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Abstract 

A new donor-π-acceptor derived from phenothiazine, namely 2-(2-((10-hexyl-10H-phenothiazin-3-yl)methylene)-
3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (PTZON) was synthesized and fully characterized, and its potential 
as a fluorescent sensor for cyanide anion was investigated. The PTZON showed a visible absorption band at 564 nm 
corresponds to an intramolecular charge transfer (ICT) and an emission band at 589 nm in CH3CN/H2O. The results of 
cyanide anion titration revealed ratiometric changes in both absorption and fluorescence spectra as a result of the 
nucleophilic addition of cyanide anion via Michael addition. The optical studies, FT-IR spectra, NMR, high-resolution 
mass, and DFT calculations confirmed the sensing mechanism. The selectivity of PTZON as a cyanide anion fluo‑
rescent sensor was proved in mixed solvent solutions, and the sensitivity was as low as 0.011 µM, which is far lower 
than the value allowed by the United States Environmental Protection Agency for drinking water (1.9 µM). Also, the 
detection limit of PTZON was assessed to be 3.39 μM by the spectrophotometric method. The binding stoichiometry 
between PTZON and cyanide anion was found to be 1:1 as evidenced by mass spectra. TLC silica-coated plates test 
strips demonstrated the fluorescent detection of cyanide anion.

Keywords:  Visual and fluorescent sensor, Phenothiazine, Cyanide, Nucleophilic addition, Detection limit, 
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Introduction
Cyanide anion is notoriously toxic and deadly affect 
human beings because of its ability to bind to the active 
site of cytochrome oxidase and inhibit cellular respiration 
[1]. Cyanide anion is being involved in several industries 
such as metal plating, textile manufacture, and herbi-
cides, and therefore, the awareness has to be taken not to 
load the environment by the effluents of these industries 
[2, 3]. At the point when cyanide enters the body by oral, 
inward breath, it applies its severe impacts by complexing 
with ferric iron molecules in metalloenzymes, bringing 
about histotoxic anoxia through restraint of cytochrome 
c oxidase [4, 5]. The WHO (world health organization) 

declared that the highest allowable level of cyanide anion 
concentration in the drinking water is 1.9 μM [6]. It has 
been reported that as little as 0.5–3.5 mg of cyanide per 
kilogram of human body weight can lead to death [7, 8]. 
Thus, monitoring and detection of cyanide anions are of 
great interest. Numerous techniques inclusive titrimetric 
[9], voltammetric [10], chromatographic strategies [11], 
electrochemical gadgets [12, 13], colorimetric [14–16] 
and fluorometric [17–25] have been used to estimate cya-
nide anions. Of the above-mentioned techniques, the flu-
orescence technique is considered the best due to its high 
sensitivity, fast response, low cost, and simple detection 
procedure [24–27]. In this interest, the development of 
fluorescent chemosensor for cyanide anions in aqueous 
solutions have been of growing interest [27–33]. The high 
nucleophilicity of cyanide anion inspired organic chem-
ists to design and synthesize several chemosensors that 
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function via nucleophilic addition mechanism [34–39]. 
Donor-π-acceptor (D-π-A) chromophores are known to 
have high tinctorial strength owing to the presence of an 
intramolecular charge transfer (ICT) band. The ICT band 
is easily tuned by varying the strength of the donor or 
acceptor or both. Such an interesting structural feature 
makes these compounds of great interest in various fields 
[40–45]. In this interest, the phenothiazine heterocyclic 
ring is a good electron donor in building chromophores 
of donor-π-acceptor type suitable as a fluorescent sensor, 
nonlinear optical material, and dye-sensitized solar cells 
[27, 46–48].

Here we present a new chemosensor derived from phe-
nothiazine of donor-π-acceptor skeleton amenable for 
structural and optical changes upon cyanide addition 
with fast response. These changes are a consequence of 
breaking the ICT that exists between donor-π-acceptor. 
The selectivity and sensitivity of PTZON were investi-
gated using UV–vis absorption and fluorescence. Addi-
tionally, the sensing mechanism was confirmed by DFT 
calculations, FT-IR, NMR and mass spectroscopies.

Experimental
General
All solvents and reagents were of the highest purity avail-
able, purchased from Sigma-Aldrich Company and used 
as received. 1H and 13 C NMR spectra were recorded in 
CDCl3 and DMSO-d6 solution on a Bruker Avance 600 
and 400  MHz spectrometer. Infrared spectra were per-
formed on PerkinElmer spectra 100 FTIR spectrometer. 
Mass spectroscopy was performed using Agilent GC 
7000 mass spectrometers. UV absorption spectra were 
determined in different solvents on Shimadzu UV–VIS 
Spectrophotometer. Fluorescence spectra were recorded 
on PerkinElmer LS 55 Fluorescence Spectrometer.

Synthesis and characterization
2‑(2‑((10‑hexyl‑10H‑phenothiazin‑3‑yl)
methylene)‑3‑oxo‑2,3‑dihydroinden‑1‑ylidene)malononitrile 
(PTZON)
A mixture of 2 [49] (3 mmol) and 3-dicyanovinylindan-
1-one (6  mmol) in basic ethanol solution (7  ml) was 
stirred at room temperature overnight, filtered off and 
crystallization from cyclohexane to afford 80% yield. M. 
p. 89–90  °C; 1H NMR (600  MHz, DMSO-d6) δ 0.84 (t, 
3H,CH3), 1.25 (m, 4H, CH2), 1.27 (m, 2H, CH2), 1.70 (m, 
2H, CH2), 3.96 (t, 2H, CH2-N), 7.02 (t, 2H, Ar–H), 7.09 
(d, 2H, Ar–H), 7.17 (m, 4H, Ar–H), 7.24 (m, 2H, Ar–H), 
7.60 (s, H, vinylic proton),7.73 (d,1H, Ar–H).13C NMR 
(125 MHz, DMSO-d6) δ 14.19, 22.81, 26.73, 26.98, 27.14, 
31.59, 48.52, 70.52, 114.56, 114.84, 116.15, 124.22, 124.25, 
125.34, 126.66, 127.77, 133.55, 134.80, 135.37, 136.67, 
137.62, 139.91, 146.54, 150.69, 162.66, ESI–MS m/z 

[M]+calc 487.61 found 486., IR ν/cm−1: C–H aliphatic 
2925, 2851, CN 2214, C=O 1739, C=C 1694.

General spectroscopic procedures
Method
A solution of PTZON (2 × 10−5 M) in acetonitrile–
water (90:10) was titrated with increments of aqueous 
KCN (2 × 10−3 M) and were monitored by UV–visible 
and fluorescence methods. Titration experiments were 
carried out in 10-mm quartz cell at room temperature. 
(λex = 500 nm, λem = 588 nm).

Selectivity
The selectivity experiment was done by monitoring the 
fluorescence intensity changes of PTZON (2 × 10−5 M) in 
acetonitrile–water (90:10) at 588 nm (λex = 500 nm) upon 
addition of various anions at the concentrations indicated 
below the figure.

Detection limit
The following equation calculated the limit of detection 
(LOD); LOD = 3S/ρ, where S is the standard deviation 
of blank measurements (10 runs), ρ, is the slope between 
intensity versus sample concentration.

Computational details
Geometries of PTZON and PTZON-CN− were opti-
mized in the vacuum through Density Functional Theory 
(DFT) via the spin-restricted Kohn–Sham formalism and 
the hybrid B3LYP functional [50, 51] using the valence 
double zeta basis set 6-31G(d) [52]. In all cases, frequency 
calculations were performed in order to confirm the 
nature of the stationary points (minima with no imagi-
nary frequency). The UV–Vis parameters (maximum 
wavelength, electronic excitation energies, and oscillator 
strengths) of the studied compounds have been calcu-
lated with the time-dependent density functional theory 
(TD-B3LYP) at the 6-31G(d) level of theory [53, 54] in 
order to evaluate the sensing effect made by CN− ion. 
All the detailed calculations were carried out through the 
facilities provided by the Gaussian09 package [55].

Results and discussion
Synthesis of PTZON
As shown in Scheme 1, PTZON was synthesized by the 
Knoevenagel condensation of 10-hexyl-10H-phenothi-
azine-3-carbaldehyde and 3-dicyanovinylindan-1-one. 
The molecular structure of the PTZON was confirmed by 
FTIR, 1H NMR, 13C NMR, and mass spectra.

UV–vis absorption and fluorescence properties
UV–vis absorption and fluorescence spectra of PTZON 
in acetonitrile–water (90:10) are presented in Fig.  1 to 
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reveal the maximum wavelength of absorption and fluo-
rescence at 564 and 589  nm, respectively. The absorp-
tion band at 564  nm is due the ICT presents in the 
molecule with a molar extinction coefficient about 
2.1 × 104 M−1cm−1.

Response time shown in Fig. 2 for both UV–visible and 
fluorescence indicates that the response is fast, and about 
3 min was sufficient time to reach the plateau of change, 
and therefore, 3  min was considered as the response 
time through the present study. The result of cyanide 
anion titration, as shown in Figs. 3, 4, 5, 6, concluded the 

Scheme 1  Synthesis of PTZON and the sensing mechanism
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Fig. 1  Absorption and fluorescence spectra of PTZON (2 × 10−5 M) 
in acetonitrile–water (90:10)
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Fig. 2  Response time for the detection of cyanide anion in 
acetonitrile–water (90:10)
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value of detection limit (LOD) to be 3.39 and 0.011 μM 
by spectrophotometric and spectrofluorophotometric 
methods, respectively.

Selectivity studies
The selectivity of a chemosensor is an essential property 
for its possible application. Therefore, it was desired to 
investigate the selectivity of PTZON for cyanide anion 
detection in the presence of other anions. For this pur-
pose, the fluorescence of PTZON solution alone, after 
being mixed with different anions of ten equiv., and after 
being mixed with different anions in the presence of 
cyanide anion in 5 + 5 equiv. in CH3CN/H2O solutions 
was followed after 3 min of response time. Interestingly, 
PTZON revealed high selectivity toward CN− than other 
anions, as shown in the figure. Although the other anions 
were used in large excess (10 equiv.) compared with cya-
nide anion (5 equiv.) yet the fluorescence of PTZON was 
slightly changed compared with the huge change made 
by cyanide anion. Also, the test of interference anions 
confirmed that the huge change observed was due to the 
selectively of PTZON toward cyanide anion. Figures 7, 8 
and 9 show the selectivity of PTZON.  

Sensing mechanism
The sensing mechanism was thought to be via Michael 
addition reaction of cyanide anion on β-vinylic carbon 
and to prove this mechanism; the high-resolution mass 
spectra of PTZON before and after cyanide anion addi-
tion was made. As shown in Fig. 10 the mass of PTZON 
(A) m/z: calcd for C31H25N3OS: 487.17 [M]+ that found: 
486.0 [M–H]+ has become after cyanide addition (B): 
531.19 [M+CN+H2O]+, indicating that the addition is 
1:1 stoichiometry of PTZON and cyanide anion.

On the other hand, the FTIR tool was also used to 
confirm the structure after cyanide anion addition on 
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Fig. 3  Absorption spectra of PTZON (2 × 10−5 M) upon the addition 
of cyanide anion at different concentration in acetonitrile–water 
(90:10)
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as a function of cyanide anion concentration in acetonitrile–water 
(90:10)
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Fig. 5  Fluorescence spectra of PTZON (2 × 10−5 M) upon the 
addition of cyanide anion at different concentration in acetonitrile–
water (90:10). The fluorescence intensity was measured at 25 °C 
(λex = 500 nm, λem = 588 nm)
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PTZON. The most striking difference, as shown in Fig. 11 
is the disappearance of a sharp peak at 1706 cm−1 due to 
C=O present in PTZON before cyanide anion addition 
and the appearance of a broad peak at 1600  cm−1 due 
to hydrogen-bonded C=O after cyanide anion addition. 
Additionally, the sharp peak that appears at 2200  cm−1 
due to CN present in PTZON has become shifted to a 
lower frequency to appear at 2214 cm−1 with the appear-
ance of another CN peak at 2179  cm−1 after cyanide 
anion addition.

DFT studies
Computational study of the PTZON before and after 
cyanide anion addition would further confirm the sens-
ing mechanism. For this purpose, geometry optimiza-
tion of both forms, followed by energy computation, 

was made using the computational details mentioned in 
the experimental section.

Geometrical analysis
PTZON structure is originally a flat structure with phe-
nothiazine and indanone moieties. The substitution of 
the two carbon atoms in the para position of the mid-
dle ring in the phenothiazine ring by N and S atoms has 
generated a butterfly-like structure (Fig. 12a). We have 
checked the stability of this structure by frequency cal-
culations, and no negative frequency means the struc-
ture is a low energy structure. We have added cyanide 
at the level of the trigonal carbon atom linking the phe-
nothiazine and the indanone moieties (sp2 hybridiza-
tion). After addition, the structure becomes tetragonal 

0

0.1

0.2

0.3

0.4

0.5

PTZON CN- Br- I- F- Cl- NO3- NO2- SO42- AcO- ClO4-

Ab
so
rb
an

ce

Anions

PTZON + Compe�ng anion PTZON + Compe�ng anion + CN-

Fig. 7  The absorbance changes of PTZON (2 × 10−5 M) in acetonitrile–water (90:10) in the presence of competing anions
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at the same point, and the carbon goes for sp3 hybridi-
zation with a negative charge at the neighboring atom 
(see Fig. 12b).

Vibrational analysis
The two structures showed that C=O vibrate at 
1774 cm−1, for PTZON, which is reduced in the presence 
of CN− to reach 1723  cm−1 (PTZON-CN−). The same 
behavior happened for the cyanide groups actually pre-
sent in the initial structure (PTZON) with a frequency 
2314–2333  cm−1 that goes to 2268–2298  cm−1 with 
one additional peak at 2350 cm−1 for the added CN− in 
PTZON-CN− (Table 1). The frontier molecular orbitals 
(FMOs) are represented mainly by the Highest Occupied 
Molecular Orbitals (HOMOs) and the Lowest Unoccu-
pied Molecular Orbitals (LUMOs). Figure 13 shows the 
FMOs of the unbound and CN-bound PTZON simu-
lated using the B3LYP/6-31G(d) level of theory. 

Charge transfer and UV–visible analysis
The electron density in HOMO is mainly distributed 
on the phenothiazine ring, and the electron density in 
LUMO is distributed on the indanone moiety. This indi-
cates the possible charge transfer from phenothiazine 
(donor) to the indanone moiety (acceptor). PTZON 
shows a strong absorption band at 581  nm, which cor-
responds to the charge transfer band. As expected, all 
the HUMO and LUMO energy levels were raised after 
the formation of PTZON-CN− adduct, and the energy 
bandgap has increased from 2.44 to 3.04 eV (Fig. 14). This 
increment in the energy gap value implies the breakage 
of π-conjugation between phenothiazine and indanone 
moieties. Thus the ICT process was stopped. This is 
consistent with the experimental observation with the 
complete disappearance of ICT band at 588  nm when 
PTZON-CN− adduct is formed. UV–vis spectra origi-
nate from π → π* and n → π* electronic transitions in 
π-conjugated organic compounds [56]. Table  2 lists 

Fig. 9  The color changes upon gradual addition of different equiv. of cyanide anion (A) upon addition of 10 equiv. of different anions (B) and upon 
mixing 10 equiv. of cyanide anion and another competing anion (5 equiv. + 5 equiv. each) (C). A Image of CN− responsive PTZON (from left to 
right: 0–10 equiv.); B in the presence of 10 equiv of different anions (from left, CN−, Br−, I−, F−, Cl−, NO3

−, NO2
−, SO4

2−, AcO−, ClO4
−, blank); c in the 

presence of 5 equiv. of CN− and 5 equiv. of different anions (from left, blank, Br−, I−, F−, Cl−, NO3
−, NO2

−, SO4
2−, AcO−, ClO4

−, CN−)
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Fig. 12  Optimized structures PTZON (a) and PTZON-CN− (b) with B3LYP/6-31G(d) method

Table 1  Vibrational frequency analysis using B3LYP/6-31G(d) method

The frequency between parenthesis are those for C–N bond present in both PTZON and PTZON-CN−

The frequency with a asterisk correspond to the added CN− to the PTZON that is why it does not appear in the former one (PTZON)

Structure PTZON PTZON-CN−

Assignment Frequency (cm−1)

C=O 1774 1723

C≡N (2314–2333) (2268–2298)–2350*

Fig. 13  Contour plots of frontier molecular orbitals (isovalue = 0.02) of compound PTZON (a) at the ground state geometry and PTZON-CN− (b) at 
the first excited singlet state geometry
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the maximum absorption wavelengths of PTZON and 
PTZON-CN− adduct using the B3LYP functionals and 
6-31G(d) basis set. Excellent agreement was obtained 
between the experimental values of the unbound and 
bound PTZON and our theoretical simulation values 
(S19).

Test strip
As a demonstration for possible practical application, a 
test strip from TLC was dipped in PTZON solution (10−3 
M solution in acetonitrile) and air-dried. This process of 
dipping and air-drying was repeated three times to color-
ize the strip. Half of the test strip was immersed in aque-
ous cyanide solution, and the image was taken under 
UV-lamp for the immersed and non-immersed strip to 
show the color difference clearly. The demonstrated data 
prove the suitability of utilizing a simple test strip of 
PTZON for the fast detection of cyanide anion (Fig. 15).

Conclusion
A new PTZON chemosensor based-Michael addition 
mechanism of sensing cyanide anion was synthesized 
and characterized. PTZON was a turn-off fluorescent 

sensor of cyanide anion, and the estimated LOD was 
0.011 µM, which is far lower than the level allowed by 
WHO (1.9  µM). The optical studies, FT-IR spectra, 
NMR, high-resolution mass, and DFT calculations 
confirmed the sensing mechanism. A simple test strip 
demonstrated the suitability of using PTZON with a 
fast response. Hence, this study introduces a new and 
simple way for the development of a highly sensitive 
cyanide sensor viable for application qualitatively by 
naked-eye detection and quantitatively by fluorescence 
technique. Further studies are in progress for devising 
new chemosensors suitable for sensing applications.
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