Onoabedje EA, Ibezim A, Okoro UC, Batra S. Synthesis molecular docking, antiplasmodial and antioxidant activities of new sulfonamido-pepetide derivatives. Heliyon. 2020. https://doi.org/10.1016/j.heliyon.2020.e04958.
Article
PubMed
PubMed Central
Google Scholar
Ugwu DI, Okoro UC, Ukoha PO, Okafor S, Ibezim A, Kumar NM. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide. Eur J Med Chem. 2017;135:349–69. https://doi.org/10.1016/j.ejmech.2017.04.029.
Article
CAS
PubMed
Google Scholar
Onoabedje EA, Ibezim A, Okoro UC, Batra S. New sulphonamide pyrrolidine carboxamide derivatives: synthesis, molecular docking, antiplasmodial and antioxidant activities. PLoS ONE. 2021. https://doi.org/10.1371/journal.pone.0243305.
Article
PubMed
PubMed Central
Google Scholar
WHO Media Center. Fact sheet on malaria. 2020. https://www.who.int/en/news-room/fact-sheets/detail/malaria. Accessed 4 April 2020.
Ngo-Hanna J, Ntie-Kang F, Kaiser M, Brun R, Efange SMN. 1-Aryl-1,2,3,4-tetrahydroisoquinolines as potential antimalarials: synthesis, in vitro antiplasmodial activity and in silico pharmacokinetics evaluation. RSC Adv. 2014;4:22856–65. https://doi.org/10.1039/C4QO00294F.
Article
CAS
Google Scholar
De Rycker M, Horn D, Aldridge B, Amewu RK, Barry CE, Buckner FS. Setting our sights on infectious diseases. ACS Infect Dis. 2020;6:3–13. https://doi.org/10.1021/acsinfecdis.9b00371.
Article
CAS
PubMed
Google Scholar
Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa N. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602. https://doi.org/10.1038/s41591-020-1005-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410. https://doi.org/10.1128/CMR.00051-10.
Article
PubMed
PubMed Central
Google Scholar
McNamara CW, Lee MCS, Lim CS, Lim SH, Roland J, Nagle A. Targeting Plasmodium PI(4)K to eliminate malaria. Nature. 2013;504:248–53. https://doi.org/10.1038/nature12782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paquet T, Le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9:9735. https://doi.org/10.1126/scitranslmed.aad9735.
Article
Google Scholar
Sternberg AR, Roepe PD. Heterologous expression, purification, and functional analysis of the Plasmodium falciparum phosphatidylinositol 4-kinase IIIβ. Biochemistry. 2020;59:2494–506. https://doi.org/10.1021/acs.biochem.0c00259.
Article
CAS
PubMed
Google Scholar
Fienberg S, Eyermann CJ, Arendse LB, Basarab GS, McPhail JA, Burke JE, Chibale K. Structural basis for inhibitor potency and selectivity of Plasmodium falciparum phosphatidylinositol 4-kinase inhibitors. ACS Infect Dis. 2020. https://doi.org/10.1021/acsinfecdis.0c00566.
Article
PubMed
Google Scholar
Paquet T, Manach CL, Cabrera DG, Younis Y, Henrich PP, Abraham TS, Lee MCS, Basak R, Ghidelli-Disse S, Lafuente-Monasterio MJ, Bantscheff M, Ruecker A, Blagborough AM, Zakutansky SE, Zeeman AM, White KL, Shackleford DM, Mannila J, Morizzi J, Scheurer S, Angulo-Barturen I, Martínez MS, Ferrer S, Sanz LM, Gamo FJ, Reader J, Botha M, Dechering KJ, Sauerwein RW, Tungtaeng A, Vanachayangkul P, Lim CS, Burrows J, Witty MJ, Marsh KC, Bodenreider C, Rochford R, Solapure SM, Jiménez-Díaz MB, Wittlin S, Charman SA, Donini C, Campo B, Birkholtz LM, Hanson KK, Drewes G, Kocken CHM, Delves MJ, Leroy D, Fidock DA, Waterson D, Street LJ, Chibale K. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9(387):eaad9735. https://doi.org/10.1126/scitranslmed.aad9735.
Article
PubMed
PubMed Central
Google Scholar
Fienberg S, Eyermann CJ, Arendse L, Basarab GS, McPhail J, Burke JE, Chibale K. Structural basis for inhibitor potency and selectivity of Plasmodium falciparum phosphatidylinositol 4-kinase inhibitors. ACS Inf Dis. 2020. https://doi.org/10.1021/acsinfecdis.0c00566.
Article
Google Scholar
Ibrahim MAA, Abdelrahman AHM, Hassan AMA. Identification of novel Plasmodium falciparum PI4KB inhibitors as potential anti-malarial drugs: homology modeling, molecular docking and molecular dynamics simulations. Comput Biol Chem. 2019;80:79–89. https://doi.org/10.1016/j.compbiolchem.2019.03.010.
Article
CAS
PubMed
Google Scholar
Younis Y, Douelle F, Feng TS, Cabrera DG, Manach CL, Nchinda AT. 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J Med Chem. 2012;55:3479–87. https://doi.org/10.1021/jm3001373.
Article
CAS
PubMed
Google Scholar
Reuberson J, Horsley H, Franklin RJ, Ford D, Neuss J, Brookings D, Huang Q, Vanderhoydonck B, Gao LJ, Jang MY, Herdewijn P, Ghawalkar A, Fallah-Arani F, Khan AR, Henshall J, Jairaj M, Malcolm S, Ward E, Shuttleworth L, Lin Y, Louat ST, Waer M, Herman J, Payne A, Ceska T, Doyle C, Pitt W, Calmiano M, Augustin M, Steinbacher S, Lammens A, Allen R. Discovery of a potent, orally bioavailable PI4KIIIβ inhibitor (UCB9608) able to significantly prolong allogeneic organ engraftment in vivo. J Med Chem. 2018;61:6705–23.
Article
CAS
PubMed
Google Scholar
Le-Manach C, Gonzàlez-Cabrera D, Douelle F, Nchinda AT, Younis Y, Taylor D. Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a SoftFocus kinase library: part 1. J Med Chem. 2014;57:2789–98. https://doi.org/10.1021/jm500098s.
Article
CAS
PubMed
Google Scholar
Ibezim A, Onuku RS, Ibezim A, Ntie-Kang F, Nwodo NJ, Adikwu MU. Structure-based virtual screening and molecular dynamics simulation studies to discover new SARS-CoV-2 main protease inhibitors. Sci Afr. 2021;14:e00970.
CAS
PubMed
PubMed Central
Google Scholar
Kolb P, Kipouros CB, Huang D, Caflisch A. Structure-based virtual screening and molecular dynamics simulation studies to discover new SARS-CoV-2 main protease inhibitors. Proteins. 2008. https://doi.org/10.1002/prot.22028.
Article
PubMed
Google Scholar
Kandepedu N, Gonzàlez-Cabrera D, Eedubilli S, Taylor D, Brunschwig C, Gibhard L. Identification, characterization, and optimization of 2,8-disubstituted-1,5-naphthyridines as novel Plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria. J Med Chem. 2018;61:5692–703. https://doi.org/10.1021/acs.jmedchem.8b00648.
Article
CAS
PubMed
Google Scholar
Kumar A, Voet A, Zhang KY. Fragment based drug design: from experimental to computational approaches. Curr Med Chem. 2012;19(30):5128–47. https://doi.org/10.2174/092986712803530467.
Article
CAS
PubMed
Google Scholar
National Center for Biotechnology Information (NCBI). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 1988. https://www.ncbi.nlm.nih.gov/. Accessed 06 Apr 2021.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28:235–342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 2016;54:561–7.
Article
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283–91. https://doi.org/10.1107/S0021889892009944.
Article
CAS
Google Scholar
Discovery Studio Visualizer Software, Version 4.0. 2019. http://www.accelrys.com. Accessed 10 May 2021
Irwin JJ, Shoichet BK. ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177–82. https://doi.org/10.1021/ci049714.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaulton A, Bellis L, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Akhtar R, Bento AP, Al-Lazikani B, Michalovich D, Overington JP. ChEMBL: a large-scale bioactivity database for chemical biology and drug discovery. Nucleic Acids Res. 2012;40:D1100-1107. https://doi.org/10.1093/nar/gkr777 (Database Issue).
Article
CAS
PubMed
Google Scholar
O’Boyle NM, Banck M, James CA, Morley C, Vanderrmeersh T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibezim A, Debnath B, Ntie-Kang F, Mbah CJ, Nwodo NJ. Binding of anti-Trypanosoma natural products from African flora against selected drug targets: a docking study. Med Chem Res. 2017;26:562–79. https://doi.org/10.1007/s00044-016-1764-y.
Article
CAS
Google Scholar
Halgren TA. Merck molecular forcefield. J Comput Chem. 1996;17(5–6):490–641. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P.
Article
CAS
Google Scholar
Chemical Computing Group. Molecular operating environment (MOE) software. 2014.
Ibezim A, Onoabedje EA, Adaka IC, Omeje KO, Onoabedje US, Obi BC. Carboxamides bearing sulfonamide functionality as potential novel phospholipase A2 inhibitors. ChemistrySelect. 2020;5:14416–21. https://doi.org/10.1002/slct.202003784.
Article
CAS
Google Scholar
Jonathan BB, Georgian AH. New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassay. J Med Chem. 2010;53(7):2719–40. https://doi.org/10.1021/jm901137j.
Article
CAS
Google Scholar
Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE. An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput. 2011;7:4026–37. https://doi.org/10.1021/ct200196m.
Article
CAS
PubMed
Google Scholar
Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Bileter SR, Fennen J, Torda AE, Huber T, Kruger P, vanGunsteren WF. The GROMOS biomolecular simulation program package. J Phys Chem. 1999;103:3596–607. https://doi.org/10.1021/jp984217f.
Article
CAS
Google Scholar
Kaczor AA, Silva AG, Loza MI, Kolb P, Castro M, Poso A. Structure-based virtual screening for dopamine D2 receptor ligands as potential antipsychotics. ChemMedChem. 2016;11:718–29.
Article
CAS
PubMed
Google Scholar
Ibezim A, Nwodo NJ, Nnaji NJN, Ujam OT, Olubiyi OO, Mbah CJ. In silico investigation of morpholines as novel class of trypanosomal triosephosphate isomerase inhibitors. Med Chem Res. 2016;26:180–9.
Article
Google Scholar
Wang T, Wu M, Chen ZJ, Chen H, Lin JP, Yang LR. Fragment based drug discovery and molecular docking in drug design. Curr Pharm Biotech. 2015;16:11–25.
Article
Google Scholar
Qingxin L, Congbao K. Perspecties on fragment-based drug discovery: a strategy applicable to diverse targets. Curr Topics Med Chem. 2021;13:1099–112.
Google Scholar
Mejdrová I, Chalupská D, Placková P, Müller C, Sala M, Klíma M, Baumlová A, Hrebabecky H, Prochazkova E, Dejmek M, Strunin D, Weber J, Lee G, Matoušová M, Mertlíková-Kaiserová H, Ziebuhr J, Birkus G, Boura E, Nencka R. Rational design of novel highly potent and selective phosphatidylinositol 4-kinase IIIβ (PI4KB) inhibitors as broadspectrum antiviral agents and tools for chemical biology. J Med Chem. 2016. https://doi.org/10.1021/acs.jmedchem.6b01465.
Article
PubMed
Google Scholar
Sengupta N, Jović M, Barnaeva E, Kim DW, Hu X, Southall N, Dejmek M, Mejdrova I, Nencka R, Baumlova A, Chalupska D, Boura E, Ferrer M, Marugan J, Balla T. A large scale high-throughput screen identifies chemical inhibitors of phosphatidylinositol 4-kinase type II alpha. Methods. 2019;60(3):683–93. https://doi.org/10.1194/jlr.D090159.
Article
CAS
Google Scholar
Ibezim A, Obi BC, Ofokansi NM, Mbah CJ, Nwodo NJ. Discovery of trypanocidal bioactive leads by docking study, molecular dynamic simulation and in vivo screening. ChemistrySelect. 2018;3:2386–9.
Article
CAS
Google Scholar
Ibezim A, Nwodo NJ, Mbah CJ. Computer aided drug design: an introduction. J Pharm Dev Ind Pharm. 2019;1(1):10–25.
Google Scholar