Herrero LA, Terron A: Complexation in solution of magnesium (II) and cobalt (II) with purine 5'-monophosphates and pyrimide 5'-monophosphates: a potentiometric and calorimetric study. Polyhedron. 1998, 17: 3825-3833. 10.1016/S0277-5387(98)00125-9.
Article
CAS
Google Scholar
Hartwig A: Role of magnesium in genomic stability. Mutat Res. 2001, 475: 113-121.
Article
CAS
Google Scholar
Barton JK: Metal/Nucleic Acid Interactions. Bioinorganic Chemistry. Edited by: Bertini I, Gray HB, Lippard SJ. 1994, Valentine JS: University Science Books, 505-515.
Google Scholar
Sigel H: Metal ion complexes of antivirally active nucleotide analogues. Conclusions regarding their biological action. Chem Soc Rev. 2004, 33: 191-200. 10.1039/b310349h.
Article
CAS
Google Scholar
Shanbhag SM, Choppin GR: Thermodynamics of Mg and Ca complexation with AMP, ADP, ATP. Inorg Chim Acta. 1987, 138: 187-192. 10.1016/S0020-1693(00)81221-9.
Article
CAS
Google Scholar
Massoud SS, Sigel H: Metal Ion Coordinating Properties of Pyrimidine-Nucleoside 5'-Monophosphates (CMP, UMP, TMP) and of Simple Phosphate Monoesters, Including D-Ribose 5'-Monophosphate. Establishment of Relations between Complex Stability and Phosphate Basicity. Inorg Chem. 1988, 27: 1447-1453. 10.1021/ic00281a030.
Article
CAS
Google Scholar
Wilson JE, Chin A: Chelation of Divalent Cations by ATP, Studies by Titration Calorimetry. Anal Biochem. 1991, 193: 16-19. 10.1016/0003-2697(91)90036-S.
Article
CAS
Google Scholar
Sigel H: Metal ion-assisted stacking interactions and the facilitated hydrolysis of nucleoside 5'-triphosphates. Pure Appl Chem. 1998, 70: 969-976. 10.1351/pac199870040969.
CAS
Google Scholar
Herrero LA, Terron A: Interactions in solution of calcium (II) and copper (II) with nucleoside monophosphates: a calorimetric study. J Biol Inorg Chem. 2000, 5: 269-275. 10.1007/s007750050371.
Article
CAS
Google Scholar
Stumber M, Herrmann C, Wohlgemuth S, Kalbitzer HR, Jahn W, Geyer M: Synthesis, characterization and application of two nucleoside triphosphate analogues, GTPcNH and GTPcF. Eur J Biochem. 2002, 269: 3270-3278. 10.1046/j.1432-1033.2002.03003.x.
Article
CAS
Google Scholar
Bianchi EM, Sajadi SAA, Song B, Sigel H: Stabilities and Isomeric Equilibria in Aqueous Solution of Monomeric Metal Ion Complexes of Adenosine 5'-Diphosphate (ADP3-) in Comparison with Those of Adenosine 5'-Monophosphate (AMP2-). Chem Eur J. 2003, 9: 881-892. 10.1002/chem.200390109.
Article
CAS
Google Scholar
Vogel HJ, Bridger WA: Phosphorus-31 Nuclear Magnetic Resonance Studies of the Methylene and Fluoro Analogues of Adenine Nucleotides. Effects of pH and Magnesium Ion Binding. Biochemistry. 1982, 21: 394-401. 10.1021/bi00531a029.
Article
CAS
Google Scholar
Guerrero-Romero F, Rodriguez-Moran M: Low serum magnesium levels and metabolic syndrome. Acta Diabetol. 2002, 39: 209-213. 10.1007/s005920200036.
Article
CAS
Google Scholar
Volpe SM: Magnesium, the Metabolic Syndrome, Insulin Resistance, and Type 2 Diabetes Mellitus. Crit Rev Food Sci Nutr. 2008, 48: 293-300. 10.1080/10408390701326235.
Article
CAS
Google Scholar
Wolf FI, Trapani V: Cell (patho)physiology of magnesium. Clinical Science. 2008, 114: 27-35. 10.1042/CS20070129.
Article
CAS
Google Scholar
Pham P-CT, Pham P-MT, Pham SV, Miller JM, Pham P-TT: Hypomagnesemia in Patients with Type 2 Diabetes. Clin J Am Soc Nephrol. 2007, 2: 366-373. 10.2215/CJN.02960906.
Article
CAS
Google Scholar
Barbagallo M, Dominguez LJ: Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arc Biochem Biophys. 2007, 458: 40-47. 10.1016/j.abb.2006.05.007.
Article
CAS
Google Scholar
Sales CH, Pedrosa LFC: Magnesium and diabetes mellitus: Their relation. Clin Nutr. 2006, 25: 554-562. 10.1016/j.clnu.2006.03.003.
Article
CAS
Google Scholar
Schroder H: Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 2007, 18: 149-160. 10.1016/j.jnutbio.2006.05.006.
Article
Google Scholar
Guerrero-Romero F, Rodriguez-Moran M: Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes Metab Res Rev. 2006, 22: 471-476. 10.1002/dmrr.644.
Article
CAS
Google Scholar
Rodriguez-Moran M, Guerrero-Romero F: Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003, 26: 1147-1152. 10.2337/diacare.26.4.1147.
Article
CAS
Google Scholar
Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G, Salinas-Martinez AM, Montes-Villarreal J, Trevino-Ortiz JH, Rodriguez-Moran M: Oral Magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab. 2004, 30: 253-258. 10.1016/S1262-3636(07)70116-7.
Article
CAS
Google Scholar
Lopez-Ridaura R, Willett WC, Rimm EB, Liu S, Stampfer MJ, Manson JE, Hu FB: Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care. 2004, 27: 134-140. 10.2337/diacare.27.1.134.
Article
CAS
Google Scholar
Rosanoff A, Seelig MS: Comparison of mechanism and functional effects of magnesium and statin pharmaceuticals. J Am Coll Nutr. 2004, 23: 501S-505S.
Article
CAS
Google Scholar
Martin WH, Hoover DJ, Armento SJ, Stock IA, McPherson RK, Danley DE, Stevenson RW, Barrett EJ, Treadway JL: Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci USA. 1998, 95: 1776-1781. 10.1073/pnas.95.4.1776.
Article
CAS
Google Scholar
Oikonomakos NG, Schnier JB, Zographos SE, Skamnaki VT, Tsitsanou KE, Johnson LN: Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site. J Biol Chem. 2000, 275: 34566-34573. 10.1074/jbc.M004485200.
Article
CAS
Google Scholar
Treadway JL, Mendys P, Hoover DJ: Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Invest Drugs. 2001, 10: 439-454. 10.1517/13543784.10.3.439.
Article
CAS
Google Scholar
Oikonomakos NG, Zographos SE, Skamnaki VT, Archontis G: The 1.76 A resolution crystal structure of glycogen phosphorylase b complexed with glucose, and CP32 a potential antidiabetic drug. Bioorg Med Chem. 0626, 10: 1313-1319. 10.1016/S0968-0896(01)00394-7.
Article
Google Scholar
Green TA, Hannah LC: Adenosine diphosphate glucose pyrophosphorylase, a rate-limiting step in starch biosynthesis. Physiologia Plantarum. 1998, 103: 574-580. 10.1034/j.1399-3054.1998.1030417.x.
Article
Google Scholar
Ballicora MA, Iglesias AA, Preiss J: ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev. 2003, 67: 213-225. 10.1128/MMBR.67.2.213-225.2003.
Article
CAS
Google Scholar
Ballicora MA, Iglesias AA, Preiss J: ADP-Glucose Pyrophosphorylase: A Regulatory Enzyme for Plant Starch Synthesis. Photosynth Res. 2004, 79: 1-24. 10.1023/B:PRES.0000011916.67519.58.
Article
CAS
Google Scholar
Bernstein RL, Robbins PW: Control Aspects of Uridine 5'-Diphosphate Glucose and Thymidine 5'-Diphosphate Glucose Synthesis by Microbial Enzymes. J Biol Chem. 1965, 240: 391-397.
CAS
Google Scholar
Albrecht GJ, Bass ST, Seifert LL, Hansen RG: Crystallization and Properties of Uridine Diphosphate Glucose Pyrophosphorylase from Liver. J Biol Chem. 1966, 241: 2968-2975.
CAS
Google Scholar
Roach PJ, Warren KR, Atkinson DE: Uridine Diphosphate Glucose Synthase from Calf Liver: Determinants of Enzyme Activity in Vitro. Biochemistry. 1975, 14: 5445-5450. 10.1021/bi00696a010.
Article
CAS
Google Scholar
Elling L: Kinetic Characterization of UDP-Glucose Pyrophosphorylase from Germinated Barley (Malt). Phytochem. 1996, 42: 955-960. 10.1016/0031-9422(96)00089-1.
Article
CAS
Google Scholar
Gillett TA, Levine S, Hansen RG: Uridine Diphosphate Glucose Pyrophosphorylase. J Biol Chem. 1971, 246: 2551-2554.
CAS
Google Scholar
Csernoch L, Bernengo JC, Szentesi P, Jacquemond V: Measurements of Intracellular MgConcentration in Mouse Skeletal Muscle Fibers with the Fluorescent Indicator Mag-Indo-1. Biophys J. 1998, 75: 957-967.
Article
CAS
Google Scholar
Cowan JA: Inorganic Biochemistry: An Introduction. 1997, VCH Publishers Inc
Google Scholar
Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C, Bourne Y: Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J. 1999, 18: 4096-4107. 10.1093/emboj/18.15.4096.
Article
CAS
Google Scholar
Blankenfeldt W, Asuncion M, Lam JS, Naismith JJ: The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymydylyltransferase (RmIA). EMBO J. 2000, 19: 6652-6663. 10.1093/emboj/19.24.6652.
Article
CAS
Google Scholar
Barton WA, Lesniak J, Biggins JB, Jeffrey PD, Jiang J, Rajashankar KR, Thorson JS, Nikolov DB: Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nature Struct Biol. 2001, 8: 545-551. 10.1038/88618.
Article
CAS
Google Scholar
Kostrewa D, D'Arcy A, Takacs B, Kamber M: Crystal Structures of Streptococcus pneumoniae N-Acetylglucosamine-1-phosphate Uridyltransferase, GlmU, in Apo Form at 2.33A Resolution and in Complex with UDP-N-Acetylglucosamine and Mg2+ at 1.6A Resolution. J Mol Biol. 2001, 305: 279-289. 10.1006/jmbi.2000.4296.
Article
CAS
Google Scholar
Olsen LR, Roderick SL: Structure of the Escherichia coli GlmU Pyrophosphorylase and Acetyltransferase Active Sites. Biochemistry. 2001, 40: 1913-1921. 10.1021/bi002503n.
Article
CAS
Google Scholar
Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V, Winter J, Harnois M, Fassy F, Bourne Y: Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J. 2001, 20: 6191-6202. 10.1093/emboj/20.22.6191.
Article
CAS
Google Scholar
Sayre PH, Finer-Moore JS, Fritz TA, Biermann D, Gates SB, MacKellar WC, Patel VF, Stroud RM: Multi-targeted Antifolates Aimed at Avoiding Drug Resistance Form Covalent Closed Inhibitory Complexes with Human and Escherichia coli Thymidylate Synthases. J Mol Biol. 2001, 313: 813-829. 10.1006/jmbi.2001.5074.
Article
CAS
Google Scholar
Sulzenbacher G, Gal L, Peneff C, Fassy F, Bourne Y: Crystal Structure of Streptococcus pneumoniae N-Acetylglucosamine-1-phosphate Uridyltransferase Bound to Acetyl-coenzyme A Reveals a Novel Active Site Architecture. J Biol Chem. 2001, 276: 11844-11851. 10.1074/jbc.M011225200.
Article
CAS
Google Scholar
Zuccotti S, Zanardi D, Rosano C, Sturla L, Tonetti M, Bolognesi M: Kinetic and Crystallographic Analyses Support a Sequential-ordered Bi Bi Catalytic Mechanism for Escherichia coli Glucose-1-phosphate Thymidylyltransferase. J Mol Biol. 2001, 313: 831-843. 10.1006/jmbi.2001.5073.
Article
CAS
Google Scholar
Sivaraman J, Sauve V, Matte A, Cygler M: Crystal Structure of Escherichia coli Glucose-1-Phosphate Thymidylyltransferase (RffH) Complexed with dTTP and Mg2+. J Biol Chem. 2002, 277: 44214-44219. 10.1074/jbc.M206932200.
Article
CAS
Google Scholar
Thoden JB, Ruzicka FJ, Frey PA, Rayment I, Holden HM: Structural Analysis of the H166G Site-Directed Mutant of Galactose-1-phosphate Uridylyltransferase Complexed with either UDP-glucose or UDP-galactose: Detailed Description of the Nucleotide Sugar Binding Site. Biochemistry. 1997, 36: 1212-1222. 10.1021/bi9626517.
Article
CAS
Google Scholar
Charnock SJ, Davies GJ: Structure of the Nucleotide-Diphospho-Sugar Transferase, SpsA from Bacillus subtilis, in Native and Nucleotide-Complexed Forms. Biochemistry. 1999, 38: 6380-6385. 10.1021/bi990270y.
Article
CAS
Google Scholar
Gastinel LN, Cambillau C, Bourne Y: Crystal structures of the bovine b4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 1999, 18: 3546-3557. 10.1093/emboj/18.13.3546.
Article
CAS
Google Scholar
Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM: X-Ray Crystal Structure of Rabbit N-Acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 2000, 19: 5269-5280. 10.1093/emboj/19.20.5269.
Article
CAS
Google Scholar
Gastinel LN, Bignon C, Misra AK, Hindsgaul O, Shaper JH, Joziasse DH: Bovine α1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. EMBO J. 2001, 20: 638-649. 10.1093/emboj/20.4.638.
Article
CAS
Google Scholar
Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG, Strynadka NCJ: Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Struct Biol. 2001, 8: 166-175. 10.1038/84168.
Article
CAS
Google Scholar
Boix E, Zhang Y, Swaminathan GJ, Brew K, Acharya KR: Structural Basis of Ordered Binding of Donor and Acceptor Substrates to the Retaining Glycosyltransferase, α-1,3-Galactosyltransferase. J Biol Chem. 2002, 277: 28310-28318. 10.1074/jbc.M202631200.
Article
CAS
Google Scholar
Gibbons BJ, Roach PJ, Hurley TD: Crystal Structure of the Autocatalytic Initiator of Glycogen Biosynthesis, Glycogenin. J Mol Biol. 2002, 319: 463-477. 10.1016/S0022-2836(02)00305-4.
Article
CAS
Google Scholar
Patenaude SI, Seto NO, Borisova SN, Szpacenko A, Marcus SL, Palcic MM, Evans SV: The structural basis for specificity in human ABO(H) blood group biosynthesis. Nature Struct Biol. 2002, 9: 685-690. 10.1038/nsb832.
Article
CAS
Google Scholar
Pedersen LC, Darden TA, Negishi M: Crystal Structure of β1,3-Glucuronyltransferase I in Complex with Active Donor Substrate UDP-GlcUA. J Biol Chem. 2002, 277: 21869-21873. 10.1074/jbc.M112343200.
Article
CAS
Google Scholar
Ramakrishnan B, Balaji PV, Qasba PK: Crystal Structure of β1,4-Galactosyltransferase Complex with UDP-Gal Reveals an Oligosaccharide Acceptor Binding Site. J Mol Biol. 2002, 318: 491-502. 10.1016/S0022-2836(02)00020-7.
Article
CAS
Google Scholar
Negishi M, Dong J, Darden TA, Pedersen LG, Pedersen LC: Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Biochem Biophys Res Commun. 2003, 303: 393-398. 10.1016/S0006-291X(03)00356-5.
Article
CAS
Google Scholar
Vrielink A, Ruger W, Driessen HPC, Freemont PS: Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 1994, 13: 3413-3422.
CAS
Google Scholar
Morera S, Imberty A, Aschke-Sonnenborn U, Ruger W, Freemont PS: T4 Phage β-Glucosyltransferase: Substrate Binding and Proposed Catalytic Mechanism. J Mol Biol. 1999, 292: 717-730. 10.1006/jmbi.1999.3094.
Article
CAS
Google Scholar
Ha S, Walker D, Shi Y, Walker S: The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 2000, 9: 1045-1052.
Article
CAS
Google Scholar
Morera S, Lariviere L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, Janin J, Ruger W: High Resolution Crystal Structures of T4 Phage β-Glucosyltransferase: Induced Fit and Effect of Substrate and Metal Binding. J Mol Biol. 2001, 311: 569-577. 10.1006/jmbi.2001.4905.
Article
CAS
Google Scholar
Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S: Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci USA. 2003, 100: 845-849. 10.1073/pnas.0235749100.
Article
CAS
Google Scholar
Lariviere L, Gueguen-Chaignon V, Morera S: Crystal Structures of the T4 Phage β-Glucosyltransferase and the D100A Mutant in Complex with UDP-glucose: Glucose Binding and Identification of the Catalytic Base for a Direct Displacement Mechanism. J Mol Biol. 2003, 330: 1077-1086. 10.1016/S0022-2836(03)00635-1.
Article
CAS
Google Scholar
Mulichak AM, Lu W, Losey HC, Walsh CT, Garavito RM: Crystal Structure of Vancosaminyltransferase GtfD from the Vancomycin Biosynthetic Pathway: Interactions with Acceptor and Nucleotide Ligands. Biochemistry. 2004, 43: 5170-5180. 10.1021/bi036130c.
Article
CAS
Google Scholar
O'Neil MJ, Smith A, Heckelman PE, Obenchain JR, Gallipeau JAR, D'Arecca MA, Budavari S: The Merck Index. Merck. 2001
Google Scholar
Zea CJ, Pohl NL: Kinetic and substrate binding analysis of phosphorylase b via electrospray ionization mass spectrometry: a model for chemical proteomics of sugar phosphorylases. Anal Biochem. 2004, 327: 107-113. 10.1016/j.ab.2003.12.022.
Article
CAS
Google Scholar