Skip to main content

Table 1 Optimization of the reaction conditions for the synthesis of (3a)

From: An improved solvent-free synthesis of flunixin and 2-(arylamino) nicotinic acid derivatives using boric acid as catalyst

Entry

Ratio of 1/2

Catalyst

Catalyst loading (mole %)

Solvent

Temp (°C)

Time (h)

Yieldc (%)

1

2:1

–

–

H2O

Reflux

24

–

2

2:1

–

–

–

100

10

35

3

2:1

K2CO3

15

–

100

24

Trace

4

2:1

NEt3

15

–

100

24

–

5

2:1

K2CO3

15

H2O

Reflux

24

Trace

6

2:1

NEt3

15

H2O

Reflux

24

–

7

2:1

Fe3O4

15

H2O

Reflux

24

–

8

2:1

DABCOa

15

H2O

Reflux

24

Trace

9

2:1

PTSA

15

H2O

Reflux

24

65

10

2:1

H3BO3

15

H2O

Reflux

24

60

11

2:1

H3BO3

15

EtOH

Reflux

24

40

12

2:1

H3BO3

15

n-Hexanol

Reflux

24

62

13

2:1

H3BO3

15

PEG-400b

Reflux

24

30

14

2:1

H3BO3

15

DMF

Reflux

24

45

15

2:1

H3BO3

15

Xylene

Reflux

24

Trace

14

2:1

H3BO3

15

Toluene

Reflux

24

50

17

2:1

H3BO3

15

–

100

10

68

18

2:1

H3BO3

30

–

100

10

82

19

2:1

H3BO3

48

–

100

10

84

20

2:1

H3BO3

30

–

80

12

45

21

2:1

H 3 BO 3

30

–

120

10

90

22

2:1

H3BO3

30

–

150

10

90

23

2:1

PTSA

30

–

120

9

90

24

1:1

H3BO3

30

–

120

20

60

  1. Reaction conditions: 2-methyl-3-trifluoromethylanilin (2 mmol), 2-chloronicotinic acid (1 mmol)
  2. The optimum reaction conditions are in italics
  3. a1,4-diazabicyclo[2.2.2]octane
  4. bPolyethylene glycol
  5. cThe yields refer to the isolated product