google Scholar
Liu J, Chen H, Lin Z, Lin JM: Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in Tap water. Anal Chem. 2010, 82: 7380-7386. 10.1021/ac101510b.
Article
CAS
Google Scholar
Nistor C, Oubiña A, Marco MP, Barceló D, Emnéus J: Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal Chim Acta. 2001, 426: 185-195. 10.1016/S0003-2670(00)00825-4.
Article
CAS
Google Scholar
Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M: A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater. 2012, 201–202: 250-259.
Article
Google Scholar
Pedrosa VA, Codognoto L, Avaca LA: Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes. J Braz Chem Soc. 2003, 14: 530-535. 10.1590/S0103-50532003000400007.
Article
CAS
Google Scholar