Karplus PA, Pearson MA, Hausinger RP: 70 Years of Crystalline Urease: What Have We Learned?. Acc Chem Res. 1997, 30: 330-337. 10.1021/ar960022j.
Article
CAS
Google Scholar
Krajewska B: Ureases I. Functional, catalytic and kinetic properties: A review. J Mol Catal B: Enzym. 2009, 59: 9-21. 10.1016/j.molcatb.2009.01.003.
Article
CAS
Google Scholar
Das N, Kayastha AM, Srivastava PK: Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L.) seeds. Phytochem. 2002, 61: 513-521. 10.1016/S0031-9422(02)00270-4.
Article
CAS
Google Scholar
Dong XW, Li YG, Li ZW, Cui YM, Zhu HL: Synthesis, structures and urease inhibition studies of copper(II) and nickel(II) complexes with bidentate N, O-donor Schiff base ligands. J Inorg Biochem. 2012, 108: 22-29.
Article
CAS
Google Scholar
Murafuji T, Azuma T, Miyoshi Y, Ishibashi M, Mustafizur Rahman AFM, Migita K, Sugihara Y, Mikata Y: Inhibition of jack bean urease by organobismuth compounds. Bioorg Med Chem Lett. 2006, 16: 1510-1513. 10.1016/j.bmcl.2005.12.034.
Article
CAS
Google Scholar
You ZL, Shi DH, Zhang JC, Ma Y, Wang C, Li K: Synthesis, structures, and urease inhibitory activities of oxovanadium(V) complexes with Schiff bases. Inorg Chim Acta. 2012, 384: 54-61.
Article
CAS
Google Scholar
Benini S, Rypniewski WR, Wilson KS, Mangani S, Ciurli S: Molecular details of urease inhibition by boric acid:insights into the catalytic mechanism. J Am Chem Soc. 2004, 126: 3714-3715. 10.1021/ja049618p.
Article
CAS
Google Scholar
Mao WJ, Lv PC, Shi L, Li HQ, Zhu HL: Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg Med Chem. 2009, 17: 7531-7536. 10.1016/j.bmc.2009.09.018.
Article
CAS
Google Scholar
You ZL, Lu Y, Zhang N, Ding BW, Sun H, Hou P, Wang C: Preparation and structural characterization of hetero-dinuclear Schiff base copper(II)-zinc(II) complexes and their inhibition studies on Helicobacter pylori urease. Polyhedron. 2011, 30: 2186-2194. 10.1016/j.poly.2011.05.048.
Article
CAS
Google Scholar
Mari AJ, Domi N, Carmen SN, Mari AF, Juan AP, Sara SF, Oscar U, Fabrice H, Jose M, Garci AM: Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors. J Agric Food Chem. 2008, 56: 3721-3731. 10.1021/jf072901y.
Article
Google Scholar
Cheng K, Zheng QZ, Zhu HL: Syntheses, structures and urease inhibitory activities of mononuclear cobalt(II) and 1D cobalt(II) complexes with ligands derived from 3-formylsalicylic acid. Inorg Chem Commun. 2009, 12: 1116-1119. 10.1016/j.inoche.2009.09.001.
Article
CAS
Google Scholar
Krajewska B, Eldik RV, Brindell M: Temperature- and pressure-dependent stopped-flow kinetic studies of jack-bean urease. Implications for the catalytic mechanism. J Biol Inorg Chem. 2012, 17: 1123-1134. 10.1007/s00775-012-0926-8.
Article
CAS
Google Scholar
Krajewska B, Zaborska W: Double mode of inhibition-inducing interactions of 1,4-naphthoquinone with urease: arylation versus oxidation of enzyme thiols. Bioorgan Med Chem. 2007, 15: 4144-4151. 10.1016/j.bmc.2007.03.071.
Article
CAS
Google Scholar
Krajewska B, Zaborska W: Jack bean urease: The effect of active-site binding inhibitors on the reactivity of enzyme thiol groups. Bioorg Chem. 2007, 35: 355-365. 10.1016/j.bioorg.2007.02.002.
Article
CAS
Google Scholar
Zaborska W, Krajewska B, Kot M, Karcz W: Quinone-induced inhibition of urease: Elucidation of its mechanisms by probing thiol groups of the enzyme. Bioorg Chem. 2007, 35: 233-242. 10.1016/j.bioorg.2006.11.001.
Article
CAS
Google Scholar
Krajewska B, Ciurli S: Jack bean (Canavalia ensiformis) urease. Probing acid–base groups of the active site by pH variation. Plant Physiol and Bioch. 2005, 43: 651-658. 10.1016/j.plaphy.2005.05.009.
Article
CAS
Google Scholar
Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S: A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: Why urea hydrolysis costs two nickels. Structure. 1999, 7: 205-216. 10.1016/S0969-2126(99)80026-4.
Article
CAS
Google Scholar
Tarun EI, Rubinov DB, Metelitza DI: Inhibition of urease by cyclic b-triketones and fluoride ions. Appl Biochem Micro. 2004, 40: 337-344.
Article
CAS
Google Scholar
Behbehani GR, Saboury AA, Taherkhani A, Barzegar L, Mollaagazade A: A thermodynamic study on the binding of mercury and silver ions to urease. J Therm Anal Calorim. 2011, 105: 1081-1085. 10.1007/s10973-011-1729-9.
Article
Google Scholar
Krajewska B: Mono-(Ag, Hg) and di-(Cu, Hg) valent metal ions effects on the activity of jack bean urease, Probing the modes of metal binding to the enzyme. J Enzyme Inhib Med Chem. 2008, 23: 535-542. 10.1080/14756360701743051.
Article
CAS
Google Scholar
Takishima K, Suga T, Mamiya G: The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur J Biochem. 1988, 175: 151-165. 10.1111/j.1432-1033.1988.tb14177.x.
Article
CAS
Google Scholar
Krajewska B, Zaborska W, Chudy M: Multi-step analysis of Hg2+ ion inhibition of jack bean urease. J Inorg Biochem. 2004, 98: 1160-1168. 10.1016/j.jinorgbio.2004.03.014.
Article
CAS
Google Scholar
Chen JL, Zheng AF, Chen AH, Gao YC, He CY, Kai XM, Wu GH, Chen Y: A functionalized gold nanoparticles and rhodamine 6G based bluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Anal Chim Acta. 2007, 599: 134-142. 10.1016/j.aca.2007.07.074.
Article
CAS
Google Scholar
Shi R, Stein K, Schwedt G: Determination of mercury(II) traces in drinking water by inhibition of an urease reactor in a flow injection analysis (FIA) system. Fresenius J Anal Chem. 1997, 357: 752-755. 10.1007/s002160050243.
Article
CAS
Google Scholar
Preininger C: The enzymatic determination of mercury and copper using acid urease, The effects of buffers. Mikrochim Acta. 1999, 130: 209-214. 10.1007/BF01244930.
Article
CAS
Google Scholar
Prakasha O, Talat M, Hasan SH: Response surface design for the optimization of enzymatic detection of mercury in aqueous solution using immobilized urease from vegetable waste. J Mol Catal B Enzym. 2009, 56: 265-271. 10.1016/j.molcatb.2008.05.015.
Article
Google Scholar
Pal P, Bhattacharyay D, Mukhopadhyay A, Sarkar P: The detection of mercury, cadium, and arsenic by the deactivation of urease on rhodinized carbon. Environ Eng Sci. 2009, 26: 25-32. 10.1089/ees.2007.0148.
Article
CAS
Google Scholar
Lin JC, Xie XL, Gong M, Wang Q, Chen QX: Effects of mercuric ion on the conformation and activity of Penaeus Vannameiβ-N-acetyl-d-glucosaminidase. Int J Biol Macromol. 2005, 36: 327-330. 10.1016/j.ijbiomac.2005.06.012.
Article
CAS
Google Scholar
Huang XH, Chen QX, Wang Q, Song KK, Wang J, Sha L, Guan X: Inhibition of the activity of mushroom tyrosinase by alkylbenzoic acids. Food Chem. 2006, 94: 1-6. 10.1016/j.foodchem.2004.09.008.
Article
CAS
Google Scholar
Zhan RQ, Chen QX, Zhen WZ, Lin JY, Zhuang ZL, Zhou HM: Inhibition kinetics of green crab (Scylla serrata ) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol. Int J Biochem Cell B. 2000, 32: 865-872. 10.1016/S1357-2725(00)00030-3.
Article
Google Scholar
Krajewska B, Zaborska W: The effect of phosphate buffer in the range of pH 5.80–8.07 on jack bean urease activity. J Mol Cata B Enzym. 1999, 6: 75-81. 10.1016/S1381-1177(98)00129-5.
Article
CAS
Google Scholar
Zaborska W, Krajewska B, Leszko M, Olech Z: Inhibition of urease by Ni2+ ions Analysis of reaction progress curves. J Mol Cata B Enzym. 2001, 13: 103-108. 10.1016/S1381-1177(00)00234-4.
Article
CAS
Google Scholar
Tsou CL: Kinetics of substrate reaction during irreversible modification of enzyme activity. Adv Enzymol Relat Areas Mol Biol. 1988, 61: 381-436.
CAS
Google Scholar
Sequeira M, Diamond D, Daridon A, Lichtenberg J, Verpoorte S, Rooij NF: Progress in the realisation of an autonomous environmental monitoring device for ammonia. Trends in Anal Chem. 2002, 21: 816-827. 10.1016/S0165-9936(02)01205-0.
Article
CAS
Google Scholar