Schmidt WF, Dietl F: Determination of Beryllium in Soils by Means of Flameless Atomic-Absorption with Zirconium-Coated Graphite Tubes. Fresenius Zeitschrift fur Analytische Chemie. 1987, 326: 40-42. 10.1007/BF00488393.
Article
CAS
Google Scholar
USEPA: Beryllium and Compounds. Edited by: Network TT. 1998, North Carolina, Office of Air Quality Planning & Standards, Research Triangle Park
Google Scholar
Okutani T, Tsuruta Y, Sakuragawa A: Determination of A Trace Amount of Beryllium in Water Samples by Graphite-Furnace Atomic-Absorption Spectrometry After Preconcentration and Separation As A Beryllium Acetylacetonate Complex on Activated Carbon. Analytical Chemistry. 1993, 65: 1273-1276. 10.1021/ac00057a026.
Article
CAS
Google Scholar
Manahan SE: Environmental Chemistry. Edited by: Raton B. 2000, Lewis Publishers, 315-320. 7
Google Scholar
Fontenot AP, Newman LS, Kotzin BL: Chronic beryllium disease: T cell recognition of a metal presented by HLA-DP. Clinical Immunology. 2001, 100: 4-14. 10.1006/clim.2001.5053.
Article
CAS
Google Scholar
McCanlies EC, Kreiss K, Andrew M, Weston A: HLA-DPB1 and chronic beryllium disease: A HuGE review. Am J Epidemiol. 2003, 157: 388-398. 10.1093/aje/kwg001.
Article
Google Scholar
Seiler HG, Sigel H, Sigel A: Handbook on toxicity of inorganic compounds. 1988, New York, Marcel Dekker, 753-758.
Google Scholar
Wong CY, Woollins JD: Beryllium Coordination Chemistry. Coordination Chemistry Reviews. 1994, 130: 243-273. 10.1016/0010-8545(94)80006-5.
Article
CAS
Google Scholar
Claude WS, Conrad PW, Kenneth FJJ: Improvements in the Fluorometric Determination of Submicrogram Quantities of Beryllium. Analytical Chemistry. 1961, 33: 1671-10.1021/ac60180a019.
Article
Google Scholar
Garcia SF, Marquez GJ, Hernandez LM: Fluorimetric determination of aluminium and beryllium in mixtures by synchronous derivative spectrometry. Analyst. 1987, 112: 649-652. 10.1039/an9871200271.
Article
Google Scholar
Ross WD, Sievers RE: Rapid Ultra-trace Determination of Beryllium by Gas Chromatography. Talanta. 1968, 15: 87-94. 10.1016/0039-9140(68)80011-6.
Article
CAS
Google Scholar
Taylor ML, Arnold EL: Ultratrace determination of metals in biological specimens quantitative determination of beryllium by gas chromatography. Analytical Chemistry. 1971, 42: 1328-1332. 10.1021/ac60304a038.
Article
Google Scholar
Wolf WR, Taylor ML, Hughes BM, Sievers RE: Determination of Chromium and Beryllium at the Picogram Level by Gas Chromatography-Mass Spectrometry. Analytical Chemistry. 1972, 44: 616-10.1021/ac60311a044.
Article
CAS
Google Scholar
Ross WD, Pyle JL, Sievers RE: Analysis for beryllium in ambient air particules by gas chromatography. Environmental Science & Technology. 1977, 11: 467-471. 10.1021/es60128a004.
Article
CAS
Google Scholar
Fleet B, Liberty KV, West TS: A Study of Some Matrix Effects in the Determination of Beryllium by Atomic Absorption Spectroscopy in the Nitrous Oxide-Acetylene Flame. Talanta. 1970, 17: 17-10.1016/0039-9140(70)80067-4.
Article
Google Scholar
Minoia C, Sabbioni E, Apostoli P, Pietra R, Pozzoli L, Gallorini M, Nicolaou G, Alessio L, Capodaglio E: Trace-Element Reference Values in Tissues from Inhabitants of the European Community .1. A Study of 46 Elements in Urine, Blood and Serum of Italian Subjects. Science of the total environment. 1990, 95: 89-105. 10.1016/0048-9697(90)90055-Y.
Article
CAS
Google Scholar
Rahil-Khazen R, Bolann BJ, Ulvik RJ: Trace element reference values in serum determined by inductively coupled plasma atomic emission spectrometry. Clinical Chemistry and Laboratory Medicine. 2000, 38: 765-772. 10.1515/CCLM.2000.109.
Article
CAS
Google Scholar
Forrer R, Gautschi K, Lutz H: Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biological Trace Element Research. 2001, 80: 77-93. 10.1385/BTER:80:1:77.
Article
CAS
Google Scholar
Forrer R, Wenker C, Gautschi K, Lutz H: Concentration of 17 trace elements in serum and whole blood of plains viscachas (Lagostomus maximus) by ICP-MS, their reference ranges, and their relation to cataract. Biological Trace Element Research. 2001, 81: 47-62. 10.1385/BTER:81:1:47.
Article
CAS
Google Scholar
Goulle JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G, Bouige D, Lacroix C: Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forensic Science International. 2005, 153: 39-44. 10.1016/j.forsciint.2005.04.020.
Article
CAS
Google Scholar
Heitland P, Koster HD: Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clinica Chimica Acta. 2006, 365: 310-318. 10.1016/j.cca.2005.09.013.
Article
CAS
Google Scholar
Steifel T, Schulze K, Zorn H, Tolg G: Toxicokinetic and toxicodynamic studies of beryllium. Archives of Toxicology. 1980, 45: 81-92. 10.1007/BF01270905.
Article
Google Scholar
Zorn H, Stiefel T, Porcher H: Clinical and Analytical Follow-Up of 25 Persons Exposed Accidentally to Beryllium. Toxicological and Environmental Chemistry. 1986, 12: 163-171.
Article
CAS
Google Scholar
Paschal DC, Bailey GG: Determination of beryllium in urine with electrothermal atomic absorption using the L'vov platform and matrix modification. atomic spectroscopy. 1986, 7: 1-
CAS
Google Scholar
Peng HW, Kuo MS: Determination of Trace Amounts of Beryllium(II) in Drinking Water and of Beryllium Vapor in Air by Graphite-Furnace Atomic Absorption Spectrophotometry Using Acetylacetone as a Chelating Agent. Analytical Sciences. 2000, 16: 157-10.2116/analsci.16.157.
Article
CAS
Google Scholar
Burguera JL, Burguera M, Rondon C, Carrero P: Semi-permanent lutetium modifier for the determination of beryllium in urine by electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy. 1999, 54: 1743-1753. 10.1016/S0584-8547(99)00107-X.
Article
Google Scholar
Xiao-Quan S, Zheng Y, Zhe-Ming N: Determination of beryllium in urine by graphite-furnace atomic absorption spectrometry. Analytica Chimica Acta. 1989, 217: 271-280. 10.1016/S0003-2670(00)80409-2.
Article
Google Scholar
Wei-Min Y, Zhe-Ming N: The possibility of standardless analysis in graphite furnace atomic absorption spectrometry: determination of beryllium in environmental and biological samples. Spectrochimica Acta Part B: Atomic Spectroscopy. 1994, 49: 1067-1079. 10.1016/0584-8547(94)80092-8.
Article
Google Scholar
Barany E, Bergdahl IA, Schutz A, Skerfving S, Oskarsson A: Inductively coupled plasma mass spectrometry for direct multi-element analysis of diluted human blood and serum. journal of analytical atomic spectrometry. 1997, 12: 1005-1009. 10.1039/a700904f.
Article
CAS
Google Scholar
Voth-Beach LM, Shrader DE: Investigations of a reduced palladium chemical modifier for graphite furnace atomic absorption spectrometry. journal of analytical atomic spectrometry. 1987, 2: 45-50. 10.1039/ja9870200045.
Article
CAS
Google Scholar
Penninckx W, Massart DL, Verbeke JS: Effectiveness of palladium as a chemical modifier for the determination of lead in biological materials and foodstuffs by graphite furnace atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry. 1992, 343: 526-531. 10.1007/BF00322163.
Article
CAS
Google Scholar
Alexiu V, Vladescu L: Optimization of a chemical modifier in the determination of selenium by graphite furnace atomic absorption spectrometry and its application to wheat and wheat flour analysis. Analytical Sciences. 2005, 21: 137-141. 10.2116/analsci.21.137.
Article
CAS
Google Scholar
Zhuang ZX, Yang PG, Luo J, Wang XR, Huang BL: Study of Palladium and Citric-Acid As A Mixed Matrix Modifier for the Determination of the Volatile Elements Zinc and Cadmium by Graphite-Furnace Atomic-Absorption Spectrometry. Canadian Journal of Applied Spectroscopy. 1991, 36: 9-14.
CAS
Google Scholar
Jackson KW, Qiao H: Atomic-Absorption, Atomic Emission, and Flame Emission-Spectrometry. Analytical Chemistry. 1992, 64: R50-R66. 10.1021/ac00036a003.
Article
Google Scholar
Styris DL, Prell LJ, Redfield DA: Mechanisms of Palladium-Induced Stabilization of Arsenic in Electrothermal Atomization Atomic-Absorption Spectroscopy. Analytical Chemistry. 1991, 63: 503-507. 10.1021/ac00005a023.
Article
CAS
Google Scholar
Styris DL, Prell LJ, Redfield DA, Holcombe JA, Bass DA, Majidi V: Mechanisms of Selenium Vaporization with Palladium Modifiers Using Electrothermal Atomization and Mass-Spectrometric Detection. Analytical Chemistry. 1991, 63: 508-517. 10.1021/ac00005a024.
Article
CAS
Google Scholar
Volynsky AB, Kryvan V: Comparison of various forms of palladium used as chemical modifiers for the determination of selenium byElectrothermal Atomic Absorption Spectrometry. journal of analytical atomic spectrometry. 1996, 11:
Google Scholar
ATSDR: Toxicological Profile for Beryllium. Edited by: Medicine DTE. 2002, Atlanta, Agency for Toxic Substances and Disease Registry
Google Scholar
Varian: Analytical methods for graphite tube atomizers. 1988, Mulgrave, Victoria, Australia, Varian
Google Scholar
Wang HC, Peng HW, Kuo MS: Determination of beryllium and selenium in human urine and of selenium in human serum by graphite-furnace atomic absorption spectrophotometry. Analytical Sciences. 2001, 17: 527-532. 10.2116/analsci.17.527.
Article
CAS
Google Scholar
Cernohorsky T, Kotrly S: Determination of Beryllium in Drinking and Waste-Water by Tungsten Furnace Atomic-Absorption Spectrometry. journal of analytical atomic spectrometry. 1995, 10: 155-160. 10.1039/ja9951000155.
Article
CAS
Google Scholar