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Abstract 

Background:  Propionic acid as a very valuable chemical is in high demand, and it is industrially produced via the 
oxo-synthesis of ethylene or ethyl alcohol and via the oxidation of propionaldehyde with oxygen. It is urgent to dis-
cover a new preparation method for propionic acid via a green route. Recyclable amino-acid-based organic–inorganic 
heteropolyoxometalates were first used to high-efficiently catalyse the selective oxidation of 1-propanol to propionic 
acid with H2O2 as an oxidant.

Result:  A series of amino-acid-based heteropoly catalysts using different types of amino acids and heteropoly 
acids were synthesized, and the experimental results showed proline-based heteropolyphosphatotungstate 
(ProH)3[PW12O40] exhibited excellent catalytic activity for the selective catalytic oxidation of 1-propanol to propionic 
acid owing to its high capacity as an oxygen transfer agent and suitable acidity. Under optimized reaction condi-
tions, the conversion of 1-propanol and the selectivity of propionic acid reached 88% and 75%, respectively. Over four 
cycles, the conversion remained at >80%, and the selectivity was >60%. (ProH)3[PW12O40] was also used to catalyse 
the oxidations of 1-butanol, 1-pentanol, 1-hexanol, and benzyl alcohol. All the reactions had high conversions, with 
the corresponding acids being the primary oxidation product.

Conclusions:  Proline-based heteropolyoxometalate (ProH)3[PW12O40] has been successfully used to catalyse the 
selective oxidation of primary alcohols to the corresponding carboxylic acids with H2O2 as the oxidant. The new 
developed catalytic oxidation system is mild, high-efficient, and reliable. This study provides a potential green route 
for the preparation propionic acid.
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Introduction
Propionic acid, a very valuable chemical, is widely used 
as a preservative in the feed, food, and pharmaceuti-
cal industries and incorporated in the perfume, her-
bicide, and polymer industries [1, 2]. Propionic acid is 

industrially produced via the oxo-synthesis of ethylene 
or ethyl alcohol and via the oxidation of propionaldehyde 
with oxygen [3, 4]. However, these oxidation reactions 
require the use of an oil-soluble salt or a metal complex 
as a catalyst under harsh reaction conditions. Therefore, 
the development of a mild and effective synthetic method 
for propionic acid is of great significance.

The oxidation of primary alcohols to the correspond-
ing carboxylic acids is one of the most important trans-
formations in organic chemistry [5–9]. Traditionally, 
1-propanol can be oxidised to propionic acid by using 
inorganic oxidants, such as chromate and potassium 

Open Access

BMC Chemistry

*Correspondence:  yufliqust@163.com; yushitaoqust@126.com
1 State Key Laboratory Base of Eco‑Chemical Engineering, College 
of Chemistry and Molecular Engineering, Qingdao University of Science 
and Technology, Qingdao 266042, China
2 College of Chemical Engineering, Qingdao University of Science 
and Technology, Qingdao 266042, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-021-00750-5&domain=pdf


Page 2 of 8Liu et al. BMC Chemistry           (2021) 15:23 

permanganate, which are expensive and generate a large 
amount of hazardous waste. An alternative route to the 
oxidation of 1-propanol using environment-friendly and 
cheap oxidants is preferable. Hydrogen peroxide (H2O2) 
has received considerable attention as a green oxidant 
over the past several decades owing to its easy avail-
ability, mild oxidation conditions, and single by-product 
(water) [10–13].

Due to their high capacity as oxygen transfer agents 
[14, 15], polyoxometalates are characterised as efficient 
catalysts in oxidation reactions with O2 or H2O2 [16–19]. 
There have been some reports on the oxidation of pri-
mary alcohols using heteropolyoxometalates as catalysts 
[20–23]. Nonetheless, these catalysts only promote the 
oxidation of primary alcohols to the corresponding alde-
hydes. Furthermore, most related studies have involved 
the oxidation of benzyl alcohol as the model substrate 
and benzaldehyde as the primary product [24, 25]. The 
selective oxidation of 1-propanol to the corresponding 
propionic acid via a green route has not been reported in 
the literature.

In this paper, we present a highly selective oxidation of 
1-propanol to propionic acid with high conversion, using 
a recyclable organic–inorganic heteropolyoxometalate 
as the catalyst and H2O2 as the oxidant. Inexpensive 
and readily available amino acid is selected as the cation 
[26–28]. Moreover, its weak acidity can provide a suitable 
catalytic environment. Amino-acid-based heteropolyox-
ometalates exhibit good amphiphilicity, which enhances 
reactivity and realises the separation and recycling of the 
catalyst. Among the prepared catalysts, proline-based 
heteropolyphosphatotungstate (ProH)3[PW12O40] exhib-
its the best catalytic activity with good recycling effi-
ciency. The study provides a potential green route for the 
preparation propionic acid.

Materials and methods
Chemicals
L-Proline (Pro), L-aspartic acid (Asp), L-glutamic acid 
(Glu), and phosphotungstic acid were purchased from 
Shanghai McLean Biochemical Technology Co., Ltd. 
Phosphomolybdic acid, silicotungstic acid, ethyl acetate, 
anhydrous magnesium sulfate, and 30 wt% H2O2 were 
purchased from Sinopharm Chemical Reagent Co., LTD. 
1-Propanol and other chemicals were acquired from 
Shanghai Biological Technology Co., Ltd.

Preparation of catalysts
The synthesis of a proline-based catalyst, 
(ProH)3[PW12O40], was chosen as an example. A total 
of 0.015  mol L-proline and 10  mL of deionised water 
were added to a 50-mL one-neck flask. The tempera-
ture was increased to 60 °C in a water bath; 0.05 mol of 

phosphotungstic acid was slowly dropped into 10  mL 
of an aqueous solution while stirring. The mixture was 
reacted at 60  °C for 24  h. After the reaction, water was 
removed by rotary evaporation, and the residue was fur-
ther dried in a blast drying oven to obtain a white solid 
catalyst (ProH)3[PW12O40]. The synthetic method for 
other catalysts was similar to that of (ProH)3[PW12O40].

Catalytic tests
The reaction was carried out in a 25-mL three-neck flask 
fitted with a reflux condenser tube. Then, 10  mmol of 
1-propanol and an appropriate amount of catalyst were 
added to the flask. The mixture was stirred for 10 min in 
a 60  °C water bath, and 30 mmol of 30 wt% H2O2 solu-
tion was slowly added; the reaction was continued for 6 h 
at 60 °C. After the reaction, the catalyst was separated by 
centrifugation and reused after drying. The reaction solu-
tion was extracted three times with ethyl acetate, and the 
upper organic phase was combined for qualitative and 
quantitative analysis by a gas chromatograph with an FID 
detector. The lower water phase was titrated with 0.05 M 
NaOH solution for an integrated quantitative analysis of 
propionic acid.

Results and discussion
Catalyst Characterization
The infrared spectra of L-proline, H3PW12O40, and 
(ProH)3[PW12O40] are shown in Fig.  1. The infrared 
spectrum of H3PW12O40 shows characteristic peaks 
at 1082  cm−1, 988  cm−1, 896  cm−1, and 805  cm−1, 
attributable to the stretching vibrations of P-Oa, 
W = Od, W-Ob-W, and W-Oc-W, respectively, char-
acteristics of the typical Keggin structure of heter-
opoly acid [29]. The primary absorption bands of 

Fig. 1  FT-IR spectra of L-proline, H3PW12O40 and (ProH)3[PW12O40]
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(ProH)3[PW12O40] suggest that the Keggin structure of 
the heteropoly anion was retained. In the infrared spec-
trum of L-proline, characteristic absorption peaks at 
3400  cm−1, 3050  cm−1, and 1628  cm−1 were assigned 
to the stretching vibrations of -OH, -NH2

+, and C = O, 
respectively [30, 31]. (ProH)3[PW12O40] shows a similar 
pattern of IR peaks; however, compared with L-proline, 
the (ProH)3[PW12O40] absorption peaks move slightly 
towards high wave numbers, indicating the successful 
synthesis of L-proline-based heteropolyoxometalate 
(ProH)3[PW12O40].

Figure 2 shows the 1H NMR spectra of L-proline and 
(ProH)3[PW12O40] using deuterated water and deu-
terated DMSO as the solvents, respectively. In the 1H 
NMR spectrum of L-proline the typical absorption 
peaks of hydrogen on the ring skeleton was: δ = 1.85–
1.93 (m, 2H, CH2), 1.95–2.22 (m, unequal 2H, CH2), 
3.15–3.25 (m, 2H, CH2), and 3.95 (t, J = 7.1  Hz, 1H, 
CH). In contrast to L-proline, the absorption peaks 
of (ProH)3[PW12O40] had the same shape, but moved 
toward the lower field, indicating that L-proline was 
successfully protonated by phosphotungstic acid. The 
broad peak between 3–4 ppm indicates the presence of 
crystalline water.

The XRD pattern of (ProH)3[PW12O40] (Fig. 3) shows 
obvious diffraction peaks at 2θ of 7.8°, 9.7°, 18.3°, 29.1°, 
32.5°, and 37.8°, which can reflect the characteris-
tic absorption peaks of Keggin structure [22]. How-
ever, the diffraction peaks are not exactly the same as 
those of H3PW12O40, because the hydrogen proton of 
H3PW12O40 is replaced by the proline cation.

The thermostability of the (ProH)3[PW12O40] catalyst 
was studied using a thermogravimetric (TG) test. The 
TG curve of (ProH)3[PW12O40] exhibits the stepwise 
decomposition of proline-based cations and heteropoly 

anions (Fig.  4). The first decomposition peak appears 
above 270 °C, suggesting that the catalyst has very high 
thermostability.

Catalytic activity of different catalysts
From entry 1 in Table 1, only a small amount of 1-pro-
panol is oxidized by H2O2 in the absence of catalyst, and 
the main oxidation product is propionaldehyde. Herein 
we synthesised a series of amino-acid-based heteropoly 
catalysts using different types of amino acids and heter-
opoly acids to identify the best selective catalysts for the 
oxidation of 1-propanol to propionic acid. The activities 
of these catalysts for the selective oxidation of 1-propanol 

L-proline 

(ProH)3[PW12O40] 

Fig. 2  1H NMR spectra of L-proline and (ProH)3[PW12O40]
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H3PW12O40

(ProH)3[PW12O40]

Fig. 3  XRD patterns of H3PW12O40 and (ProH)3[PW12O40]

Fig. 4  Thermogravimetric curve of (ProH)3[PW12O40]
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were fully investigated; the results are listed in Table  1. 
The acid strength of the catalysts was determined by 
1-butylamine titration [32], and the oxidisability of the 
catalyst was assessed by a redox potential assay. From 
entries 2–4, the conversion of 1-propanol and the selec-
tivity for propionic acid increased with increasing oxidis-
ability of the catalyst. The catalyst with lower oxidisability 
primarily catalyses the H2O2 oxidation of 1-propanol to 
propionaldehyde. The acidity of the catalyst also greatly 
affects the catalytic activity (Table 1), and suitable acidity 
is required for obtaining propionic acid. Excessive acidity 
of the catalyst may promote esterification to obtain pro-
pyl propionate (Entries 4–6 and 9). Among the different 
amino-acid-based catalysts tested (entries 4, 7, and 8), 
the proline-based catalyst (ProH)3[PW12O40] exhibited 
the best catalytic activity. In summary, the catalyst with 
higher oxidation properties and suitable acidity is more 
suitable for use in the oxidation of 1-propanol to propi-
onic acid.

Optimization of catalytic conditions
For the selective oxidation of 1-propanol catalysed by 
(ProH)3[PW12O40], various reaction conditions were 
screened to obtain the optimised conditions that gave 
propionic acid in greater yields.

Increased catalyst dosage is shown to increase the con-
version and selectivity of propionic acid; this effect is lim-
ited to catalyst dosages of up to 3 mol% (Fig. 5). When the 
catalyst dosage was further increased, both the conver-
sion and selectivity of propionic acid decreased, possibly 
because too much catalyst also improves the decompo-
sition of hydrogen peroxide. Therefore, the best catalyst 
dosage was 3 mol%.

The oxidant dosage has a significant effect on the 
reaction. Figure  6 shows that propionic acid yield 
increases with increasing amount of hydrogen peroxide 

and reaches a maximum when the molar ratio of H2O2 
to 1-propanol is 3:1. Additional aqueous H2O2 dilutes 
the concentration of the substrate and the catalyst, 
resulting in low conversion and selectivity of propionic 
acid.

The influence of temperature on the reaction is 
shown in Fig. 7. The conversion and selectivity of pro-
pionic acid increased as the reaction temperature was 
increased from 40 from 60 °C. Nevertheless, a decrease 
trend for conversion and selectivity is found after 60 °C 
due to the decomposition of H2O2 at higher tempera-
tures, resulting in low yields of propionic acid.

Figure  8 shows the kinetic curves of the reaction at 
different reaction times. The conversion and selec-
tivity of propionic acid increased significantly upon 
prolonged the reaction time from 2 to 8  h. After 8  h, 

Table 1  Catalytic performance of different catalystsa

a  reaction conditions: n(1-propanol) = 10 mmol, n(catalyst) = 0.1 mmol, n(30%H2O2) = 30 mmol, T = 60 °C, t = 6 h, solvent free; b0.2 mmol, 25 mL acetonitrile; 
coxidation potential Vs Ag/AgCl

Entry Catalyst Acid 
Strength /
mV b

Redox 
potential 
/V c

Conversion /% Yield/% Selectivity/%

Propionic acid Propion-aldehyde Propyl propionate Others

1 – – – 9.36 3.87 41.35 52.56 – 6.09

2 (ProH)4[SiW12O40] 446 0.06 41.71 13.68 32.80 47.85 10.91 8.44

3 (ProH)3[PMo12O40] 427 0.11 30.82 18.31 59.41 29.88 6.72 3.99

4 (ProH)3[PW12O40] 474 0.24 73.98 45.50 61.50 32.51 4.08 1.91

5 (ProH)2[HPW12O40] 595 0.18 65.67 41.94 63.91 25.13 7.74 3.28

6 (ProH)[H2PW12O40] 653 0.13 57.94 27.19 46.93 31.48 17.24 4.35

7 (AspH)3[PW12O40] 490 0.19 69.99 40.53 57.91 25.29 6.97 9.83

8 (GluH)3[PW12O40] 574 0.15 63.54 35.71 56.20 34.56 7.69 1.54

9 H3PW12O40 732 0.13 64.53 36.05 55.87 28.17 13.23 2.73
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Fig. 5  Influence of catalyst dosage on reaction 
(n(1-propanol) = 10 mmol, n(H2O2) = 30 mmol, T = 60 °C, t = 6 h)
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the conversion of 1-propanol remained basically 
unchanged, and the selectivity of propionic acid began 
to decrease slightly, because the long reaction time 
facilitates the esterification of the formed propionic 
acid with 1-propanol and increases the by-product pro-
pyl propionate.

Since the amount of oxidant is excessive, the reaction 
rate is supposed to only be decided by the concentration 
of 1-propanol. Reaction rate constants at different tem-
peratures were shown in Fig. 9. According to Arrhenius 

equation [33], the calculated apparent activation energy 
is 22.64 kJ/mol.

In summary, the optimum reaction conditions for the 
preparation of propionic acid were as follows: catalyst 
amount of 3  mol%, n(H2O2):n(1-propanol) ratio of 3:1, 
reaction temperature of 60 °C, and reaction time of 8 h. 
Under the selected optimised conditions, the conversion 
of 1-propanol was 88%, and the selectivity of propionic 
acid reached 75%.

Proposed catalytic mechanism
According to the reaction results obtained herein and 
those reported previously [34], the proposed catalytic 
mechanism for the oxidation of 1-propanol catalysed by 
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Fig. 6  Influence of oxidant dosage on reaction 
(n(1-propanol) = 10 mmol, n(catalyst) = 0.3 mmol, T = 60 °C, t = 6 h)
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Fig. 7  Influence of temperature on reaction 
(n(1-propanol) = 10 mmol, n(H2O2) = 30 mmol, n(catalyst) = 0.3 mmol, 
t = 6 h)
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Fig. 9  Reaction rate constants at different temperatures



Page 6 of 8Liu et al. BMC Chemistry           (2021) 15:23 

(ProH)3[PW12O40] is shown in Scheme  1. In the oxida-
tion process, the catalyst (ProH)3[PW12O40] first reacts 
with H2O2, and the heteropoly anion of the catalyst is 
depolymerized to a smaller active peroxygen intermedi-
ate. This intermediate (the active centre) subsequently 
oxidises the substrate 1-propanol to propionaldehyde, 
which is further oxidised to propionic acid. The kinetic 
curves of the reaction at different reaction times (Fig. 8) 
revealed that with increasing reaction time, the selectiv-
ity of propionaldehyde decreased and the selectivity of 
propionic acid gradually increased, indicating that 1-pro-
panol was first oxidised to propionaldehyde and then to 
propionic acid. Nonetheless, the formation of propion-
aldehyde and its oxidation can simultaneously proceed. 
After the oxidation reaction, the active intermediate loses 
active oxygen and re-polymerises into the original Keggin 
structure.

Reuse of the catalyst
After the reaction, the catalyst was recovered by cen-
trifugation. Figure  10 shows the cycling performance 
of (ProH)3[PW12O40] for catalysing the oxidation of 
1-propanol under the optimised conditions. Over the 
first four cycles, the conversion of 1-propanol and the 
selectivity of propionic acid gradually declined. How-
ever, the conversion remained at >80%, and the selectiv-
ity was >60%. After four cycles, the recovered catalyst 
was characterised by FT-IR (Fig. 11) and XRD (Fig. 12). 
Compared with the fresh catalyst, the structure of the 
recovered catalyst was not destroyed in the first four 
cycles, indicating good stability. The decrease in catalytic 
activity may be due to a slight loss of the catalyst during 

ProH
3

PW12O40 ProH
3

PO4 WO  O2 4

H2OH2O2

H

CH3CH2COOH
CH3CH2CH

CH3CH2CH2OHO

2

Scheme 1  Proposed mechanism of the catalytic oxidation of 
1-propanol

Fig. 10  Reuse performance of the catalyst

Fig. 11  FT-IR spectra of the fresh and recovered catalysts

2θ(°)

the fresh catalyst
the recovered catalyst

Fig. 12  XRD patterns of the fresh and recovered catalysts
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separation. For the fifth cycle, an equivalent amount of 
the lost catalyst was added, and catalytic activity was 
restored (Fig. 10).

Substrate expansion
The catalytic performance of the (ProH)3[PW12O40] 
catalyst in the oxidation of other primary alcohols was 
also investigated; the results are shown in Table 2. The 
(ProH)3[PW12O40] catalyst exhibits good catalytic activ-
ity for various aliphatic primary alcohols and aromatic 
benzyl alcohol. All the reactions have high conver-
sions, with the corresponding acids being the primary 
oxidation product. The selectivity of acids can be fur-
ther improved by optimising the catalytic conditions. 
Therefore, (ProH)3[PW12O40] as a catalyst for the selec-
tive oxidation of primary alcohols to the corresponding 
acids by H2O2 has good substrate adaptability.

Conclusions
Proline-based heteropolyoxometalate (ProH)3[PW12O40] 
has been successfully used to catalyse the selec-
tive oxidation of 1-propanol toward propionic acid 
with H2O2 as the oxidant. The conversion of 1-pro-
panol and the selectivity of propionic acid reached 88% 
and 75%, respectively. The excellent catalytic activity 
of (ProH)3[PW12O40] is attributed to its high capac-
ity as an oxygen transfer agent with a suitable acidity. 
(ProH)3[PW12O40] also exhibited good recycling effi-
ciency. This study provides a new preparation method 
for propionic acid via a green route, and the developed 
catalyst shows immense potential for the selective oxida-
tion of other primary alcohols to the corresponding car-
boxylic acids with H2O2 as an oxidant.
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