Avendaño C, Menéndez JC: Medicinal chemistry of anticancer drugs. 2008, Amsterdam: Elsevier, 1-3.
Book
Google Scholar
Quintans-Júnior L, Fagundes da Rocha R, Freitas Caregnato F, Fonseca Moreira JC, Amaral da Silva F, Antunes de Souza Araújo A, Almeida dos Santos JP, Santos Melo M, Pergentino de Sousa D, Rigoldi Bonjardim L, Pens Gelain D: Antinociceptive Action and Redox Properties of Citronellal, an Essential Oil Present in Lemongrass. J Med Food. 2011, 14: 630-639. 10.1089/jmf.2010.0125.
Article
Google Scholar
Clapp RW, Jacobs MM, Loechler EL: Environmental and occupational causes of cancer. 2007, Lowell: The Lowell Center for Sustainable Production, University of Massachusetts, 24-28.
Google Scholar
Vogelstein B, Kinzler KW: The Genetic Basis of Human Cancer. 2002, New York: McGraw-Hill, Medical Publication Division
Google Scholar
Tong R, Cheng J: Anticancer polymeric nanomedicines. Polym Rev. 2007, 47: 345-381. 10.1080/15583720701455079.
Article
CAS
Google Scholar
Andersen M, Kiel P, Larsen H, Maxild J: Mutagenic action of aromatic epoxy resins. Nature. 1978, 276: 391-392. 10.1038/276391a0.
Article
CAS
Google Scholar
Chaudhary A, Pandeya SN, Kumar P, Sharma PP, Gupta S, Soni N, Verma KK, Bhardwaj G: Combretastatin A-4 analogs as anticancer agents. Mini Rev Med Chem. 2007, 7: 1186-1205. 10.2174/138955707782795647.
Article
CAS
Google Scholar
Cragg GM, Kingston DGI, Newman DJ: Anticancer agents from natural products. 2005, Boca Raton: CRC Press
Google Scholar
Gasser G, Ott I, Metzler-Nolte N: Organometallic anticancer compounds. J Med Chem. 2011, 54: 3-25. 10.1021/jm100020w.
Article
CAS
Google Scholar
Vessières A, Plamont M-A, Cabestaing C, Claffey J, Dieckmann S, Hogan M, Müller-Bunz H, Strohfeldt K, Tacke M: Proliferative and anti-proliferative effects of titanium- and iron-based metallocene anti-cancer drugs. J Organomet Chem. 2009, 694: 874-879. 10.1016/j.jorganchem.2008.11.071.
Article
Google Scholar
Ashton PR, Balzani V, Clemente-León M, Colonna B, Credi A, Jayaraman N, Raymo FM, Stoddart JF, Venturi M: Ferrocene-containing carbohydrate dendrimers. Chem Eur J. 2002, 8: 673-684. 10.1002/1521-3765(20020201)8:3<673::AID-CHEM673>3.0.CO;2-D.
Article
CAS
Google Scholar
Campbell KS, Dillon CT, Smith SV, Harding MM: Radiotracer studies of the antitumor metallocene molybdocene dichloride with biomolecules. Polyhedron. 2007, 26: 456-459. 10.1016/j.poly.2006.07.004.
Article
CAS
Google Scholar
Casas-Solvas JM, Ortiz-Salmeron E, Fernandez I, Garcia-Fuentes L, Santoyo-Gonzalez F, Vargas-Berenguel A: Ferrocene-β-cyclodextrin conjugates: synthesis, supramolecular behavior, and use as electrochemical sensors. Chem Eur J. 2009, 15: 8146-8162. 10.1002/chem.200900593.
Article
CAS
Google Scholar
Chohan ZH, Sumrra SH, Youssoufi MH, Hadda TB: Metal based biologically active compounds: Design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes. Eur J Med Chem. 2010, 45: 2739-2747. 10.1016/j.ejmech.2010.02.053.
Article
CAS
Google Scholar
Fey N: Organometallic molecular modelling - the computational chemistry of metallocenes: a review. J Chem Technol Biotechnol. 1999, 74: 852-862. 10.1002/(SICI)1097-4660(199909)74:9<852::AID-JCTB131>3.0.CO;2-T.
Article
CAS
Google Scholar
Gómez-Ruiz S, Kaluđerović GN, Polo-Cerón D, Prashar S, Fajardo M, Zižak Z, Juranić ZD, Sabo TJ: Study of the cytotoxic activity of alkenyl-substituted ansa-titanocene complexes. Inorg Chem Commun. 2007, 10: 748-752. 10.1016/j.inoche.2007.03.016.
Article
Google Scholar
Gómez-Ruiz S, Kaluđerović GN, Prashar S, Polo-Cerón D, Fajardo M, Zižak Z, Sabo TJ, Juranić ZD: Cytotoxic studies of substituted titanocene and ansa-titanocene anticancer drugs. J Inorg Biochem. 2008, 102: 1558-1570. 10.1016/j.jinorgbio.2008.02.001.
Article
Google Scholar
Immel TA, Martin JT, Dürr CJ, Groth U, Huhn T: Dimethyl titanocene Y: a valuable precursor for libraries of cytotoxic titanocene derivatives. J Inorg Biochem. 2010, 104: 863-867. 10.1016/j.jinorgbio.2010.04.003.
Article
CAS
Google Scholar
Liu Y, Zhong R-Q, Zhang H-Y, Song H-B: A unique tetramer of 4: 5 β-cyclodextrin-ferrocene in the solid state. Chem Commun. 2005, 17: 2211-2213. 10.1039/b418220k.
Article
Google Scholar
Lu Z, Lu C, Ren X, Meng Q: New metallocene-bridged cyclodextrin dimer: A stable derivative of the antitumor drug titanocene dichloride and its potent cytotoxity against human breast cancer (MCF-7) cells. J Organomet Chem. 2006, 691: 5895-5899. 10.1016/j.jorganchem.2006.09.052.
Article
CAS
Google Scholar
Napoli M, Saturnino C, Sirignano E, Popolo A, Pinto A, Longo P: Synthesis, characterization and cytotoxicity studies of methoxy alkyl substituted metallocenes. Eur J Med Chem. 2011, 46: 122-128. 10.1016/j.ejmech.2010.10.021.
Article
CAS
Google Scholar
Potter GD, Baird MC, Cole SPC: A new series of titanocene dichloride derivatives bearing cyclic alkylammonium groups: Assessment of their cytotoxic properties. J Organomet Chem. 2007, 692: 3508-3518. 10.1016/j.jorganchem.2007.04.024.
Article
CAS
Google Scholar
Wallis D, Claffey J, Gleeson B, Hogan M, Müller-Bunz H, Tacke M: Novel zirconocene anticancer drugs?. J Organomet Chem. 2009, 694: 828-833. 10.1016/j.jorganchem.2008.08.020.
Article
CAS
Google Scholar
Braga SS, Almeida Paz FA, Pillinger M, Seixas JD, Romão CC, Gonçalves IS: Structural studies of β-cyclodextrin and permethylated β-cyclodextrin inclusion compounds of cyclopentadienyl metal carbonyl complexes. Eur J Inorg Chem. 2006, 8: 1662-1669. 10.1002/ejic.200501006.
Article
Google Scholar
Morales A, Weber RT, Melendez E: Spectroscopic and thermal characterization of the host-guest interactions between α-, β- and γ -cyclodextrins and vanadocene dichloride. Appl Organomet Chem. 2008, 22: 440-450. 10.1002/aoc.1420.
Article
CAS
Google Scholar
Singh R, Bharti N, Madan J, Hiremath SN: Characterization of cyclodextrin inclusion complexes - a review. J Pharm Sci Technol. 2010, 2: 171-183.
CAS
Google Scholar
Sokolov VI: Cyclodextrin-metallocene inclusion complexes. Supramolecular stereochemistry. Edited by: Siegel JS. 1995, Dordrecht: Kluwer Academic Publishers, 239-245. 10.1007/978-94-011-0353-4_30.
Chapter
Google Scholar
Brewster ME, Loftsson T: Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007, 59: 645-666. 10.1016/j.addr.2007.05.012.
Article
CAS
Google Scholar
Hădărugă DI, Hădărugă NG, Bandur GN, Isengard H-D: Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem. 2012, 132: 1651-1659. 10.1016/j.foodchem.2011.06.004.
Article
Google Scholar
Hădărugă DI, Hădărugă NG, Bandur GN, Riviş A, Costescu C, Ordodi V, Ardelean A: Berberis vulgaris extract/β-cyclodextrin nanoparticles: synthesis and characterization. Rev Chim. 2010, 61: 669-675. 10.1002/recl.19420610908.
Article
Google Scholar
Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A: Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2010, 68: 155-164. 10.1007/s10847-010-9761-0.
Article
Google Scholar
Hădărugă NG, Hădărugă DI, Păunescu V, Tatu C, Ordodi VL, Bandur GN, Lupea AX: Bioactive nanoparticles (6). thermal stability of linoleic acid / α- and β-cyclodextrin complexes. Food Chem. 2006, 99: 500-508. 10.1016/j.foodchem.2005.08.012.
Article
Google Scholar
Szejtli J, Szente L: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm. 2005, 61: 115-125. 10.1016/j.ejpb.2005.05.006.
Article
CAS
Google Scholar
Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S, Nunes PS, et al: Interaction of p-cymene with beta-cyclodextrin. J Therm Anal Calorim. 2012, 109: 951-955. 10.1007/s10973-011-1736-x.
Article
CAS
Google Scholar
HyperChemTM release 5.11 Professional for Windows. 1999, FL, USA: Hypercube, Inc, Gainsville, http://www.hyper.com,
Hansch C, Maloney PP, Fujita T, Muir RM: Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature. 1962, 194: 178-180. 10.1038/194178b0.
Article
CAS
Google Scholar
Hansch C, Fujita T: p-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc. 1964, 86: 1616-1626. 10.1021/ja01062a035.
Article
CAS
Google Scholar
Menger FM, Sherrod MJ: Docking calculations on ferrocene complexation with cyclodextrins. J Am Chem Soc. 1988, 110: 8606-8611. 10.1021/ja00234a005.
Article
CAS
Google Scholar
Sherrod MJ: Exploration of cyclomalto-oligosaccharide (cyclodextrin) chemistry with molecular mechanics: Docking calculations on the complexation of ferrocenes with cyclodextrins. Carbohydr Res. 1989, 192: 17-32. 10.1016/0008-6215(89)85161-4.
Article
CAS
Google Scholar
Duchamp DJ: Molecular mechanics and crystal structure analysis in drug design. Computer-Assisted Drug Design. Volume 112. Edited by: Olson EC, Christoffersen RE. 1979, Washington, DC: American Chemical Society, 79-102. 10.1021/bk-1979-0112.ch003.
Chapter
Google Scholar
Ulrich B, Allinger NL: Molecular mechanics. 1982, Washington: American Chemical Society
Google Scholar
Leach AR: Molecular modelling. Principles and Applications. 2001, Harlow: Pearson Education Limited
Google Scholar
Hinchliffe A: Modelling molecular structures. 2000, Chichester: John Wiley & Sons, Ltd.
Google Scholar
Bowen JP, Allinger NL: Molecular Mechanics: The Art and Science of Parameterization. Reviews in Computational Chemistry. Volume 2. Edited by: Lipkowitz KB, Boyd DB. 2007, Hoboken, NJ: John Wiley & Sons, Inc, 10.1002/9780470125793.ch3.
Google Scholar
Allinger NL, Zhou X, Bergsma J: Molecular mechanics parameters. J Mol Struct (THEOCHEM). 1994, 312: 69-83. 10.1016/S0166-1280(09)80008-0.
Article
Google Scholar
Jianu C: Synthesis of nonionic-anionic colloidal systems based on alkaline and ammonium β-nonylphenol polyethyleneoxy (n = 3-20) propionates / dodecylbenzenesulfonates with prospects for food hygiene. Chem Cent J. 2012, 95: 10.1186/1752-153X-6-95.
Google Scholar
Doman TN, Landis CR, Bosnich B: Molecular mechanics force fields for linear metallocenes. J Am Chem Soc. 1992, 114: 7264-7272. 10.1021/ja00044a042.
Article
CAS
Google Scholar
Doman TN, Lollis TK, Bosnich B: Molecular mechanics force fields for bent metallocenes of the type [M(Cp)2Cl2]. J Am Chem Soc. 1995, 117: 1352-1368. 10.1021/ja00109a020.
Article
CAS
Google Scholar
Timofeeva TV, Lii J-H, Allinger NL: Molecular mechanics explanation of the metallocene bent sandwich structure. J Am Chem Soc. 1995, 117: 7452-7459. 10.1021/ja00133a018.
Article
CAS
Google Scholar
Comba P, Hambley TW: Molecular Modeling of Inorganic Compounds. 2001, Weinheim: Wiley-VCH
Google Scholar
Yao S, Shoji T, Iwamoto Y, Kamei E: Consideration of an activity of the metallocene catalyst by using molecular mechanics, molecular dynamics and QSAR. Comput Theor Polym Sci. 1999, 9: 41-46. 10.1016/S1089-3156(98)00051-8.
Article
CAS
Google Scholar
Hasel W, Hendrickson TF, Still WC: A rapid approximation to the solvent accessible surface areas of atoms. Tetrahedron Comput Meth. 1988, 1: 103-116. 10.1016/0898-5529(88)90015-2.
Article
CAS
Google Scholar
Still WC, Tempczyk A, Hawley RC, Hendrickson T: Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc. 1990, 112: 6127-6129. 10.1021/ja00172a038.
Article
CAS
Google Scholar
Bodor N, Gabanyi Z, Wong CK: A new method for the estimation of partition coefficient. J Am Chem Soc. 1989, 111: 3783-10.1021/ja00193a003.
Article
CAS
Google Scholar
Gavezzotti A: The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. J Am Chem Soc. 1983, 105: 5220-5225. 10.1021/ja00354a007.
Article
CAS
Google Scholar
Ooi T, Oobatake M, Némethy G, Scheraga HA: Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci. 1987, 84: 3086-3090. 10.1073/pnas.84.10.3086.
Article
CAS
Google Scholar
Ghose AK, Pritchett A, Crippen GM: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: modeling hydrophobic interaction. J Comput Chem. 1988, 9: 80-90. 10.1002/jcc.540090111.
Article
CAS
Google Scholar
Viswanadhan VN, Ghose AK, Revankar GR, Robins RK: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comp Sci. 1989, 29: 163-172. 10.1021/ci00063a006.
Article
CAS
Google Scholar
Ghose AK, Crippen GM: Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comp Sci. 1987, 27: 21-35. 10.1021/ci00053a005.
Article
CAS
Google Scholar
Miller KJ: Additivity methods in molecular polarizability. J Am Chem Soc. 1990, 112: 8533-8542. 10.1021/ja00179a044.
Article
CAS
Google Scholar