Yi-Shen Z, Shuai S, FitzGerald R (2018) Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food Nutr Res 62:1290–1300
Google Scholar
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q (2019) Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6):1238
CAS
PubMed Central
Google Scholar
Gan R-Y, Lui W-Y, Wu K, Chan C-L, Dai S-H, Sui Z-Q, Corke H (2017) Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci Technol 59:1–14
CAS
Google Scholar
Ali S, Singh B, Sharma S (2016) Response surface analysis and extrusion process optimisation of maize-mungbean-based instant weaning food. Int J Food Sci Technol 51(10):2301–2312
CAS
Google Scholar
Kudre TG, Benjakul S, Kishimura H (2013) Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. J Sci Food Agric 93(10):2429–2436
CAS
PubMed
Google Scholar
Kazłowski B, Chen M-R, Chao P-M, Lai C-C, Ko Y-T (2013) Identification and roles of proteins for seed development in mungbean (Vigna radiata L.) seed proteomes. J Agric Food Chem 61(27):6650–6659
PubMed
Google Scholar
Ghosh S, Pal A (2012) Identification of differential proteins of mungbean cotyledons during seed germination: a proteomic approach. Acta Physiol Plant 34(6):2379–2391
CAS
Google Scholar
Corrales FJ, Odriozola L (2020) Proteomic Analyses. Principles of nutrigenetics and nutrigenomics. Academic Press, New York, pp 69–74
Google Scholar
Pan J, Li Z, Wang Q, Garrell AK, Liu M, Guan Y, Zhou W, Liu W (2018) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol 18(1):315
CAS
PubMed
PubMed Central
Google Scholar
Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6(2):105–134
CAS
PubMed
Google Scholar
Xie J, Du M, Shen M, Wu T, Lin L (2019) Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem 270:243–250
CAS
PubMed
Google Scholar
Li GH, Wan JZ, Le GW, Shi YH (2006) Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. J Pept Sci 12(8):509–514
CAS
PubMed
Google Scholar
Tang D, Dong Y, Ren H, Li L, He C (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 8(1):4
PubMed
PubMed Central
Google Scholar
Wongsiri S, Ohshima T, Duangmal K (2015) Chemical composition, amino acid profile and antioxidant activities of germinated mung beans (Vigna radiata). J Food Process Preserv 39(6):1956–1964
CAS
Google Scholar
Randhir R, Lin Y-T, Shetty K (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39(5):637–646
CAS
Google Scholar
Lin P-Y, Lai H-M (2006) Bioactive compounds in legumes and their germinated products. J Agric Food Chem 54(11):3807–3814
CAS
PubMed
Google Scholar
Peñas E, Gomez R, Frias J, Baeza ML, Vidal-Valverde C (2011) High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chem 125(2):423–429
Google Scholar
Gan RY, Wang MF, Lui WY, Wu K, Corke H (2016) Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. Int J Food Sci Technol 51(9):2090–2098
CAS
Google Scholar
Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nature Meth 6(5):359–362
Google Scholar
Hu X, Li N, Wu L, Li C, Li C, Zhang L, Liu T, Wang W (2015) Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Sci Rep 5:15626
CAS
PubMed
PubMed Central
Google Scholar
Ji X, Li X, Ma Y, Li D (2017) Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chem 221:1822–1827
CAS
PubMed
Google Scholar
Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, O’Keeffe M (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32(2):279–289
CAS
PubMed
Google Scholar
Fesenko IA, Arapidi GP, Skripnikov AY, Alexeev DG, Kostryukova ES, Manolov AI, Altukhov IA, Khazigaleeva RA, Seredina AV, Kovalchuk SI, Ziganshin RH, Zgoda VG, Novikova SE, Semashko TA, Slizhikova DK, Ptushenko VV, Gorbachev AY, Govorun VM, Ivanov VT (2015) Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. BMC Plant Biol 15:87
PubMed
PubMed Central
Google Scholar
Gu Y, Li X, Liu H, Li Q, Xiao R, Dudu OE, Yang L, Ma Y (2020) The impact of multiple-species starters on the peptide profiles of yoghurts. Int Dairy J 106:104684
CAS
Google Scholar
Fan F, Shi P, Chen H, Tu M, Wang Z, Lu W, Du M (2019) Identification and availability of peptides from lactoferrin in the gastrointestinal tract of mice. Food Funct 10(2):879–885
CAS
PubMed
Google Scholar
Benítez V, Cantera S, Aguilera Y, Mollá E, Esteban RM, Díaz MF, Martín-Cabrejas MA (2013) Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Res Int 50:64–69
Google Scholar
Skylas DJ, Molloy MP, Willows RD, Salman H, Blanchard CL, Quail KJ (2018) Effect of processing on Mungbean (Vigna radiata) flour nutritional properties and protein composition. J Agric Sci 10(11):16–28
Google Scholar
Wang W-Q, Møller IM, Song S-Q (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 77:68–86
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nature Genet 25(1):25–29
CAS
PubMed
Google Scholar
Das SS, Karmakar P, Nandi AK, Sanan-Mishra N (2015) Small RNA mediated regulation of seed germination. Front Plant Sci 6:828
PubMed
PubMed Central
Google Scholar
Xiao R, Li L, Ma Y (2019) A label-free proteomic approach differentiates between conventional and organic rice. J Food Compos Anal 80:51–61
CAS
Google Scholar
Legate KR, Andrews DW (2003) The β-subunit of the signal recognition particle receptor is a novel GTP-binding protein without intrinsic GTPase activity. J Biol Chem 278:27712–27720
CAS
PubMed
Google Scholar
Wu HM, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218
CAS
PubMed
PubMed Central
Google Scholar
Huang CF, Buu LM, Yu WL, Lee FJS (1999) Characterization of a Novel ADP-ribosylation Factor-like Protein (yARL3) in Saccharomyces cerevisiae. J Biol Chem 274:3819–3827
CAS
PubMed
Google Scholar
Dogra V, Bagler G, Sreenivasulu Y (2015) Re-analysis of protein data reveals the germination pathway and up accumulation mechanism of cell wall hydrolases during the radicle protrusion step of seed germination in Podophyllum hexandrum—a high altitude plant. Front Plant Sci 6:874
PubMed
PubMed Central
Google Scholar
Natarajan SS, Xu C, Garrett WM, Lakshman D, Bae H (2012) Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics. J Plant Biochem Biot 21(1):30–37
CAS
Google Scholar
Aanangi R, Kotapati KV, Palaka BK, Kedam T, Kanika ND, Ampasala DR (2016) Purification and characterization of lipoxygenase from mung bean (Vigna radiata L.) germinating seedlings. 3 Biotech 113(1):1–8
Google Scholar
Feussner I, Kühn H, Wasternack C (2001) Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci 6(6):268–273
CAS
PubMed
Google Scholar
Suzuki Y, Matsukura U (1997) Lipoxygenase activity in maturing and germinating rice seeds with and without lipoxygenase-3 in mature seeds. Plant Sci 125(2):119–126
CAS
Google Scholar
Proust L, Sourabié A, Pedersen M, Besanon I, Juillard V (2019) Insights into the complexity of yeast extract peptides and their utilization by Streptococcus thermophilus. Front Microbiol 10:906
PubMed
PubMed Central
Google Scholar
Shen W, Matsui T (2019) Intestinal absorption of small peptides: a review. Int J Food Sci Technol 54(6):1942–1948
CAS
Google Scholar
Tu M, Liu H, Cheng S, Mao F, Chen H, Fan F, Lu W, Du M (2019) Identification and characterization of a novel casein anticoagulant peptide derived from in vivo digestion. Food Funct 10:2552–2559
CAS
PubMed
Google Scholar
Skylas DJ, Molloy MP, Willows RD, Blanchard CL, Quail KJ (2017) Characterisation of protein isolates prepared from processed mungbean (Vigna radiata) flours. J Agric Sci 9(12):1–10
Google Scholar