Willner I, Katz E, Eds: Bionanomaterials: Synthesis and Applications for Sensors, Electronics and Medicine. 2007, Wiley
Google Scholar
Wu L-Q, Payne GF: Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol. 2004, 22: 593-599. 10.1016/j.tibtech.2004.09.008.
Article
CAS
Google Scholar
Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C: Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. Angew Chem Int Ed. 1999, 38: 1912-1915. 10.1002/(SICI)1521-3773(19990712)38:13/14<1912::AID-ANIE1912>3.0.CO;2-2.
Article
CAS
Google Scholar
Wang P: Nanoscale biocatalyst systems. Curr Opion Biotechnol. 2006, 17: 574-579. 10.1016/j.copbio.2006.10.009.
Article
CAS
Google Scholar
Chen RJ, Zhang Y, Wang D, Dai H: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001, 123: 3838-3839. 10.1021/ja010172b.
Article
CAS
Google Scholar
Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun Ya-P: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano lett. 2002, 2: 311-314. 10.1021/nl010095i.
Article
CAS
Google Scholar
Karajanagi SS, Vertegel AA, Kane RS, Dordick JS: Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 2004, 20: 11594-11599. 10.1021/la047994h.
Article
CAS
Google Scholar
Gómez JM, Romero MD, Fernández TM: Immobilization of β-Glucosidase on carbon nanotubes. Catal lett. 2005, 101: 275-278. 10.1007/s10562-005-4904-4.
Article
Google Scholar
Taylor RF, Ed: Protein Immobilization: Fundamentals and Applications. 1991, Marcel Dekker, New York
Google Scholar
Dalal S, Sharma A, Gupta MN: A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chemistry Central Journal. 2007, 1: 16-10.1186/1752-153X-1-16.
Article
Google Scholar
Asuri P, Karajanagi SS, Sellitto E, Kim D-Y, Kane RS, Dordick JS: Watersoluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng. 2006, 95: 804-811. 10.1002/bit.21016.
Article
CAS
Google Scholar
Palwai NR, Martyn DE, Neves LFF, Tan Y, Resasco DE, Harrison RG: Retention of biological activity and near-infrared absorbance upon adsorption of horseradish peroxidase on single-walled carbon nanotubes. Nanotechnology. 2007, 18: 235-601. 10.1088/0957-4484/18/23/235601.
Article
Google Scholar
Gupta MN: Enzymes function in organic solvents. Eur J Biochem. 1992, 203: 25-32. 10.1111/j.1432-1033.1992.tb19823.x.
Article
CAS
Google Scholar
Jaeger K-E, Reetz MT: Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 1998, 16: 396-403. 10.1016/S0167-7799(98)01195-0.
Article
CAS
Google Scholar
Kazlauskas RJ, Bornscheuer UT: Biotransformations with lipases. Biotechnology and Biotransformations with Lipases. Edited by: Rehm HJ, Reed G, Puhler A, Stadler PJW, Kelly DR. 1998, VCH, 37-191.
Google Scholar
Gupta MN, Ed: Methods in Nonaqueous Enzymology. 2000, Birkhauser-Verlag, Basel
Google Scholar
Vulfson EN, Halling PJ, Holland HJ, Eds: Enzymes in nonaqueous solvents, methods and protocols. 2001, Humana press: New Jersey, USA
Google Scholar
Domínguez de María P, Sánchez-Montero JM, Sinisterra JV, Alcántara AR: Understanding Candida rugosa lipases: An overview. Biotechnol Advances. 2006, 24: 180-196. 10.1016/j.biotechadv.2005.09.003.
Article
Google Scholar
Bosley JA, Peilow AD: Immobilization of lipases for use in non-aqueous reaction systems. Methods in Nonaqueous Enzymology. Edited by: Gupta MN. 2000, Birkhauser-Verlag, Basel, 52-69.
Chapter
Google Scholar
Schmid RD, Verger R: Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl. 1998, 37: 1609-1633. 10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V.
Article
CAS
Google Scholar
Al-Duri B, Robinson E, McNerlan S, Bailie P: Hydrolysis of edible oils by lipases immobilized on hydrophobic supports: effects of internal support structure. J Am Oil Chem Soc. 1995, 72: 1351-1359. 10.1007/BF02546211.
Article
CAS
Google Scholar
Guo Y, Clark DS: Activation of enzymes for non-aqueous biocatalysis by denaturing concentrations of urea. Biochim Biophys Acta. 2001, 1546: 406-411.
Article
CAS
Google Scholar
Roy I, Gupta MN: Three phase partitioned α-chymotrypsin shows higher activity in water as well as organic solvents. Biocatal Biotransform. 2004, 22: 261-268. 10.1080/10242420400010523.
Article
CAS
Google Scholar
Sheldon RA, Lau RM, Sorgedrager MJ, Van-Rantwijk F, Seddon KR: Biocatalysis in ionic liquids. Green Chem. 2002, 4: 147-151. 10.1039/b110008b.
Article
CAS
Google Scholar
Yang Z, Pan W: Ionic liquids: Green solvents for non-aqueous biocatalysis. Enzyme Microb Technol. 2005, 37: 19-28. 10.1016/j.enzmictec.2005.02.014.
Article
CAS
Google Scholar
Gupta MN, Smita R: Relevance of chemistry to white biotechnology. Chemistry Central Journal. 2007, 1: 17-10.1186/1752-153X-1-17.
Article
Google Scholar
Shah S, Gupta MN: Obtaining high transesterification activity for subtilisin in ionic liquids. Biochim Biophys Acta. 2007, 1770: 94-98.
Article
CAS
Google Scholar
Shah S, Gupta MN: Kinetic resolution of (±)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett. 2007, 17: 921-924. 10.1016/j.bmcl.2006.11.057.
Article
CAS
Google Scholar
Majumder AB, Shah S, Gupta MN: Enantioselective transacetylation of (R,S)-beta-citronellol by propanol rinsed immobilized Rhizomucor miehei lipase. Chem Central J. 2007, 1: 10-10.1186/1752-153X-1-10.
Article
Google Scholar
Chen C-S, Fujimoto Y, Girdaukas G, Sih CJ: Quantitative analysis of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 1982, 104: 7294-7298. 10.1021/ja00389a064.
Article
CAS
Google Scholar
Halling PJ: Enzymic conversions in organic and other low-water media. Enzymatic catalysis in organic synthesis. Edited by: Drauz K, Waldmann H. 2002, Wiley-VCH, Weinheim, 259-258.
Chapter
Google Scholar
Palomo JM, Ortiz C, Fernandez-Lorente G, Fuentes M, Guisan JM, Fernandez-Lafuente R: Lipase-lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Technol. 2005, 36: 447-454. 10.1016/j.enzmictec.2004.09.013.
Article
CAS
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Jain P, Jain S, Gupta MN: A microwave assisted microassay for lipase. Anal Bioanal Chem. 2005, 381: 1480-1482. 10.1007/s00216-005-3105-8.
Article
CAS
Google Scholar