Mohamadpour F. Catalyst-free, visible light irradiation promoted synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in aqueous ethyl lactate. J Photochem Photobiol, A. 2021;407:113041.
Article
CAS
Google Scholar
Mohamadpour F. Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J Saudi Chem Soc. 2020;24:636–41.
Article
CAS
Google Scholar
Mohamadpour F. Catalyst-free and solvent-free visible light irradiation-assisted Knoevenagel-Michael cyclocondensation of aryl aldehydes, malononitrile, and resorcinol at room temperature. Monatshefte für Chemie-Chem Mon. 2021;152:507–12.
Article
CAS
Google Scholar
Wang Z, Wang L, Wang Z, Li P, Zhang Y. A practical synthesis of α-bromo/iodo/chloroketones from olefins under visible-light irradiation conditions. Chin Chem Lett. 2021;32:429–32.
Article
CAS
Google Scholar
Xie X, Wang L, Zhou Q, Ma Y, Wang ZM, Li P. Visible-light-induced novel cyclization of 2-(2-(arylethynyl) benzylidene)-malononitrile derivatives with 2, 6-di (tert-butyl)-4-methylphenol to bridged spirocyclic compounds. Chin Chem Lett. 2022;33:5069–73.
Article
CAS
Google Scholar
Ma Y, Gao F, Xiao W, Li N, Li S, Yu B, Chen X. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin Chem Lett. 2022;33:4395–9.
Article
CAS
Google Scholar
Xiang P, Sun K, Wang S, Chen X, Qu L, Yu B. Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis. Chin Chem Lett. 2022;33:5074–9.
Article
CAS
Google Scholar
Ma CH, Zhao L, He X, Jiang YQ, Yu B. Visible-light-induced direct 3-ethoxycarbonylmethylation of 2-aryl-2H-indazoles in water. Org Chem Front. 2022;9:1445–50.
Article
CAS
Google Scholar
Huang X, Liu S, Liu G, Tao Y, Wang C, Zhang Y, Li Z, Wang H, Zhou Z, Shen G, Xue Z. An Unprecedented 2-fold interpenetrated lvt open framework built from Zn6 ring seamed trivacant polyoxotungstates used for photocatalytic synthesis of pyridine derivatives. Appl Catal B. 2023;323:122134.
Article
CAS
Google Scholar
Mohamadpour F. New role for photoexcited organic dye, Na2 eosin Y via the direct hydrogen atom transfer (HAT) process in photochemical visible-light-induced synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones under air atmosphere. Dyes Pigm. 2021;194:109628.
Article
CAS
Google Scholar
Mohamadpour F. Synthesis of polyfunctionalized dihydro-2-oxypyrroles catalyzed by 1, 2, 3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as a novel donor-acceptor fluorophore. Sci Rep. 2022;12:16911.
Article
CAS
Google Scholar
Mohamadpour F. Methylene blue as a photo-redox catalyst: the development synthesis of tetrahydrobenzo[b]pyran scaffolds via a single-electron transfer/energy transfer. Front Chem. 2022;10:934781.
Article
CAS
Google Scholar
Mohamadpour F. A new role for photoexcited Na2 eosin Y as direct hydrogen atom transfer (HAT) photocatalyst in photochemical synthesis of dihydropyrano[2,3-c]pyrazole scaffolds promoted by visible light irradiation under air atmosphere. J Photochem Photobiol, A. 2021;418:113428.
Article
CAS
Google Scholar
Li Z, Song H, Guo R, Zuo M, Hou C, Sun S, He X, Sun Z, Chu W. Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green Chem. 2019;21:3602–5.
Article
CAS
Google Scholar
Heilbronn ED. Inhibition of cholinesterases by tetrahydroaminacrin. Acta Chem Scand. 1961;15:1386–90.
Article
CAS
Google Scholar
Maayani S, Weinstein H, Ben-Zvi N, Cohen S, Sokolovsky M. Psychotomimetics as anticholinergic agents—I: 1-cyclohexylpiperidine derivatives: anticholinesterase activity and antagonistic activity to acetylcholine. Biochem Pharmacol. 1974;23:1263–81.
Article
CAS
Google Scholar
Srivastava SK, Chauhan PM, Bhaduri AP, Fatima N, Chatterjee RK. Quinolones: novel probes in antifilarial chemotheraphy. J Med Chem. 2000;43:2275–9.
Article
CAS
Google Scholar
Muscia GC, Bollini M, Carnevale JP, Bruno AM, Asis SE. Microwave-assisted Friedländer synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett. 2006;47:8811–5.
Article
CAS
Google Scholar
Maguire MP, Sheets KR, McVety K, Spada AP, Zilberstein A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J Med Chem. 1994;37:2129–37.
Article
CAS
Google Scholar
Suzuki M, Iwasaki H, Fujikawa Y, Kitahara M, Sakashita M, Sakoda R. Synthesis and biological evaluations of quinoline-based HMG-CoA reductase inhibitors. Bioorg Med Chem. 2001;9:2727–43.
Article
CAS
Google Scholar
Desai C, Macchi D, Patel D. Quinoline derivatives as antitubercular. Indian J Chem Sect B Org Chem Incl Med Chem. 1996;35:871–3.
Google Scholar
Castelli MV, Kouznetsov VV, López SN, Sortino M, Enriz RD, Ribas JC, Zacchino S. In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg Med Chem. 2003;11:1531–50.
Article
Google Scholar
Singh M, Singh MP, Ablordeppey S. In vitro studies with liposomal cryptolepine. Drug Dev Ind Pharm. 1996;22:377–81.
Article
CAS
Google Scholar
Ebisu H, Nishikawa M, Tanaka M, Okazoe T, Morizawa Y, Shinyama H, Nakamura N. Pharmacologic profiles of GA0113, a novel quinoline derivative angiotensin II AT1-receptor antagonist. J Cardiovasc Pharmacol. 1999;34:526–32.
Article
CAS
Google Scholar
Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol Pharm Bull. 2004;27:1683–7.
Article
CAS
Google Scholar
Roma G, Di Braccio M, Grossi G, Mattioli F, Ghia M. 1, 8-Naphthyridines IV. 9-Substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino)[1,2,4] triazolo [4,3-a][1,8] naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem. 2000;35:1021–35.
Article
CAS
Google Scholar
Savini L, Chiasserini L, Pellerano C, Filippelli W, Falcone G. Synthesis and pharmacological activity of 1,2,4-triazolo [4,3-a] quinolines. Il Farmaco. 2001;56:939–45.
Article
CAS
Google Scholar
Johnson JV, Rauckman BS, Baccanari DP, Roth B. 2, 4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 12. 1, 2-Dihydroquinolylmethyl analogs with high activity and specificity for bacterial dihydrofolate reductase. J Med Chem. 1989;32:1942–9.
Article
CAS
Google Scholar
Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. Synthesis and antibacterial evaluation of certain quinolone derivatives. J Med Chem. 2001;44:2374–7.
Article
CAS
Google Scholar
Sadana AK, Mirza Y, Aneja KR, Prakash OM. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo [4,3-a] pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo [4,3-a] quinolines as antibacterial agents. Eur J Med Chem. 2003;38:533–6.
Article
CAS
Google Scholar
Kidwai M, Bhushan KR, Sapra P, Saxena RK, Gupta R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg Med Chem. 2000;8:69–72.
Article
CAS
Google Scholar
Kayirere MG, Mahamoud A, Chevalier J, Soyfer JC, Crémieux A, Barbe J. Synthesis and antibacterial activity of new 4-alkoxy, 4-aminoalkyl and 4-alkylthioquinoline derivatives. Eur J Med Chem. 1998;33:55–63.
Article
CAS
Google Scholar
Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature. 1998;392:289–92.
Article
CAS
Google Scholar
Perzyna A, Klupsch F, Houssin R, Pommery N, Lemoine A, Hénichart JP. New benzo [5,6] pyrrolizino [1,2-b] quinolines as cytotoxic agents. Bioorg Med Chem Lett. 2004;14:2363–5.
Article
CAS
Google Scholar
Lamazzi C, Léonce S, Pfeiffer B, Renard P, Guillaumet G, Rees CW, Besson T. Expeditious synthesis and cytotoxic activity of new cyanoindolo [3,2-c] quinolines and benzimidazo [1,2-c] quinazolines. Bioorg Med Chem Lett. 2000;10:2183–5.
Article
CAS
Google Scholar
Kaczmarek Ł, Peczyńska-Czoch W, Osiadacz J, Mordarski M, Sokalski WA, Boratyński J, Marcinkowska E, Glazman-Kuśnierczyk H, Radzikowski C. Synthesis, and cytotoxic activity of some novel indolo [2,3-b] quinoline derivatives: DNA topoisomerase II inhibitors. Bioorg Med Chem. 1999;7:2457–64.
Article
CAS
Google Scholar
Martirosyan AR, Rahim-Bata R, Freeman AB, Clarke CD, Howard RL, Strobl JS. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. Biochem Pharmacol. 2004;68:1729–38.
Article
CAS
Google Scholar
Kolokythas G, Pouli N, Marakos P, Pratsinis H, Kletsas D. Design, synthesis and antiproliferative activity of some new azapyranoxanthenone aminoderivatives. Eur J Med Chem. 2006;41:71–9.
Article
CAS
Google Scholar
Heitsch H. Non-peptide antagonists and agonists of the bradykinin B2 receptor. Curr Med Chem. 2002;9:913–28.
Article
CAS
Google Scholar
Dubé D, Blouin M, Brideau C, Chan CC, Desmarais S, Ethier D, Falgueyret JP, Friesen RW, Girard M, Girard Y, Guay J. Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530. Bioorg Med Chem Lett. 1998;8:1255–60.
Article
Google Scholar
Ma ZZ, Hano Y, Nomura T, Chen YJ. Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum. Heterocycles. 1997: 541–6
Ma ZZ, Hano Y, Nomura T, Chen YJ. Alkaloids and phenylpropanoids from Peganum nigellastrum. Phytochemistry. 2000;53:1075–8.
Article
CAS
Google Scholar
Ma ZZ, Hano Y, Nomura T, Chen YJ. Two new quinazoline-quinoline alkaloids from Peganum nigellastrum. Heterocycles. 1999;8:1883–9.
Google Scholar
Shirini F, Yahyazadeh A, Mohammadi K, Khaligh NG. Solvent-free synthesis of quinoline derivatives via the Friedländer reaction using 1, 3-disulfonic acid imidazolium hydrogen sulfate as an efficient and recyclable ionic liquid catalyst. C R Chim. 2014;17:370–6.
Article
CAS
Google Scholar
Lekhok KC, Bhuyan D, Prajapati D, Boruah RC. Zinc triflate: a highly efficient reusable catalyst in the synthesis of functionalized quinolines via Friedlander annulation. Mol Divers. 2010;14:841–6.
Article
CAS
Google Scholar
Reddy BP, Iniyavan P, Sarveswari S, Vijayakumar V. Nickel oxide nanocompounds catalyzed synthesis of poly-substituted quinolines via Friedlander hetero-annulation reaction. Chin Chem Lett. 2014;25:1595–600.
Article
Google Scholar
Zolfigol MA, Salehi P, Ghaderi A, Shiri M. A catalytic and green procedure for Friedlander quinoline synthesis in aqueous media. Catal Commun. 2007;8:1214–8.
Article
CAS
Google Scholar
Wu J, Xia HG, Gao K. Molecular iodine: a highly efficient catalyst in the synthesis of quinolines via Friedländer annulation. Org Biomol Chem. 2006;4:126–9.
Article
CAS
Google Scholar
Zhang XL, Wang QY, Sheng SR, Wang Q, Liu XL. Efficient Friedländer synthesis of quinoline derivatives from 2-aminoarylketones and carbonyl compounds mediated by recyclable PEG-supported sulfonic acid. Synth Commun. 2009;39:3293–304.
Article
CAS
Google Scholar
Shaabani A, Soleimani E, Badri Z. Triflouroacetic acid as an efficient catalyst for the synthesis of quinoline. Synth Commun. 2007;37:629–35.
Article
CAS
Google Scholar
Garella D, Barge A, Upadhyaya D, Rodriguez Z, Palmisano G, Cravotto G. Fast, solvent-free, microwave-promoted friedländer annulation with a reusable solid catalyst. Synth Commun. 2009;40:120–8.
Article
Google Scholar
Narasimhulu M, Reddy TS, Mahesh KC, Prabhakar P, Rao CB, Venkateswarlu Y. Silica supported perchloric acid: a mild and highly efficient heterogeneous catalyst for the synthesis of poly-substituted quinolines via Friedländer hetero-annulation. J Mol Catal A: Chem. 2007;266:114–7.
Article
CAS
Google Scholar
Reddy BS, Venkateswarlu A, Reddy GN, Reddy YR. Chitosan-SO3H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett. 2013;54:5767–70.
Article
CAS
Google Scholar
Dabiri M, Baghbanzadeh M, Nikcheh MS. Oxalic acid: an efficient and cost-effective organic catalyst for the Friedländer quinoline synthesis under solvent-free conditions. Monatshefte für Chemie-Chem Mon. 2007;138:1249–52.
Article
CAS
Google Scholar
Yadav JS, Reddy BS, Sreedhar P, Rao RS, Nagaiah K. Silver phosphotungstate: a novel and recyclable heteropoly acid for Friedländer quinoline synthesis. Synthesis. 2004;2004:2381–5.
Article
Google Scholar
Khaligh NG, Mihankhah T, Johan MR. Synthesis of quinoline derivatives via the Friedländer annulation using a sulfonic acid functionalized liquid acid as dual solvent-catalyst. Polycyclic Aromat Compd. 2020;40:1223–37.
Article
CAS
Google Scholar
Mohamadpour F. The development of Friedländer heteroannulation through a single electron transfer and energy transfer pathway using methylene blue (MB+). Sci Rep. 2022;12:7253.
Article
CAS
Google Scholar
Friedlaender P. Ueber o‐Amidobenzaldehyd. Berichte der deutschen chemischen Gesellschaft.
Miyabe H. Organic reactions promoted by metal-free organic dyes under visible light irradiation. In: Visible-light photocatalysis of carbon-based materials. 2017; IntechOpen.