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PCN‑222 metal–organic framework: 
a selective and highly efficient sorbent 
for the extraction of aspartame from gum, 
juice, and diet soft drink before its 
spectrophotometric determination
Zahra Safaei Moghaddam1, Massoud Kaykhaii1*, Mostafa Khajeh2 and Ali Reza Oveisi2

Abstract 

In this paper, we describe synthesis and application of an iron porphyrinc metal–organic framework PCN-222(Fe) 
for solid phase extraction of aspartame, an artificial non-saccharine sweetener, from gum, juice and diet soft drink 
samples prior to its determination by spectrophotometry. The mesoporous MOF was synthesized solvo-thermally and 
characterized by Fourier transform-infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, 
and Brunauer–Emmett–Teller techniques. To obtain the best extraction efficiency of aspartame, significant affecting 
parameters such as pH of sample solution, amount of the sorbent, type and volume of eluting solvent, and adsorp-
tion and desorption times were investigated and optimized. Under optimum conditions, the calibration graph for 
aspartame was linear in the range of 0.1 to 100.0 mg.L−1 and relative standard deviation of aspartame was 1.7% 
(n = 7). Limit of detection of method calculated as 0.019 mg.L−1 and the enrichment factor of 350 folds was obtained. 
Adsorption capacity of synthesized sorbent was found to be 356 mg.g−1. Hierarchical porosity, the eight terminal–OH 
groups of the Zr6 node, and hydrogen bonding possibly play vital role for selective adsorption of aspartame. The opti-
mized method was successfully applied to the determination of aspartame in real samples with reasonable recoveries 
(> 98%).

Keywords:  Aspartame, Zirconium-based metal–organic framework, PCN-222(Fe), Solid-phase extraction, Diet soft 
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Introduction
Aspartame (ASP; N-L-a-aspartyl-l-phenylalanine-1-me-
thyl ester), an artificial sweetener, is mostly used in foods, 
soft drinks, dietary products and preserved fruits for 
increase product quality and shelf life [1]. There are some 
witnesses that support there is a relationship between 

ASP intake and harmful health issues such as obesity, 
dental caries, carcinogenicity, neurological problems 
risk of brain tumour rates, and leukaemia [2, 3]. There-
fore, it is necessary to develop a fast, simple and sensi-
tive analytical method for detecting ASP in food stuff. 
According to the joint Food and Agriculture Organiza-
tion, World Health Organization, and Expert Committee 
on Food Additives, acceptable daily intake value of ASP is 
between 0 and 40 mg/kg body mass per day [4].

Spectroscopy (spectrophotometry, colorimetry and 
chemiluminescence) [5–7], electrochemical techniques 
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[8], and chromatography [9] are the most important 
analytical methodologies which have been developed 
for the determination of ASP. Among them, high perfor-
mance liquid chromatography (HPLC) is the most com-
mon technique applied for determination of sweeteners, 
including ASP; but this method suffers from highly toxic 
organic solvents, long analysis time and high cost.

Spectrophotometry is an attractive common technique 
with advantages including high precision, high accuracy, 
and low cost of analysis [10] which is suitable for deter-
mination of many organic and inorganic compounds. 
The main drawbacks associated with this technique are 
lack of selectivity and unfeasibility of detecting low con-
centrations of analytes [11]. These problems can be over-
come by applying a proper extraction technique prior to 
performing spectrophotometry.

Solid phase extraction (SPE) is one of the most impor-
tant sample preparation methods which has been 
extensively applied for this purpose to separate and pre-
concentrate food additives and artificial sweeteners in a 
wide variety of sample matrices [12]. The advantages of 
this method include high selectivity, high recovery, good 
reproducibility, amenable to automation, and low organic 
solvents requirement [13, 14]. In SPE, sorbent is the most 
important part which directly affect accuracy, selectivity 
and sensitivity of the extraction and many researches are 
focused on the improvement of SPE sorbents [15].

Metal-organic frameworks (MOFs) are a class of crys-
talline porous materials which are composed of metal 
ions and organic linkers. They have broad application 
potentials including adsorption, separation, sensing, 
drug delivery, detection, catalysis, polymerization, gas 
storage magnetism, luminescence and removal of toxic 
materials [16–21] due to their high porosity, large surface 
areas and tuneable pore size, and in the most cases, the 
high stability in water [22]. PCN-222(Fe) (PCN stands 
for porous coordination network) is a mesoporous iron-
porhpyrinic zirconium-based MOF with molecular for-
mula of Zr6(μ3-O)4(μ3-OH)4(OH)4(H2O)4(FeTCPPCl)2, 
FeTCPPCl = 5,10,15,20-tetrakis (4-carboxyphenyl) por-
phyrin-iron(III) chloride. The parent-MOF node involves 
an octahedral Zr6 cluster, capped by four μ3-oxoand 
fourμ3-OH ligands. Eight of the twelve octahedral edges 
are linked to FeTCCPCl (as an heme-like ligand) link-
ers, while the residual of Zr(IV) coordination sites (after 
activation process with HCl in DMF) are occupied by 
eight terminal-OH/-H2O ligands (non-bridging groups). 
The accessible eight terminal–OH/–H2O group scan be 
displaced by carboxylate-functionalized molecules via 
dative bonds [23–26]. This pathway is known as solvent-
assisted ligand incorporation method for functionaliza-
tion of 8-connected Zr6 nodes [23–26]. Moreover, the 3D 
structure of hierarchically porous PCN-222(Fe) typically 

affords large accessible surface area and high densities of 
reactant-accessible. Notably, PCN-222(Fe) MOF exhib-
ited extraordinary thermal, mechanical, and chemical 
stability (stable solution at pH range of 3–10) [27, 28].

Therefore, we decided to prepare, characterize and 
apply PCN-222(Fe) MOF as a sorbent for SPE of aspar-
tame, a carboxylic acid-containing functional group mol-
ecule, from samples with various matrices. Experimental 
factors affecting extraction were studied and optimized.

Experimental
Chemicals
All reagents were of analytical grade and utilized with-
out further purification. Zirconium(IV) chloride (ZrCl4), 
methyl 4-formylbenzoate (C9H8O3), pyrrole (C4H5N), 
benzoic acid (C7H6O2), Iron(II) chloride tetrahydrate 
(FeCl2·4H2O), propionic acid (C3H8O2) Chloroform 
(CHCl3), ethanol (C2H6O), methanol (CH4O), glucose, 
sucrose, fructose, sodium ascorbate, cyclamate, hydro-
chloric acid (HCl), N,Nʹ-dimethyl formamide (DMF), 
sodium hydroxide (NaOH) and tetrahydrofuran (THF) 
were obtained from Sigma-Aldrich Chemical Company 
(MO, USA). Reagent grade aspartame was obtained from 
Merck KGaA (Darmstadt, Germany). Milli-Q® (Merck-
Millipore, MA, USA) water (18.3  MΩ cm−1) was used 
throughout all experiments. A stock standard solution 
of aspartame (1000  mg L−1) was prepared by dissolv-
ing 1.0000 g of it in 1000 mL of distilled water. Working 
standard solutions were prepared by serial dilutions of 
the stock solution prior to analysis.

Instrumentation
An Agilent (USA) 1200 series HPLC equipped with an 
Agilent XDB-C18 column (250  mm × 4.6  mm) and an 
UV detector at fixed wavelength of 210 nm was used for 
chromatographic separations. Mobile phase was con-
sisted of a mixture of 50 mL of methanol and 50 mL of 
l % (v/v) triethylammonium acetate buffer (pH 4.5) at the 
flow rate of 1.0  mL  min−1. Before analysis, all samples 
were passed through a 0.22  μm nylon filter. Absorption 
measurements were carried out with a UV–Vis spec-
trophotometer (UV-2100 RAYLeigh, Beijing, China) by 
monitoring the absorbance at maximum wavelength 
of 210  nm. All experiments were performed at least in 
triplicates and the mean values were used for optimiza-
tion. A Metrohm (Switzerland) model 630 pH meter was 
used for pH measurements. Powder X-ray diffraction 
(PXRD) patterns were recorded on a Philips X’pert dif-
fractometer (Netherlands) with monochromated Cu Kα 
radiation (λ = 1.5418 Å) at a range of 1° < 2θ < 40°. Fourier 
transformed infrared (FTIR) spectra were recorded in 
the range of 4000–5000 cm−1 using KBr pellets on a Per-
kin Elmer Spectrum-FTIR, version 10.01.00 (USA). The 
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morphology and chemical composition of the sample was 
characterized using scanning electron microscopy (SEM, 
MIRA3 TESCAN, Czech Republic). The specific surface 
areas in Brunauer–Emmett–Teller (BET) were deter-
mined by N2 adsorption–desorption isotherm at liquid 
nitrogen temperature (TriStar 3020 II, Micromeritics 
Instrument Corp., Norcross, GA, USA).

Synthesis of PCN‑222(Fe) MOF
PCN-222(Fe) MOF was synthesized through five-step 
synthesis from commercially available based on a previ-
ously reported procedure through five-step synthesis [26, 
27].

Solid phase extraction procedure
A batch SPE method was performed for the extraction 
of ASP using PCN-222(Fe) MOF as sorbent. 250.0 mL of 
sample solution was transferred to a beaker and its pH 
was adjusted to 6.0 using by drop wise addition of either 
NaOH 0.1  M or HCl 0.1  M solution. 7  mg adsorbent 
was added to solution and was shaken on a shaker (200 
rmp, 10  min) then centrifuged at 4000  rpm for 8  min. 
The aqueous phase was completely discarded. 700 µL of 
Ethanol-HCl (99:1 v/v) solution was added to the solid 
and shook again on a shaker (200 rmp, 15 min). Finally, 
PCN-222(Fe) MOF was separated from the solution by 
centrifuging at 4000  rpm for 8  min and the concentra-
tion of ASP in elution was determined by UV–Vis spec-
trophotometry against a blank prepared with the same 
procedure.

Results and discussion
Characterizations of PCN‑222(Fe) MOF
The powder X-ray diffraction (PXRD) pattern of the pre-
pared PCN-222(Fe) MOF is shown in Fig.  1. It can be 
observed that the pattern is similar to previous reports 
[26, 27]. The intensive peaks at 2θ = 2.5, 4.9, 6.6, 7.1 and 
9.9º are related to the reflections (1 0 0), (2 0 0), (2 -1 
1), (2 0 1), (4 0 0), and (4 -2 1), respectively (CCDC No. 
893,545) [22, 27].

Fourier transform infrared (FTIR) spectrum of PCN-
222(Fe) MOF is shown in Fig.  2. The peaks at around 
1691 and 1417  cm−1 are attributed to strong stretching 
vibration of -COO (asymmetric) and -COO (symmetric) 
bonds of the carboxylate groups. The peaks at about 1570, 
650 and 712 cm−1 are due to the out of plane bending of 
the C-Hs of phenyl rings [29]. After ASP sorption, the 
intensity peaks at 1700  cm−1 and 1570  cm−1 decreased 
and leading to a shift towards lower wave numbers.

The porosity of the prepared MOF was measured by 
nitrogen adsorption–desorption experiments at 77  K. 
The typical type IV isotherm and a Brunauer–Emmett–
Teller (BET) surface area of 1650 m2 g−1 were obtained, 
when the activation procedure was applied (Fig.  3). 
Density functional theory simulation of the N2 sorption 
revealed that the nominal MOF have two types of pores, 
with sizes of ~ 1.2  nm and ~ 3  nm (Fig.  4), respectively, 
corresponded to triangular micro channels and hexago-
nal meso channels.

Scanning electron microscope (SEM) image 
was applied to characterize the morphology of the 
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as-synthesized PCN-222(Fe), and is shown in Fig.  5. As 
can be seen in the image of metal–organic framework 
synthesized, that it has typical rod-like structure which 
was similar to the reported studies [30].

Optimization of SPE procedure
Several important parameters influencing the extrac-
tion efficiency, including pH of the sample solution, 
amount of adsorbent, type and volume of eluting solvent, 
and adsorption and desorption time were studied and 

optimized, as discussed below. A standard solution of 
10 mg L−1 of ASP was used for this purpose.

Effect of pH
The pH of the sample solution is one of the most critical 
parameters in the adsorption of ASP on the MOF which 
shows its influence by two factors: the form of the ana-
lyte and surface binding sites on the adsorbent [31]. pH 
of a series of ASP standard solutions was varied in the 
range of 3.0–9.0 and results are shown in Fig. 6. As can 
be seen, the optimum point occurs at pH 6.0. Mecha-
nism of aspartame adsorption on PCN-222(Fe) MOF 
can be explained with electrostatic interaction between 
aspartame and the adsorbent. According to a previous 
research, zero charge point of PCN-222(Fe) MOF was 
observed at pH = 6.4 [32]. At pHs other than this value, 
the surface charge of MOF is charged. On the other hand, 
isoelectric point of ASP was determined as 5.25 (pK1 
3.18, pK2 7.82) [33]. At pH around 6, MOF is positively 
charged, while ASP is in anionic form, therefore recovery 
increases.

Effect of type and volume of the eluent
The effect of eluent type on recovery of ASP from MOF 
was studied. Methanol, ethanol, acetonitrile, water–HCl 
(99:1 v/v), methanol-HCl (99:1 v/v) and ethanol-HCl 
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(99:1 v/v) were tested. Acid concentration should be kept 
at the lowest possible level to prevent MOF degradation. 
The obtained results are shown in Fig. 7. A quantitative 
recovery for the ASP was obtained using ethanol-HCl 
(99:1 v/v) as eluent, maybe because acid can convert ASP 
from its anionic form to neutral.

The effect of the volume of eluting solvent was inves-
tigated at the range of 200–1000 µL (Fig. 8). The results 
show that 700 µL of ethanol-HCl (99:1 v/v) is favorable to 
obtain maximum extraction recovery of ASP. At higher 
volumes, a diversing effect is observing, probably due to 
the effect of dilution of eluted ASP.

Influence of the amount of sorbent
The effect of dosage of adsorbent on extraction recovery 
of ASP in the range of 1.0–10.0 mg is shown in Fig. 9. The 
maximum extraction recovery was obtained when the 
amount of the MOF was 7.0 mg. As can be seen, only a 

tiny amount of adsorbent was enough to extract the ASP 
because of its high adsorption capacity. Thus, 7 mg of the 
PCN-222(Fe) was utilized for further experiments.

Effect of adsorption and elution times
To reach the best equilibrium time, it is necessary to 
optimize contact time for the analyte adsorption and 
desorption. Contact times of 2, 5, 10, 15, 20 and 25 min 
was tested for both extraction and elusion. Results are 
depicted in Fig. 10. The time required achieving equilib-
rium for adsorption and elution was 10 min and 15 min, 
respectively. This fast kinetic is due to high specific sur-
face area and large pores of the synthesized MOF.

Effect of ionic strength
The impact of ionic strength on performance of ASP 
extraction was studied by making the sample solution 
0.0–1.0  mol L−1 with respect to sodium chloride, while 
other experimental conditions were kept constant. The 
results showed that the absorbance signal of ASP was 
almost independent of the ionic strength of the solution; 
hence, all extraction experiments were performed with-
out salt addition.
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Effect of sample volume
In order to obtain a high preconcentration factor, the 
influence of the sample volume on the extraction effi-
ciency of ASP was investigated in the range of 10.0–
500.0  mL. The results showed that the recovery of ASP 
was very efficient (> 98%) in a sample volume range of 
10–250  mL and after that, recovery decreases. Hence, 
250  mL of the sample solution was used in the subse-
quent studies.

Enrichment factor (EF), defined as the ratio of the sam-
ple volume of 250 mL to the final elution volume of 700 
µL, was expected to be 357 folds which was closed to the 
350 folds experimentally determined.

Effect of interferences
The selectivity of the present method was investigated 
by analyzing standard solutions containing 10 mg L−1 of 
ASP in the presence of high amounts of common com-
pounds which are normally co-exist with ASP. The toler-
ance limit was defined as the maximum concentration of 
foreign species causing an error of less than ± 5% in the 
determination of ASP. The results which are summarized 
in Table  1 showed that there are no interferences from 
the tested species on preconcentration and determina-
tion of ASP by suggested method.

Linear range, limit of detection and precision
Under the optimum conditions, the linear range, detec-
tion limit, coefficient of determination, enrichment fac-
tor, accuracy and precision of the suggested method 
were obtained and summarized in Table  2. The cali-
bration curve was linear over a concentration range of 
0.1–100  mg L−1 with a coefficient of determination 
(R2) of 0.997. Limit od detection (LOD), obtained from 

3(Sd)blank/m (where (Sd)blank is the standard deviation 
of ten consecutive measurements of the blank and m is 
the slope of calibration curve), was 0.019  mg L−1. For 
evaluation of the sorption capacity of MOF, under the 
optimum conditions of ASP adsorption, 7  mg of this 
sorbent was added to 250.0 mL of 10 mg L−1 standard 
solution of ASP and after reaching equilibrium, con-
centration of remaining ASP was determined using an 
HPLC by direct injection of 10 µL of the solution and 
comparison to a calibration curve. Peak areas were 
used for quantifications.

Adsorption capacity was found to be 356  mg  g−1 
which was calculated from the following equation [34]:

where C0 and Ce are initial and equilibrium concentra-
tions of ASP, V (L) is volume of sample solution and m 
(g) is the adsorbent dosage. The relative standard devia-
tion (RSD  %) of the seven replicate measurements for 
the same solution was < 1.7%. A comparison between the 
figures of merit of the method applied in this work with 
other absorbents used for preconcentration and analysis 
of ASP are summarized in Table 3. As can be seen, and 
despite expensive and sophisticated instruments used in 
some methods, still the PCN-222(Fe) MOF sorbent has 
higher sorption capacity and better LOD due to having 
large pore size.

qe =
(C0 − Ce)× V
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Table 1  Effect of  interference of  foreign species 
on  the  tolerance limits of  10  mg L−1 ASP in  the  aqueous 
samples under  the  optimized condition (acceptable error 
less than ± 5%)

Foreign species Tolerance limit (mg L−1) Recovery (%)

Ascorbate 500 98

Glucose
Fructose, Sucrose

400
200

95
97

Cyclamate 100 98

Table 2  Analytical figure of merit for SPE extraction of ASP

Parameter Analytical feature

Equation of calibration curve A = 0.0769CASP + 0.2534

Dynamic range (mg L−1) 0. 1–100

R2 (determination coefficient) 0.9978

Repeatability (RSD %, n = 7) 1.70

Limit of detection (mg L−1) 0.019

Enrichment factor 350

Capacity of sorbent (mg g−1) 356
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Real sample analysis
To assess the performance of this method for the analy-
sis of real samples in complicated matrices, the proposed 
procedure was applied to the determination of ASP in 
three different samples, i.e. a soft cola drink, a peach juice 
and a bubble gum.

Juice was degassed and homogenized for 10  min in 
an ultrasonic bath and cola drink was degassed by put-
ting on a shaker for 15  min. For bubble gum, one stick 
(weighing 2.7 g) of it was broken to small pieces (approxi-
mately 3 × 3 mm) and transferred to a 120 mL volumet-
ric flask and mixture of acetic acid, water and chloroform 
(1:50:25 v/v) was added to it and stirred at high speed 
for 10 min. All final solutions were filtered through 0.45-
μm filters and finally 10-mL aliquot of each one was 
diluted in a 100-mL volumetric flask prior to analysis. 
Detectable amount of ASP was observed in all samples 
(Table  4). To validate trueness of the analyses, a stand-
ard HPLC method [35] was also performed. In order to 
better evaluate the matrix effect, samples were spiked 
by adding the appropriate amounts of ASP and analyzed 

according to the MOF-SPE/spectrophotometric method. 
Average recoveries ranged from 97% to 104%, with RSDs 
between 1.0 and 3.6% (n = 3) were obtained which clearly 
show that this procedure can be successfully applied to 
trace level determination of the ASP sweetener in vari-
ous samples. As an example, spectrum of a cola sample 
spiked with 50 µg L−1 of ASP and extracted by MOF-SPE 
is depicted in Fig. 11.

Conclusion
In this paper, selective batch-mode solid-phase extraction 
of aspartame was performed by means of a mesoporous 
porphyrinic metal–organic framework, PCN-222(Fe), 
followed by its spectrophotometric determination. The 
MOF showed high adsorption capacity and high extrac-
tion efficiency toward this analyte. Method applicabil-
ity was demonstrated by analysis of three real samples, 
including soft cola drink, peach juice and bubble gum 
and results were compared to standard HPLC analysis 
with satisfactory results. This method has high precon-
centration factor (350), good RSD (< 1.7%) and very low 

Table 3  Comparison of the proposed method with other methods for the determination of ASP

NM Not mentioned

Sorbent Detection technique LOD 
(mg.L−1)

Sorbent 
capacity  
(mg.g−1)

linear range 
(mg.L−1)

Enhancement 
factor

RSD 
(%)

Ref.

Sephadex G-25 Spectrophotometry-FIA 0.3 NM 0.001 –0.2 NM 1 [36]

C18cartridges HPLC/UV NM NM NM NM 3.1 [37]

Monolithic molecularly imprinted 
polymer

Capillary electrophoresis NM NM 0.0001–0.0004 NM 2.7 [38]

Tetraethylenepentamine function-
alized Fe3O4 magnetic polymer

HPLC 0.14 NM 0.005–0.05 NM 3.8 [39]

Ethylenediamine-functionalized 
magnetic polymer

Ultra-fast liquid chro-
matography–mass 
spectrometry

0.15 NM 0.005–0.5 NM 1.1–2.8 [40]

PCN-222(Fe) MOF Spectrophotometry 0.019 356 0.0–100 357 1.7 This work

Table 4  Determination of ASP in sweetener samples (n = 3)

Sample ASP content (µg L−1) Recovery (%) RSD (%)

Added Found by HPLC Found by SPE-MOF

Peach juice 0 60 61 101 2.2

50 111 112 104 2.1

500 550 549 98 1.9

Bubble gum 0 20 18 90 3.6

50 70 69 98 2.5

500 521 519 100 1.0

Soft cola drink 0 100 98 98 1.6

50 151 150 100 2.5

500 600 598 99.6 3.6
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detection limit (19  µg L−1). No toxic organic solvents 
were used durin extraction and elusion. Spectrophoto-
metric instrumentations own merits of simplicity, cheap-
ness, portability and so on.
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