Wright CI, Geula C, Mesulam MM: Neuroglial cholinesterases in the normal brain and in Alzheimer’s disease: Relationship to plaques, tangles and patterns of selective vulnerability. Ann Neurol. 1993, 34: 373-384. 10.1002/ana.410340312.
Article
CAS
Google Scholar
Price DL, Sisodia SS, Borchelt DR: Alzheimer disease-when and why?. Nat Genet. 1998, 19: 314-316. 10.1038/1196.
Article
CAS
Google Scholar
Luo Y: Alzheimer’s disease, the nematode Caenorhabditis elegans, and ginkgo biloba leaf extract. Life Sci. 2006, 78: 2066-2072. 10.1016/j.lfs.2005.12.004.
Article
CAS
Google Scholar
Lau LF, Schachter JB, Seymour PA, Sanner MA: Tau protein phosphorylation as a pherapeutic parget in Alzheimer’s pisease. Curr Top Med Chem. 2002, 2: 395-415. 10.2174/1568026024607526.
Article
CAS
Google Scholar
Doraiswamy PM: Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs. 2002, 16: 811-824. 10.2165/00023210-200216120-00003.
Article
CAS
Google Scholar
Bartus RT, Dean RL, Beer B, Lippa AS: The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982, 217: 408-417. 10.1126/science.7046051.
Article
CAS
Google Scholar
Bartus RT: On neurodegenerative diseases, models and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol. 2000, 163: 495-529. 10.1006/exnr.2000.7397.
Article
CAS
Google Scholar
Hardy JA, Higgins GA: Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992, 256: 184-185. 10.1126/science.1566067.
Article
CAS
Google Scholar
Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR: Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science. 1982, 211: 1237-1239.
Article
Google Scholar
Ohyagi Y: Intracellular Amyloid β-protein as a therapeutic target for treating Alzheimei’s disease. Curr Alzheimer Res. 2008, 5: 555-561. 10.2174/156720508786898514.
Article
CAS
Google Scholar
Yamin G, Ono K, Inayathullah M, Teplow DB: Amyloid β-protein assembly as a therapeutic target of Alzheimer’s disease. Current Pharm Design. 2008, 14: 3231-3246. 10.2174/138161208786404137.
Article
CAS
Google Scholar
Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J: Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron. 1996, 16: 881-891. 10.1016/S0896-6273(00)80108-7.
Article
CAS
Google Scholar
Tasker A, Perry EK, Ballard CG: Butyrylcholinesterase: Impact on symptoms and progression of cognitive impairment. Expert Rev Neurotherapeutics. 2005, 5: 101-106. 10.1586/14737175.5.1.101.
Article
CAS
Google Scholar
Furukawa-Hibi Y, Alkam T, Nitta A, Matsuyama A, Mizoguchi H, Suzuki K, Moussaoui S, Yu QS, Greig NH, Nagai T: Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-[beta] peptide in mice. Behav Brain Res. 2011, 1: 222-229.
Article
Google Scholar
Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C: Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol. 2012, 71: 2-14. 10.1097/NEN.0b013e31823cc7a6.
Article
CAS
Google Scholar
Perry EK, Perry RH, Blessed G, Tomlinson BE: Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol. 1978, 4: 273-277. 10.1111/j.1365-2990.1978.tb00545.x.
Article
CAS
Google Scholar
Giacobini E: Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol Res. 2004, 50: 433-440. 10.1016/j.phrs.2003.11.017.
Article
CAS
Google Scholar
Greig NH, Utsuki 1T, Yu QS, Zhu XX, Holloway HW, Perry TA, Lee B, Ingram DK, Lahiri DK: A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr Med Res Opin. 2001, 17: 159-165.
Article
CAS
Google Scholar
Mohamed T, Rao PPN: Alzheimers disease: emerging trends in small molecule therapies. Curr Med Chem. 2011, 18: 4299-4320. 10.2174/092986711797200435.
Article
CAS
Google Scholar
Na Y: Recent cancer drug development with xanthone structures. J Pharm Pharmacol. 2009, 61: 707-712. 10.1211/jpp.61.06.0002.
Article
CAS
Google Scholar
Gao XM, Yu T, Cui MZ, Pu JX, Du X, Han QB, Hu QF, Liu TC, Luo KQ, Xu HX: Identification and evaluation of apoptotic compounds from Garcinia oligantha. Bioorg Med Che. Lett. 2012, 22: 2350-10.1016/j.bmcl.2012.01.068.
Article
CAS
Google Scholar
Pinto MMM, Sousa ME, Nascimento MSJ: Xanthone derivatives: New insights in biological activities. Curr Med Chem. 2005, 12: 2517-2538. 10.2174/092986705774370691.
Article
CAS
Google Scholar
Li GL, He JY, Zhang AQ, Wan YQ, Wang B, Chen WH: Toward potent α-glucosidase inhibitors based on xanthones: A closer look into the structure-activity correlations. Eur J Med Chem. 2011, 46: 4050-4055. 10.1016/j.ejmech.2011.06.003.
Article
CAS
Google Scholar
Rampa A, Bisi A, Valenti P, Recanatini M, Cavalli A, Andrisano V, Cavrini V, Fin L, Buriani A, Giusti P: Acetylcholinesterase inhibitors: Synthesis and structure-activity relationships of ω-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxy heteroaryl derivatives. J Med Chem. 1998, 41: 3976-3986. 10.1021/jm9810046.
Article
CAS
Google Scholar
Belluti F, Rampa A, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Cavalli A, Recanatini M, Valenti P: Cholinesterase inhibitors: Xanthostigmine derivatives blocking the acetylcholinesterase -induced β-amyloid aggregation. J Med Chem. 2005, 48: 4444-4456. 10.1021/jm049515h.
Article
CAS
Google Scholar
Piazzi L, Belluti F, Bisi A, Gobbi S, Rizzo S, Bartolini M, Andrisano V, Recanatini M, Rampa A: Cholinesterase inhibitors: SAR and enzyme inhibitory activity of 3-[ω-(benzylmethylamino)alkoxy] xanthen-9-ones. Bioorgan Med Chem. 2007, 15: 575-585. 10.1016/j.bmc.2006.09.026.
Article
CAS
Google Scholar
Khan MTH, Orhan I, Senol FS, Kartal M, Sener B, Dvorská M, Smejkal K, Slapetová T: Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem-Biol Interact. 2009, 181: 383-389. 10.1016/j.cbi.2009.06.024.
Article
CAS
Google Scholar
Nian GL, Shu LS, Min ZS, Yu PT, Zhi HS, Hao T, Qian PS, Yi FF, Jian AD: Mannich bases of Scutellarein as thrombin-inhibitors: Design, synthesis, biological activity and solubility. Bioorgan Med Chem. 2012, 20: 6919-6923. 10.1016/j.bmc.2012.10.015.
Article
Google Scholar
Liu Y, Ma L, Chen WH, Wang B, Xu ZL: Synthesis of xanthone derivatives with extended π-systems as α-glucosidase inhibitors: Insight into the probable binding mode. Bioorgan Med Chem. 2007, 15: 2810-2814. 10.1016/j.bmc.2007.02.030.
Article
CAS
Google Scholar
Grover PK, Shah GD, Shah RC: Xanthones. IV. A new synthesis of hydroxyxanthones and hydroxybenzophenones. J Chem Soc. 1955, 3982-3985.
Google Scholar
Reddy MVB, Su CR, Chiou WF, Liu YN, Chen RYH, Bastow KF, Lee KH, Wu TS: Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorgan Med Chem. 2008, 16: 7358-7370. 10.1016/j.bmc.2008.06.018.
Article
CAS
Google Scholar
Chipeleme A, Gut J, Rosenthalb PJ, Chibale K: Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorgan Med Chem. 2007, 15: 273-282. 10.1016/j.bmc.2006.09.055.
Article
CAS
Google Scholar
Kintsurashvili LA, Sikharulidze MI, Buyanov VN, Turabelidze DG: Synthesis of amino derivatives of 1,6,8-trihydroxy-3-methyl-9,10-anthraquinone. Chem Nat Compd. 1999, 35: 619-620. 10.1007/BF02236285.
Article
CAS
Google Scholar
Pretsch E, Bühlmann P, Affolter C: Structure Determination of Organic Compounds Table of Spectral Data. Edited by: Rong GB, Zhu SZ. 2002, Shanghai, East China: University of Science and Technology Press, 197-in Chinese
Google Scholar
Westerman PW, Gunasekera SP, Uvais M, Sultanbawa S, Kazlauskas R: Carbon -13 NMR study of naturally occurring xanthones. Org Magn Reson. 1977, 9: 631-636. 10.1002/mrc.1270091106.
Article
CAS
Google Scholar
Ellman GL, Courtney KD, Andres VJ, Featherstone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961, 7: 88-95. 10.1016/0006-2952(61)90145-9.
Article
CAS
Google Scholar
Piazzi L, Cavalli A, Belluti F, Bisi A, Gobbi S, Rizzo S, Bartolini M, Andrisano V, Recanatini M, Rampa A: Extensive SAR and computational studies of 3-{4-[(Benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-chromenone(AP2238) derivatives. J Med Chem. 2007, 50: 4250-4254. 10.1021/jm070100g.
Article
CAS
Google Scholar
Rivera-Becerril E, Joseph-Nathan P, Pérez-Álvarez VM, Morales-Ríos MS: Synthesis and biological evaluation of (-)- and (+)- Debromoflustramine B and its analogues as selective butyrylcholinesterase inhibitors. J Med Chem. 2008, 51: 5271-5284. 10.1021/jm800277g.
Article
CAS
Google Scholar
Vellom DC, Radic′ Z, Li Y, Pickering NA, Camp S, Taylor P: Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993, 32: 12-17. 10.1021/bi00052a003.
Article
CAS
Google Scholar
Masson P, Froment MT, Bartels CF, Lockridge O: Asp70 in the peripheral anionic site of human butyrylchilinesterase. Eur J Biochem. 1996, 235: 36-48. 10.1111/j.1432-1033.1996.00036.x.
Article
CAS
Google Scholar
Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F: Crystal structure of human butyrylcholinesterase and of its complexe with substrate and products. J Biol Chem. 2003, 278: 41141-41147. 10.1074/jbc.M210241200.
Article
CAS
Google Scholar
Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulie J, Silman I: Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proc Natl Acad Sci USA. 1992, 89: 10827-10831. 10.1073/pnas.89.22.10827.
Article
CAS
Google Scholar
Cygler M, Schrag JD, Sussman JL, Harel M, Silman I, Gentry MK, Doctor BP: Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993, 2: 366-382.
Article
CAS
Google Scholar
Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A: Does “butyryllization” of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?. Biochemistry. 2001, 40: 7433-7445. 10.1021/bi010181x.
Article
CAS
Google Scholar