Skip to main content

Inorganic base-catalyzed formation of antivirally active N-substituted benzamides from α-amido sulfones and N-nucleophile

Abstract

Background

Heteronucleophiles as well as carbanionic reagents can be used to react with α-amido sulfones, thus giving the opportunity to prepare a large array of amino derivatives. Since, novel 1,3,4-oxadiazole-2-thiol derivatives can serve as potent nucleophiles, we employed 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the nucleophilic source of nitrogen in the reaction with α-amido sulfones.

Results

A series of N-substituted benzamides bearing 1,3,4-oxadiazol unit were prepared for the first time by the reaction of in situ generated protected imine from α-amido sulfones with 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the source of nitrogen nucleophile. Some of the synthesized products displayed favourable antiviral activity against cucumber mosaic virus (CMV) in preliminary antiviral activity tests. The title compounds 5c, 5o and 5r revealed curative activity of 42.2%, 48.7% and 40.5%, respectively against CMV (inhibitory rate) compared to the commercial standard Ningnanmycin (53.4%) at 500 μg/mL.

Conclusion

A practical synthetic route to N-benzoyl-α-amido sulfones by the reaction of 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the source of nitrogen nucleophiles with in situ generated protected imine from N-benzoyl-α-amido sulfones is presented. The reaction catalyzed by an inorganic base has considerable significance to exploit the potential of α-amido sulfones in organic synthesis.

Background

α-Amido sulfones are known for their wide range of application in asymmetric synthesis [1]. Different carbanionic nucleophiles can be reacted with α-amido sulfones, affording a wide variety of amino derivatives [27]. In addition, considerable research has been conducted on the reaction of nitrogen nucleophiles and α,β-unsaturated carbonyls [811]. Heteronucleophiles as well as carbanionic reagents can react with α-amido sulfones, thus giving the opportunity to prepare a large array of amino derivatives. Furthermore, a series of amino derivatives containing 1, 3, 4-oxadiazole ring were synthesized by the reaction of 1, 3, 4-oxadiazole-2-thiol with suitably substituted amines and formaldehyde in ethanol [12]. Based on these reports, we executed an inorganic base-mediated reaction of 5-subsititued phenyl-1, 3, 4-oxadiazole-2-thiols as the source of nitrogen nucleophiles with N-benzoyl-α-amido sulfones to produce N, N-aminals. Interestingly, the resulting compounds bearing a 1, 3, 4-oxadiazole ring are often associated with significant fungicidal and insecticidal activities [1315]. Nevertheless, as of today, there has been no report on antiviral activities of N-substituted benzamides bearing 1,3,4-oxadiazol unit. We report synthetic and antiviral studies of the title compounds in the ensuing sections.

Results and Discussion

The synthetic route to the title N-substituted benzamides 5 is shown in Scheme 1. In order to prepare the key electrophilic component N-benzoyl-α-amido sulfones 4 for the final reaction, a three components reaction involving aromatic aldehyde, benzamide and sodium sulfonate was used by modifying the procedure reported by Chemla [16]. The reaction was fast, free of any significant side products formation and the pure product was isolated in moderate yield through recrystallization. The sulfones were characterized by 1H NMR, 13C NMR and IR spectral data. Finally, reaction of nitrogen nucleophiles 3 with N-benzoyl-α-amido sulfones in the presence of basic catalyst KOH in CH2Cl2 at room temperature afforded the desired N-substituted benzamides 5 bearing 1,3,4-oxadiazol group [Additional file 1]. The reaction conditions were optimized by taking compound 5a as the model. The effect of different solvents and bases was studied at room temperature with a fixed reaction time of 24 h (Table 1). Under these conditions, dichloromethane (CH2Cl2) provided the product in higher yield compared to toluene, tetrahydrofuran (THF) or acetonitrile. Amongst the various bases screened for the experiment, KOH gave the best result and higher conversion was achieved when 1.2 equiv of KOH was used instead of 1.0 equiv. Under optimized conditions, the isolated yield of the N-substituted benzamides 5a reached as high as 70% when the reaction mixture was stirred for 24 h in CH2Cl2 using 1.2 equiv of KOH.

Scheme 1
scheme 1

Synthetic sequence to N-substituted benzamide analogues 5 containing 1,3,4-oxadiazole ring.

Table 1 Effect of different solvents and bases for the synthesis of 5aa

Antiviral activity and structure-activity relationship

The results of in vivo antiviral activity studies of the N-substituted benzamides 5a-5u against CMV are given in Table 2. Ningnanmycin was used as the reference antiviral agent. Most of the compounds showed promising results in terms of curative bioactivities at 500 μg/mL. The comparison of the antiviral activity of the products with commercial reference leads to the following conclusions: (a) The antiviral activity is affected by the type of the substituents present in the compound. The compounds containing 2-fluorophenyl or 4-fluorophenyl group showed better anti-CMV activity compared with those derived from other groups. In particular, N-substituted benzamides 5o (R1 = o-F, R2 = p-Cl) and 5c (R1 = p-F, R2 = m-Cl) displayed moderate curative rates (48.7% and 42.2%, respectively) against CMV at the concentration of 500 μg/mL. These values were comparable to the curative rate (53.4%) shown by the commercial reference Ningnanmycin, and superior to other compounds bearing different substituents. (b) Substituents have a certain influence on the activity. Compared with the compounds 5o and 5c bearing suitably substituted aryl substituents, the compounds bearing an unsubstituted phenyl ring, such as 5a and 5n, showed lower inhibitory activities. (c) The structural modification caused by changing the substituents (R1 and R2) in the phenyl ring have a wide impact on anti-viral activity of the prepared compounds. Bioactivity of various compounds having the same substituents at different positions of the phenyl ring is various. Thus, amongst the compounds 5b, 5c, 5o and 5p containing the same substituents at different positions of the phenyl ring, the compound 5o carrying 4-chloro and 2-fluoro groups in their respective phenyl rings exhibited better bioactivity than others. Although these compounds, in general, exhibited slightly lower activity in comparison with the commercial reference Ningnanmycin at the concentration of 500 μg/mL, some suitably substituted N-substituted benzamides bearing 1,3,4-oxadiazol moiety showed favourable antiviral activity in the preliminary studies. Subtle structural variation might lead to enhancement of activity and should be the direction of future research.

Table 2 Curative effect of the title compounds 5 against CMV in vivo a

Experimental

Chemistry

The melting points of the products were determined on an XT-4 binocular microscope (Beijing Tech Instrument Co., China) and were not corrected. The IR spectra were recorded on a Bruker VECTOR 22 spectrometer in a KBr disk. 1H NMR (500 MHz), 13C NMR (125 MHz) and 19F NMR (470 MHz) spectral analyses were performed on a JEOL-ECX 500 NMR spectrometer at room temperature using TMS as an internal standard and CDCl3 as the solvent. Elemental analysis was performed on an Elementar Vario-III CHN analyzer. Analytical TLC was performed on silica gel GF254. Column chromatographic purification was carried out using silica gel. All the solvents and materials were of analytical-grade. Intermediate 1, intermediate 2 and 5-subsititued phenyl-1,3,4-oxadiazole-2-thiol 3 were prepared according to the reported methods [17, 18] and used without further purifications [Additional file 2].

Antiviral biological assay

The leaves of Nicotiana tabacum L. inoculated with CMV were selected and grinded in phosphate buffer and filtered through double-layer pledget. The filtrate was centrifuged at 8000 g and the supernatant liquid was the crude extract of virus. The whole experiment was carried out at 4°C. Absorbance values were estimated at 260 nm using an ultraviolet spectro-photometer.

Preparation of medicaments

Tested compounds and 2% Ningnanmycin aqua used as a reference antiviral agent were first dissolved in minimum volume of N, N-dimethylformamide (DMF) and then diluted with distilled water containing 1% Tween 20 at 500 μg/mL concentration.

Curative effect of compounds against CMV in vivo

Growing leaves of Chenopodium amaranticolor of the same age were selected. Crude extracts of CMV were dipped and inoculated with a brush on the whole leaves, which were previously scattered with silicon carbide. The leaves were washed by water after inoculation for 0.5 h and then dried. The compound solution was smeared on the left side of leaves, and the solvent was smeared on the right side for control. All plants were cultivated at 28±1°C with an illumination of 10000 Lux. The local lesion numbers appearing 6-7 d after inoculation were counted. Three repetitions were conducted for each compounds. The inhibition rate of the compound was calculated according to the following formula (av denotes average):

Conclusion

We have demonstrated a general and practical route for the synthesis of the N-substituted benzamides bearing 1,3,4-oxadiazol moiety in the presence of an inorganic base as the catalyst. The reaction of 5-subsititued phenyl-1,3,4-oxadiazole-2-thiol which serves as the source of N-nucleophile with in situ generated protected imine from N-benzoyl-α-amido sulfones provides a ready access to a series of structurally diverse N, N-aminals. The antiviral tests indicated that some of the synthesized compounds possessed of moderately high curative activity against CMV. The structure of the target products needs to be optimized to enhance their antiviral activity. Further studies on mechanistic aspects, enantioselectivities and asymmetric variants of catalysts for this reaction are currently being investigated in our group.

References

  1. Petrini M: α-Amido sulfones as stable precursors of reactive N-acylimino derivatives. Chem Rev. 2005, 105: 3949-3977. 10.1021/cr050528s.

    Article  CAS  Google Scholar 

  2. Murry JA, Frantz DE, Soheili A, Tillyer R, Grabowski EJJ, Reider PJ: Synthesis of α-amido ketones via organic catalysis: thiazolium-catalyzed cross-coupling of aldehydes with acylimines. J Am Chem Soc. 2001, 123: 9696-9697. 10.1021/ja0165943.

    Article  CAS  Google Scholar 

  3. Palomo C, Oiarbide M, Laso A, López R: Catalytic enantioselective aza-Henry reaction with broad substrate scope. J Am Chem Soc. 2005, 127: 17622-17623. 10.1021/ja056594t.

    Article  CAS  Google Scholar 

  4. Song J, Shih HW, Deng L: Asymmetric Mannich reactions with in situ generation of carbamate-protected imines by an organic catalyst. Org Lett. 2007, 9: 603-606. 10.1021/ol062837q.

    Article  CAS  Google Scholar 

  5. Gomez-Bengoa E, Linden A, Lόpez R, Múgica-Mendiola I, Oiarbide M, Palomo C: Asymmetric aza-Henry reaction under phase transfer catalysis: an experimental and theoretical study. J Am Chem Soc. 2008, 130: 7955-7966. 10.1021/ja800253z.

    Article  CAS  Google Scholar 

  6. Zhang H, Syed S, Barbas CF: Highly enantio- and diastereoselective Mannich reactions of glycine Schiff bases with in situ generated N-Boc-imines catalyzed by a cinchona alkaloid thiourea. Org Lett. 2010, 12: 708-711. 10.1021/ol902722y.

    Article  CAS  Google Scholar 

  7. Mazzotta S, Gramigna L, Bernardi L, Ricci A: One-pot synthesis of optically active β-amino-α-methylene carbonyl derivatives from α-amidosulfones using quinine-based phase-transfer catalysts. Org Process Res Dev. 2010, 14: 687-691. 10.1021/op1000308.

    Article  CAS  Google Scholar 

  8. Kobayashi S, Kakumoto K, Sugiura M: Transition metal salts-catalyzed aza-Michael reactions of enones with carbamates. Org Lett. 2002, 4: 1319-1322. 10.1021/ol0256163.

    Article  CAS  Google Scholar 

  9. Wabnitz TC, Spencer JB: A general, Brønsted acid-catalyzed hetero-Michael addition of nitrogen, oxygen, and sulfur nucleophiles. Org Lett. 2003, 5: 2141-2144. 10.1021/ol034596h.

    Article  CAS  Google Scholar 

  10. Palomo C, Oiarbide M, Halder R, Kelso M, Gómez-Bengoa E, García JM: Catalytic enantioselective conjugate addition of carbamates. J Am Chem Soc. 2004, 126: 9188-9189. 10.1021/ja047004e.

    Article  CAS  Google Scholar 

  11. Rowland GB, Zhan H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC: Brønsted acid-catalyzed imine amidation. J Am Chem Soc. 2005, 127: 15696-15697. 10.1021/ja0533085.

    Article  CAS  Google Scholar 

  12. Koparır M, Çetin A, Cansız A: 5-Furan-2yl134oxadiazole-2-thiol, 5-furan-2yl-4H124 triazole-3-thiol and their thiol-thione tautomerism. Molecules. 2005, 10: 475-480. 10.3390/10020475.

    Article  Google Scholar 

  13. Wu J, Song BA, Chen HJ, Bhadury PS, Hu DY: Synthesis and antifungal activity of 5-chloro-6-phenylpyridazin-3(2H)-one derivatives. Molecules. 2009, 14: 3676-3687. 10.3390/molecules14093676.

    Article  CAS  Google Scholar 

  14. Zheng XM, Li Z, Wang YL, Chen WD, Huang QH, Liu CX, Song GH: Syntheses and insecticidal activities of novel 2,5-disubstituted 1,3,4-oxadiazoles. J Fluorine Chem. 2003, 123: 163-169. 10.1016/S0022-1139(03)00168-4.

    Article  CAS  Google Scholar 

  15. Ram VJ, Vlietinck AJ: Chemotherapeutical agents. VII. synthesis and pesticidal activities of sulphides and sulphones derived from bis[4-aryl-1,2,4-triazoline-5-thione-3-yl]alkane and 5-phenyl-1,3,4-oxadiazole-2-thione. J Heterocycl Chem. 1988, 25: 253-256. 10.1002/jhet.5570250141.

    Article  CAS  Google Scholar 

  16. Chemla F, Hebbe V, Normant JF: An easy synthesis of aliphatic and aromatic N-sulfonyl aldimines. Synthesis. 2000, 32: 75-77.

    Article  Google Scholar 

  17. Chen Z, Xu WM, Liu KM, Yang S, Fan HT, Bhadury PS, Hu DY, Zhang YP: Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules. 2010, 15: 9046-9056. 10.3390/molecules15129046.

    Article  CAS  Google Scholar 

  18. Liu F, Luo XQ, Song BA, Bhadury PS, Yang S, Jin LH, Xue W, Hu DY: Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg Med Chem. 2008, 16: 3632-3640. 10.1016/j.bmc.2008.02.006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the generous financial support received from the National Key Project for Basic Research (2010CB126105, 2010CB134504) and the National Natural Science Foundation of China (20872021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoan Song or Song Yang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The current study is an outcome of constructive discussion with BAS, SY, LHJ and DYH who offered necessary guidance to YJ to carry out his synthesis and characterization experiments. YJ was also involved in the drafting of the manuscript. XW performed the antiviral tests; HXQ carried out the 1H NMR, 13C NMR and 19F NMR spectral analyses. ZCW and WMX participated in the scientific discussion pertaining to the manuscript. BAS and associate PSB were involved in revising the manuscript. All authors read and approved the final manuscript.

Electronic supplementary material

13065_2011_289_MOESM1_ESM.DOC

Additional file 1: Yield and elemental analyses data for title compounds 5a-u. Which contains the table about structure, yield and elemental analyses data for title compounds 5a-u. (DOC 98 KB)

13065_2011_289_MOESM2_ESM.DOC

Additional file 2: Experimental details and data of title compounds 5a-u. Which includes the experimental procedure, spectroscopic data of intermediate 3, intermediate 4, title compounds 5a-u, copies of 1H NMR and 13C NMR. (DOC 6 MB)

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Jin, Y., Song, B., Hu, D. et al. Inorganic base-catalyzed formation of antivirally active N-substituted benzamides from α-amido sulfones and N-nucleophile. Chemistry Central Journal 5, 21 (2011). https://doi.org/10.1186/1752-153X-5-21

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1752-153X-5-21

Keywords