Holmes B, Brogden RN, Heel RC, Speight TM, Avery GS (1984) Flunarizine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs 27:6–44. https://doi.org/10.2165/00003495-198427010-00002
Article
CAS
Google Scholar
Perin PM, Haid S, Brown RJP, Doerrbecker J, Schulze K, Zeilinger C, von Schaewen M, Heller B, Vercauteren K, Luxenburger E, Baktash YM, Vondran FWR, Speerstra S, Awadh A, Mukhtarov F, Schang LM, Kirschning A, Müller R, Guzman CA, Kaderali L, Randall G, Meuleman P, Ploss A, Pietschmann T (2016) Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1. Hepatology 63:49–62. https://doi.org/10.1002/hep.28111
Article
CAS
Google Scholar
Retzlaff J, Thamm K, Ghosh CC, Ziegler W, Haller H, Parikh SM, David S (2017) Flunarizine suppresses endothelial angiopoietin-2 in a calcium-dependent fashion in sepsis. Sci Rep 7:44113. https://doi.org/10.1038/srep44113
Article
Google Scholar
Prigozhin DM, Modis Y (2016) Flunarizine arrests hepatitis C virus membrane fusion. Hepatology 63:14–16. https://doi.org/10.1002/hep.28224
Article
Google Scholar
Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754. https://doi.org/10.1021/cr970022c
Article
CAS
Google Scholar
Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. https://doi.org/10.1021/cr500081p
Article
CAS
Google Scholar
Steed JW, Atwood JL (2009) Molecular guests in solution. In: Supramolecular chemistry, 2nd ed.; Wiley, London, Chapter 6, p 307
Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882. https://doi.org/10.1039/b705458k
Article
CAS
Google Scholar
Hapiot F, Tilloy S, Monflier E (2006) Cyclodextrins as supramolecular hosts for organometallic complexes. Chem Rev 106:767–781. https://doi.org/10.1021/cr050576c
Article
CAS
Google Scholar
Morillo E (2006) Application of cyclodextrins in agrochemistry. In: Dodziuk H (ed) Cyclodextrins and their complexes. Chemistry. Analytical methods, applications, Chapter 16. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, p 459
Google Scholar
Faugeras P-A, Boëns B, Elchinger P-H, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2012) When cyclodextrins meet click chemistry. Eur J Org Chem 2012:4087–4105. https://doi.org/10.1002/ejoc.201200013
Article
CAS
Google Scholar
Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical chemistry. Chem Rev 92:1457–1470. https://doi.org/10.1021/cr00014a009
Article
CAS
Google Scholar
Hinze WL (1981) Applications of cyclodextrins in chromatographic separations and purification methods. Sep Purif Methods 10:159–237. https://doi.org/10.1080/03602548108066011
Article
CAS
Google Scholar
Xiao Y, Ng S-C, Tan TTY, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68. https://doi.org/10.1016/j.chroma.2012.08.049
Article
CAS
Google Scholar
Dodziuk H (2006) Cyclodextrins and their complexes. Chemistry. Analytical methods, applications. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim
Book
Google Scholar
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocolloids 23:1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001
Article
CAS
Google Scholar
Komiyama M, Monflier E (2006) Cyclodextrin catalysis. In: Dodziuk H (ed) Cyclodextrins and their complexes. Chemistry, analytical methods, applications, Chapter 4. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, p 93
Chapter
Google Scholar
Bai CC, Tian BR, Zhao T, Huang Q, Wang ZZ (2017) Cyclodextrin-catalyzed organic synthesis: reactions, mechanisms, and applications. Molecules 22:1475. https://doi.org/10.3390/molecules22091475
Article
Google Scholar
Trotta F (2016) Cyclodextrin in membranes. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin. https://doi.org/10.1007/978-3-662-44324-8_2044
Google Scholar
Buschmann H-J, Knittel D, Schollmeyer E (2001) New textile applications of cyclodextrins. J Incl Phenom Macrocycl Chem 40:169–172. https://doi.org/10.1023/A:1011892600388
Article
CAS
Google Scholar
Buschmann HJ, Schollmeyer E (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci 53:185–191
CAS
Google Scholar
Bilensoy E (ed) (2011) Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. Wiley, Hoboken, USA
Google Scholar
Marques HMC (2011) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. http://dx.doi.org/10.1002/ffj.2019
Article
Google Scholar
Kant A, Linforth RS, Hort J, Taylor AJ (2004) Effect of β-cyclodextrin on aroma release and flavor perception. J Agric Food Chem 52:2028–2035. https://doi.org/10.1021/jf0307088
Article
CAS
Google Scholar
Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem Rev 107:3088–3116. https://doi.org/10.1021/cr050253g
Article
CAS
Google Scholar
Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233. https://doi.org/10.1016/j.addr.2013.05.001
Article
CAS
Google Scholar
Alvarez-Lorenzo C, García-González CA, Concheiro A (2017) Cyclodextrins as versatile building blocks for regenerative medicine. J Control Release 268:269–281. https://doi.org/10.1016/j.jconrel.2017.10.038
Article
CAS
Google Scholar
van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175. https://doi.org/10.1021/bm901065f
Article
Google Scholar
Guo R, Wilson LD (2013) Cyclodextrin-based microcapsule materials—their preparation and physiochemical properties. Curr Org Chem 17:14–21. https://doi.org/10.2174/138527213805289204
Article
CAS
Google Scholar
Varan G, Varan C, Erdoğar N, Hıncal AA, Bilensoy E (2017) Amphiphilic cyclodextrin nanoparticles. Int J Pharm 531:457–469. https://doi.org/10.1016/j.ijpharm.2017.06.010
Article
CAS
Google Scholar
Mejia-Ariza R, Graña-Suárez L, Verboom W, Huskens J (2017) Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B 5:36–52. https://doi.org/10.1039/C6TB02776H
Article
CAS
Google Scholar
Adeoye O, Cabral-Marques H (2017) Cyclodextrin nanosystems in oral drug delivery: a mini review. Int J Pharm 531:521–531. https://doi.org/10.1016/j.ijpharm.2017.04.050
Article
CAS
Google Scholar
Trotta F, Zanetti M, Cavalli R (2012) Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 8:2091–2099. https://doi.org/10.3762/bjoc.8.235
Article
CAS
Google Scholar
Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Cyclodextrins for remediation technologies. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2442-6_2
Google Scholar
Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38:344–368. https://doi.org/10.1016/j.progpolymsci.2012.06.005
Article
CAS
Google Scholar
Szejtli J (1990) The cyclodextrins and their applications in biotechnology. Carbohydr Polym 12:375–392. https://doi.org/10.1016/0144-8617(90)90088-A
Article
CAS
Google Scholar
Amiri S, Amiri S (2017) Cyclodextrins: properties and industrial applications. Wiley, Chichester
Book
Google Scholar
Sliwa W, Girek T (eds) (2017) Cyclodextrins: properties and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Google Scholar
Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044. https://doi.org/10.1021/cr970014w
Article
CAS
Google Scholar
Heath JR (2015) Nanotechnologies for biomedical science and translational medicine. Proc Natl Acad Sci USA 112:14436–14443. https://doi.org/10.1073/pnas.1515202112
Article
CAS
Google Scholar
Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98:2045–2076. https://doi.org/10.1021/cr970025p
Article
CAS
Google Scholar
Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035. https://doi.org/10.1038/nrd1576
Article
CAS
Google Scholar
Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044
Article
CAS
Google Scholar
Del Valle EEM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
Article
Google Scholar
Serno T, Geidobler R, Winter G (2011) Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev 3:1086–1106. https://doi.org/10.1016/j.addr.2011.08.003
Article
Google Scholar
Noël S, Léger B, Ponchel A, Philippot K, Denicourt-Nowicki A, Roucoux A, Monflier E (2014) Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catal Today 235:20–32. https://doi.org/10.1016/j.cattod.2014.03.030
Article
Google Scholar
Schneider H-J, Hacket F, Rüdiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1786. https://doi.org/10.1021/cr970019t
Article
CAS
Google Scholar
Kitae T, Nakayama T, Kano K (1998) Chiral recognition of α-amino acids by charged cyclodextrins through cooperative effects of Coulomb interaction and inclusion. J Chem Soc Perkin Trans 2:207–212. doi: https://dx.doi.org/10.1039/A706479I
Article
Google Scholar
Dodziuk H, Koźmiński W, Ejchart A (2004) NMR studies of chiral recognition by cyclodextrins. Chirality 16:90–105. https://doi.org/10.1002/chir.10304
Article
CAS
Google Scholar
Maheshwari A, Saraswat H, Upadhyay SK (2017) Structural insights into the inclusion complexes between clomiphene citrate and β-cyclodextrin: the mechanism of preferential isomeric selection. Chirality 29:451–457. https://doi.org/10.1002/chir.22712
Article
CAS
Google Scholar
Upadhyay SK, Kumar G (2009) NMR and molecular modelling studies on the interaction of fluconazole with β-cyclodextrin. Chem Cent J 3:9. https://doi.org/10.1186/1752-153X-3-9
Article
Google Scholar
Ali SM, Upadhyay SK (2008) Complexation study of midazolam hydrochloride with β-cyclodextrin: NMR spectroscopic study in solution. Magn Reson Chem 46:676–679. https://doi.org/10.1002/mrc.2231
Article
CAS
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
CAS
Google Scholar
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. https://doi.org/10.1021/ci3001277
Article
CAS
Google Scholar
Maheshwari A, Sharma D (2010) A comparative study of inclusion complexes of flunarizine with alpha (α-CD) and beta-cyclodextrin (β-CD). J Incl Phenom Macrocycl Chem 68:453–459. https://doi.org/10.1007/s10847-010-9809-1
Article
CAS
Google Scholar
Ali SM, Upadhyay SK, Maheshwari A (2007) NMR spectroscopic study of inclusion complexes of cetirizine dihydrochloride and β-cyclodextrin in solution. Spectroscopy 21:177–182. https://doi.org/10.1155/2007/796821
Article
CAS
Google Scholar
Scott RL (1956) Some comments on the Benesi–Hildebrand equation. Recl Trav Chim Pays-Bas 75:787–789. https://doi.org/10.1002/recl.19560750711
Article
CAS
Google Scholar