Martínez A: Evidence for a functionally important histidine residue in human tyrosine hydroxylase. Amino Acids. 1995, 9: 285-292. 10.1007/BF00805959.
Article
Google Scholar
Uchida K: Histidine and lysine as targets of oxidative modification. Amino Acids. 2003, 25: 249-257. 10.1007/s00726-003-0015-y.
Article
CAS
Google Scholar
Remko M, Fitz D, Rode BM: Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of l-histidine and zwitterionic l-histidine. Amino Acids. 2010, 39: 1309-1319. 10.1007/s00726-010-0573-8.
Article
CAS
Google Scholar
Li F, Fitz D, Fraser DG, Rode BM: Catalytic effects of histidine enantiomers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction. Amino Acids. 2010, 38: 287-294. 10.1007/s00726-009-0249-4.
Article
CAS
Google Scholar
Agnieszka M, Janina KW, Katarzyna KK: Five-membered heterocycles. Part III. Aromaticity of 1,3-imidazole in 5+n hetero-bicyclic molecules. J Mol Struc. 2003, 655: 397-403. 10.1016/S0022-2860(03)00282-5.
Article
Google Scholar
Doğan A, Özel AD, Kılıç E: The protonation equilibria of selected glycine dipeptides in ethanol–water mixture: solvent composition effect. Amino Acids. 2009, 36: 373-379. 10.1007/s00726-008-0054-5.
Article
Google Scholar
Priyakumar UD, Punnagai M, Krishna Mohan GP, Sastry GN: A computational study of cation-π interactions in polycyclic systems: exploring the dependence on the curvature and electronic factors. Tetrahedron. 2004, 60: 3037-3043. 10.1016/j.tet.2004.01.086.
Article
CAS
Google Scholar
Reddy AS, Sastry GN: Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: A theoretical study. J Phys Chem A. 2005, 109: 8893-8903. 10.1021/jp0525179.
Article
CAS
Google Scholar
Engerer LK, Hanusa TP: Geometric Effects in Olefinic Cation−π Interactions with Alkali Metals: A Computational Study. J Org Chem. 2011, 76: 42-49. 10.1021/jo101307z.
Article
CAS
Google Scholar
Hunter CA, Lawson KR, Perkins J, Urch CJ: Aromatic interactions. J Chem Soc Perkin Trans. 2001, 2: 651-669.
Article
Google Scholar
Crowley PB, Golovin A: Cation–π interactions in protein–protein interfaces. Proteins. 2005, 59: 231-239. 10.1002/prot.20417.
Article
CAS
Google Scholar
Vijay D, Sastry GN: Exploring the size dependence of cyclic and acyclic π-systems on cation-π binding. Phys Chem Chem Phys. 2008, 10: 582-590. 10.1039/b713703f.
Article
CAS
Google Scholar
Matsumura H, Yamamoto T, Leow TC, Mori T, Salleh AB, Basri M, Inoue T, Kai Y, Zaliha RN, Rahman RA: Novel cation-π interaction revealed by crystal structure of thermoalkalophilic lipase. Proteins. 2008, 70: 592-598.
Article
CAS
Google Scholar
Reddy AS, Zipse H, Sastry GN: Cation-π Interactions of Bare and Coordinatively Saturated Metal Ions: Contrasting Structural and Energetic Characteristics. J Phys Chem B. 2007, 111: 11546-11553. 10.1021/jp075768l.
Article
CAS
Google Scholar
Schottel BL, Chifotides HT, Dunbar KR: Anion-π interactions.Chem Soc Rev. 2008, 37: 68-83. 10.1039/b614208g.
Article
CAS
Google Scholar
Burley SK, Petsko GA: Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203: 139-143. 10.1016/0014-5793(86)80730-X.
Article
CAS
Google Scholar
Stefan G: Do special noncovalent π-π stacking interactions really exist?. Angew Chem Int Ed. 2008, 47: 3430-3434. 10.1002/anie.200705157.
Article
Google Scholar
Mignon P, Loverix S, Steyaert J, Geerlings P: Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucl Acids Res. 2005, 33: 1779-1789. 10.1093/nar/gki317.
Article
CAS
Google Scholar
Petitjean A, Khoury RG, Kyritsakas N, Lehn JM: Dynamic devices, shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J Am Chem Soc. 2004, 126: 6637-6647. 10.1021/ja031915r.
Article
CAS
Google Scholar
Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM: A Double Concave Hydrocarbon Buckycatcher. J Am Chem Soc. 2007, 129: 3842-3843. 10.1021/ja070616p.
Article
CAS
Google Scholar
Janiak C: A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans. 2000, 3885-3896.
Google Scholar
Meyer EA, Castellano RK, Diederich F: Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed. 2003, 42: 1210-1250. 10.1002/anie.200390319.
Article
CAS
Google Scholar
Hughes RM, Waters ML: Effects of lysine acylation in a β-hairpin peptide: comparison of an amide-π and a cation-π interaction. J Am Chem Soc. 2006, 128: 13586-13591. 10.1021/ja0648460.
Article
CAS
Google Scholar
Kang SO, Hossain MA, Bowman-James K: Influence of dimensionality and charge on anion binding in amide-based macrocyclic receptors. Coord Chem Rev. 2000, 250: 3038-3052.
Article
Google Scholar
Miessler GL, Tarr DA: Inorganic Chemistry. 2003, Upper Saddle River, NJ: Pearson Prentice Hall, 3
Google Scholar
Smith MB, March J: March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 2007, New York: Wiley-Interscience, 6
Google Scholar
Jackson WG, Josephine AM, Silvia C: Alfred Werner's inorganic counterparts of racemic and mesomeric tartaric acid: A milestone revisited. Inorg Chem. 2004, 43: 6249-6254. 10.1021/ic040042e.
Article
CAS
Google Scholar
Sirois SW, Proynov EI, Truchon JF, Tsoukas CM, Salahub DR: A density functional study of the hydrogen-bond network within the HIV-1 protease catalytic site cleft. J Comput Chem. 2003, 24: 1110-1119. 10.1002/jcc.10176.
Article
CAS
Google Scholar
Du QS, Li DP, Liu PJ, Huang RB: Molecular potential energies in dodecahedron cell of methane hydrate and dispersion correction for DFT. J Mol Graph Model. 2008, 27: 140-146. 10.1016/j.jmgm.2008.03.008.
Article
CAS
Google Scholar
Henry M: Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules. Chem Phys Chem. 2002, 3: 607-616. 10.1002/1439-7641(20020715)3:7<607::AID-CPHC607>3.0.CO;2-A.
CAS
Google Scholar
Henry M: Nonempirical quantification of molecular interactions in supramolecular assemblies. Chem Phys Chem. 2002, 3: 561-569. 10.1002/1439-7641(20020715)3:7<561::AID-CPHC561>3.0.CO;2-E.
CAS
Google Scholar
Andrews LJ, Keefer RM: Molecular complexes in organic chemistry. 1964, San Francisco: Holden-Day
Google Scholar
Mezey PG: Macromolecular density matrices and electron densities with adjustable nuclear geometries. J Math Chem. 1995, 18: 141-168. 10.1007/BF01164655.
Article
CAS
Google Scholar
Mezey PG: Quantum similarity measures and Löwdin's transform for approximate density matrices and macromolecular forces. Int J Quantum Chem. 1997, 63: 39-48. 10.1002/(SICI)1097-461X(1997)63:1<39::AID-QUA8>3.0.CO;2-3.
Article
CAS
Google Scholar
Sayyed FB, Suresh CH: Accurate prediction of cation−π interaction energy using substituent effects. J Phys Chem A. 2012, 116: 5723-5732. 10.1021/jp3034193.
Article
CAS
Google Scholar
Mohan N, Vijayalalakshmi KP, Koga N, Suresh CH: Comparison of aromatic NH…π, OH…π, and CH…π interactions of alanine using MP2, CCSD, and DFT methods. J Comput Chem. 2010, 31: 2874-2882.
CAS
Google Scholar
Gresh N, Kafafi SA, Truchon JF, Salahub DR: Intramolecular interaction energies in model alanine and glycine tetrapeptides. Evaluation of anisotropy, polarization, and correlation effects. A parallel ab initio HF/MP2, DFT, and polarizable molecular mechanics study. J Compt Chem. 2004, 25: 823-834. 10.1002/jcc.20012.
Article
CAS
Google Scholar
Jurecka P, Cerný J, Hobza P, Salahub DR: Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem. 2007, 28: 555-569. 10.1002/jcc.20570.
Article
CAS
Google Scholar
Van Mourik T, Gdanitz RJ: A critical note on density functional theory studies on rare-gas dimers. J Chem Phys. 2002, 116: 9620-9623. 10.1063/1.1476010.
Article
CAS
Google Scholar
Morgado C, Vincent MA, Hillier IH, Shan X: Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules?. Phys Chem Chem Phys. 2007, 9: 448-451. 10.1039/b615263e.
Article
CAS
Google Scholar
Von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D: Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys Rev Lett. 2004, 93: 153004-153007.
Article
Google Scholar
Du Q-S, Liu P-J, Deng J: Empirical correction to molecular interaction energies in density functional theory (DFT) for methane hydrate simulation. J Chem Theory Comput. 2007, 3: 1665-1672. 10.1021/ct700026d.
Article
CAS
Google Scholar
Purvis GD, Bartlett RJ: A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J Chem Phys. 1982, 76: 1910-1919. 10.1063/1.443164.
Article
CAS
Google Scholar
Lee TJ, Rice JE: An efficient closed-shell singles and doubles coupled-cluster method. Chem Phys Lett. 1988, 23: 406-415.
Article
Google Scholar
Scuseria GE, Schaefer HF: Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?. J Chem Phys. 1989, 90: 3700-3703. 10.1063/1.455827.
Article
CAS
Google Scholar
Scuseria GE, Janssen CL, Schaefer HF: An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys. 1988, 89: 7382-7388. 10.1063/1.455269.
Article
CAS
Google Scholar
Grimme S: Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys. 2006, 124: 034108-10.1063/1.2148954.
Article
Google Scholar
Zimmerli U, Parrinello M, Koumoutsakos P: Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys. 2004, 120: 2693-2699. 10.1063/1.1637034.
Article
CAS
Google Scholar
Grimme S: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004, 25: 1463-1473. 10.1002/jcc.20078.
Article
CAS
Google Scholar
Miertus S, Scrocco E, Tomasi J: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys. 1981, 55: 117-129. 10.1016/0301-0104(81)85090-2.
Article
CAS
Google Scholar
Amovilli C, Barone V, Cammi R, Cances E, Cossi M, Mennucci B, Pomelli CS, Tomasi J: Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quant Chem. 1998, 32: 227-262.
Article
Google Scholar
Cossi M, Barone V: Analytical second derivatives of the free energy in solution by polarizable continuum models. J Chem Phys. 1998, 109: 6246-6254. 10.1063/1.477265.
Article
CAS
Google Scholar
Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ: Solvent effects. 5. influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem. 1996, 100: 16098-16104. 10.1021/jp960488j.
Article
CAS
Google Scholar
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA: Gaussian 09, Revision B,01. 2010, Wallingford CT: Gaussian Inc
Google Scholar
Zielkiewicz J: Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J Chem Phys. 2005, 123: 104501-10.1063/1.2018637.
Article
Google Scholar
Markovitch O, Agmon N: Structure and energetics of the hydronium hydration shells. J Phys Chem A. 2007, 111: 2253-2256. 10.1021/jp068960g.
Article
CAS
Google Scholar
Du QS, Long SY, Meng JZ, Huang RB: Empirical formulation and parameterization of cation-π interactions for protein modeling. J Compt Chem. 2012, 33: 153-162. 10.1002/jcc.21951.
Article
CAS
Google Scholar
Du QS, Liao SM, Meng JZ, Huang RB: Energies and Physicochemical Properties of Cation-π Interactions in Biology Structures. J Mol Graph Model. 2012, 34: 38-45.
Article
CAS
Google Scholar
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput. 2011, 7: 525-537. 10.1021/ct100578z.
Article
CAS
Google Scholar
Huang RB, Du QS, Wang CH, Liao SM, Chou KC: A fast and accurate method for predicting pKa of residues in proteins. Protein Eeng Des Sel. 2010, 23: 35-42. 10.1093/protein/gzp067.
Article
CAS
Google Scholar
Ottiger P, Pfaffen C, Leist R, Leutwyler S, Bachorz RA, Klopper W: Strong N−H···π Hydrogen Bonding in Amide−Benzene Interactions. J Phys Chem B. 2009, 113: 2937-2943. 10.1021/jp8110474.
Article
CAS
Google Scholar
Steiner T, Koellner G: Hydrogen bonds with pi-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J Mol Biol. 2001, 305: 535-557. 10.1006/jmbi.2000.4301.
Article
CAS
Google Scholar
Trakhanov S, Quiocho FA: Influence of divalent cations in protein crystallization. Protein Sci. 1995, 4: 1914-1919. 10.1002/pro.5560040925.
Article
CAS
Google Scholar
Fischer M, Pleiss J: The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res. 2003, 31: 319-321. 10.1093/nar/gkg015.
Article
CAS
Google Scholar
Bas DC, Rogers DM, Jensen JH: Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins. 2008, 73: 765-783. 10.1002/prot.22102.
Article
CAS
Google Scholar
Li H, Robertson AD, Jensen JH: Very fast empirical prediction and rationalization of protein pKa values. Proteins. 2005, 6: 704-721.
Article
Google Scholar
Badger MR, Price GD: The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physio Plant Mol Bio. 1994, 45: 369-392. 10.1146/annurev.pp.45.060194.002101.
Article
CAS
Google Scholar
Lindskog S: Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997, 74: 1-20. 10.1016/S0163-7258(96)00198-2.
Article
CAS
Google Scholar
Biot C, Buisine E, Rooman M: Free-energy calculations of protein-ligand cation-π and amino-π interactions: From vacuum to protein-like environments. J Am Chem Soc. 2003, 125: 13988-13994. 10.1021/ja035223e.
Article
CAS
Google Scholar
Crowley PB, Golovin A: Cation-π interactions in protein–protein interfaces. Proteins. 2005, 59: 231-239. 10.1002/prot.20417.
Article
CAS
Google Scholar