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Abstract 

The synthesized Fe3O4@l-arginine showed strong catalytic performance in the one-pot synthesis of spiropyranopyra‑
zoles via the reactions of hydrazines, β-keto esters, isatins, and malononitrile or ethyl cyanoacetate under solvent-free 
conditions. The biologically active heterocyclic compounds including spiropyranopyrazole derivatives were efficiently 
synthesized in short reaction times and excellent yields in the presence of Fe3O4/l-arginine at room temperature. The 
highlighted features of the Fe3O4@l-arginine nanocomposite are highly stable, easy to separate, low loading, cost-
effective with easy preparation and reusability of the catalyst. The heterogeneous nanocomposite was fully character‑
ized by SEM, EDX, FT-IR, XRD and TEM analysis.
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Introduction
One-pot multi-component reactions (MCRs), is an inter-
esting synthetic strategy for the synthesis of small-mol-
ecule libraries with various degrees of structural variety 
because various organic moieties are joined in one step 
for carbon–carbon and carbon-heteroatom bond for-
mation [1, 2]. They offer considerable advantages over 
ordinary linear step synthesis by decreasing time, sav-
ing money, energy, and crude materials. Therefore, they 
result in both economical and environmental benefits. 
At the same time, variety can be gained from building 
up libraries by differing each component [3, 4]. In recent 
years, there has been massive development in three- and 
four-component reactions, and great efforts continue 
to be made to expand new MCRs [5]. Spirocyclic com-
pounds are considered as significant building canton 
for the easy availability of a diversity of cyclic products 

by a sequential reaction due to their steric strain atten-
dant with the quaternary carbon [6]. Expansion of new 
procedures for producing spirocyclic compounds is an 
interesting and challenging function in organic synthesis 
[7]. One of the significant multi-component reactions is 
the synthesis of spiropyranopyrazole derivatives which 
exhibit high medicinal attributes and biological activities. 
Spiropyranopyrazoles area class of nitrogen heterocyclic 
compounds with considerable and well- offered biologi-
cal activities that consist of antimicrobial [8], anti-inflam-
matory [9], anticancer [10] and molluscicidal activities 
[11]. Spiropyranopyrazoles are important heterocyclic 
compounds due to their variety and pharmaceutical bio-
logical activities [12]. Concerning the arithmetic of the 
significance of oxindole parts in organic compounds, as 
well as the intrinsic complexity of isatins as heterocy-
clic substrates, it is not amazing that many diverse and 
elegant MCRs have been introduced for the synthesis of 
various heterocyclic and spiroheterocyclic products by 
using isatins as a core component [13]. Therefore, differ-
ent synthetic approaches for the synthesis of spirooxin-
dole-fused heterocycles have been reported and reviewed 
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[14]. Previous studies have described procedures to syn-
thesize of pyrano[2,3-c]pyrazoles using several catalysts 
such as cerium ammonium nitrate [15], l-proline [16], 
piperidine [17] and cobalt NPs [18].

Nevertheless, there are only two reported methods 
in the literature for the synthesis of spiro[indoline-3,4′-
pyrano[2,3-c]pyrazole] derivatives via four-component 
reaction of hydrazines, ethyl acetoacetate, isatins, and 
malononitrile or ethyl cyanoacetate which have been 
done in the presence of piperidine [19], and Et3N [20].

Magnetic organic–inorganic nanocomposites have 
recently been the subject of intense research as magnetic 
catalysts in both industrial and academic settings. These 
magnetic nanoparticle catalysts can be used for investi-
gating the reusing and seclusion problems that occur in 
several homogenous and heterogeneous catalytic reac-
tions. Supported magnetic metal nanoparticles as new 
class of nanocatalysts have received much attention in 
diverse fields. The main feature of these particles is their 
high surface area that leads to their higher catalytic activ-
ity in comparison with traditional heterogeneous acid 
catalysts [21–27].

One of the outstanding procedures for preventing par-
ticle aggregation is coating nanoparticles with various 
targeting factors, taking into account their biocompat-
ibility. Among the chemicals that can be used for achiev-
ing this target, amino acids are appropriate because of 
their crucial role in the body [28]. Amino acids react with 
the nanoparticles’ surface via the carboxyl groups and 
side chains [29]. Amino-functionalized materials dem-
onstrate excellent ability to remove an extensive range 
of heavy metal ions from aqueous solutions because of 
the potent affinity between the nitrogen atom and metal 
cations [30]. Among different nanocomposite, Fe3O4/
amino acid has received great attention in different fields 
because of their unique attributes and potential func-
tions [31]. Some crucial characteristics of these catalysts 
include high catalytic activity, facile separation through 
an external magnet with no need for filtration, eco-
friendliness, and non-toxicity. Recently, functionalized 

magnetic nanoparticles have been utilized as a useful 
catalytic system in numerous chemical processes such 
as synthesis of α-amino nitriles [32], bis(indolyl)methane 
derivatives [33], indazolo[2,1-b]phthalazine-triones and 
pyrazolo[1,2-b]phthalazine-diones [34], 3,4-dihydropy-
rimidin-2(1H)-ones [35], 1,8-dioxo-octa hydro xanthene 
derivatives [36], 2-amino-4H-chromen-4-yl phospho-
nates [37], 1,4-dihydropyridines [38] and pyrrole synthe-
sis [39].

In continuation of our study in the synthesis of hetero-
cyclic compounds using heterogeneous nanostructures 
[40–44], herein we describe a highly efficient and straight-
forward method for the synthesis of spiro[indoline-3,4′-
pyrano[2,3-c]pyrazoles] via multi-component reaction 
of hydrazines, β-keto esters, isatin and malononitrile or 
ethyl cyanoacetate using Fe3O4@l-arginine as a green, 
economic, available and environmentally benign nano-
catalyst under solvent-free conditions (Fig. 1).

Results
Catalyst characterization
In the preliminary experiments Fe3O4@l-arginine nano-
particles were prepared and characterized by SEM, EDX, 
FT-IR and XRD spectroscopy tenchniques.

The earned lattice parameter of the nanoparticle 
Fe3O4@l-arginine using XRD technique coincided to 
the standard parameters of magnetite. The pattern of the 
Fe3O4@l-arginine nanocomposite is depicted in Fig.  2. 
It could be seen that the strong diffraction peaks at 2θ 
of 30.1°, 35.4°, 43.2°, 53.7°, 56.9° and 62.9° belong to the 
peaks of (220), (311), (400), (422), (511) and (440) of the 
Fe3O4, which is similar to the bare Fe3O4 nanoparticles 
[40, 45].

The chemical purity of the sample, as well as their stoi-
chiometry, was tested by EDX study. Figure 3 shows that 
the elemental compositions of Fe3O4@l-arginine are Fe, 
O, C, H, and N.

The FT-IR spectra of the bare Fe3O4 and 
Fe3O4@l-arginine nanocomposite are presented 
in Fig.  4. Bare magnetite nanoparticles are easily 

Fig. 1  Synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using Fe3O4@l-arginine nanocomposite under solvent-free conditions
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distinguished by strong absorption peaks at 583  cm−1 
because of the stretching vibration of the Fe–O band 
(Fig.  4a). Figure  4b shows the FT-IR spectrum of 
Fe3O4@l-arginine nanocomposite. The existence of 
Fe3O4 NPs is determined by the strong adsorption band 
at 595 cm−1 related to the Fe–O vibrations. In the case 

of Fe3O4@l-arginine, the additional adsorption peaks 
at 1386, 1631 and 3154, 3436  cm−1 are due to bend-
ing vibration of N–H, asymmetric and symmetric 
stretching vibrations of COO−, and stretching vibra-
tions of N–H, respectively, which indicate the pres-
ence of bonded arginine on the surface of magnetite 

Fig. 2  The X-ray diffraction pattern of the Fe3O4@l-arginine nanocomposite

Fig. 3  EDX spectrum of the Fe3O4@l-arginine nanocomposite
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nanoparticles. Furthermore, the connections and inter-
actions between COO− groups and metal atoms are 
completely according to pervious literature [45–48].

In order to investigate the morphology and particle size 
of nanoparticles, SEM image of the mesoporous is illus-
trated in Fig. 5. The SEM image of the magnetite nano-
particles modified with arginine indicate spherical shape 
with an average diameter about 10–15 nm.

The morphology and particle size of Fe3O4@l-arginine 
were investigated using transmission electron microscopy 

(TEM) (Fig.  6). The TEM image of this nanocomposite 
shows that the average particle size of Fe3O4@l-arginine 
is around 10–20  nm which was confirmed by the SEM 
image.

Discussions
Initially, to obtain the best reaction conditions, we 
selected reaction of hydrazine, ethyl acetoacetate, 
isatin and malononitrile as model reaction. Different 

Fig. 4  The comparative FT-IR spectra of the Fe3O4 (a) and Fe3O4@l-arginine (b)

Fig. 5  SEM image of the Fe3O4 @l-arginine nanocomposite Fig. 6  TEM image of Fe3O4@l-arginine
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catalysts, solvents and temperatures were examined in 
the four-component preparation of spiro[indoline-3,4′- 
pyrano[2,3-c]pyrazole] (Fig. 7).

Firstly, the model study was performed in various sol-
vents including EtOH, DMF, H2O, CH3CN and PhCH3 
under reflux conditions and also under solvent-free con-
ditions using Fe3O4@l-arginine nanocomposite. The 
summarized results of Table 1 show that the best results 
were obtained under solvent-free conditions. To further 
improve the yield and decrease the reaction time, we 
used the different reaction temperatures under solvent-
free conditions. Further increase in temperature from 
room temperature to 80  °C in the model study did not 
have any remarkable influence on the reaction time and 
production yield (Table 1).

Afterward, the model was performed using several cata-
lysts including ZnO, CuI, MgO, Na2CO3, Et3N, piperidine, 
Fe3O4, CaO, SiO2, and Fe3O4@l-arginine under solvent-
free conditions. As can be seen from Table 2, no product 
was afforded in the absence of a catalyst (Table  2, entry 
1). Also, it is noticed that Fe3O4@l-arginine has a signifi-
cant effect in the yield of the corresponding product and 
reaction time (Table 2, entry 11). Next, various amounts 
of the Fe3O4@l-arginine were used in the model reaction. 
As shown in Table  2, the best experimental operation 

conditions included 8  mol  % of the Fe3O4@l-arginine. 
With increasing the amount of nanocatalyst, no con-
siderable change was observed in the product yield and 
reaction time. In comparison, a decrease in the cata-
lyst amount cause to decrease the product yield. Hence, 
8 mol % Fe3O4@l-arginine was selected as the optimum 
amount in the model reaction (Table 2).

The optimized reaction conditions were tested for 
library constructions with two hydrazines 1{1–2}, β-keto 
esters 2{1–2}, four isatins 3{1–4}, and two acetonitrile 
derivatives 4{1–2} (Figs. 8 and 9).

The corresponding spiro-[indoline-3,4′-pyrano [2,3-c]
pyrazole] derivatives 5 were obtained in good yields 
at room temperature under solvent-free conditions 
(Table 3). The protocol was effective with isatins contain-
ing either electron-withdrawing (halides) or electron-
donating (alkyl) groups.

Fig. 7  The model reaction for the synthesis of spiro[indoline-3,4′- pyrano[2,3-c]pyrazole]

Table 1  The effect of  solvents on  the  model reaction 
in the presence of Fe3O4@l-arginine

Reaction conditions: hydrazine monohydrate, isatin, ethyl acetoacetate, 
malononitrile (molar ratio: 1:1: 1.2:1) using (0.01 g) of Fe3O4@l-arginine
a  Isolated yields

Entry Solvent Time (min) Yield (%)a

1 EtOH (reflux) 70 60

2 DMF (reflux) 120 50

3 H2O (reflux) 130 35

4 CH3CN (reflux) 120 45

5 Toluene (reflux) 240 25

6 Solvent-free (r.t.) 60 96

7 Solvent-free (40 °C) 60 95

8 Solvent-free (80 °C) 60 96

Table 2  The model study catalyzed in  the  presence 
of various catalysts

Reaction conditions: hydrazine monohydrate (1 mmol), isatin (1 mmol), ethyl 
acetoacetate (1 mmol) and malononitrile (1 mmol) under solvent-free at room 
temperature
a  Isolated yields

Entry Catalyst Catalyst 
loading 
(mol  %)

Time (min) Yield(%)a

1 None – 120 0

2 ZnO 15 120 35

3 CuI 15 120 42

4 MgO 15 100 65

5 Na2CO3 15 80 72

6 Et3N 15 60 70

7 Piperidine 15 80 55

8 Fe3O4 15 120 40

9 CaO 15 80 65

10 SiO2 15 120 35

11 Fe3O4@l-arginine 15 60 96

12 Fe3O4@l-arginine 10 60 96

13 Fe3O4@l-arginine 8 60 96

14 Fe3O4@l-arginine 5 90 70
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Fig. 8  Synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives

Fig. 9  Diversity of the reagents
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The model study was run several times using recycled 
magnetic nanocomposite to consider the recoverability 
level and lifetime of the Fe3O4@l-arginine nanocom-
posite. The results showed that the recovered magnetic 
nanocomposite can be utilized for five successive runs 
with a negligible decrease in its activity (Table 4).

A possible mechanism for the synthesis of 
spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using 
Fe3O4@l-arginine MNPs is presented in Fig.  10. This 
mechanism is based on the results of our experiment 
and some literature [19]. According to this mecha-
nism, a condensation of hydrazine 1 with β-keto esters 
2 is offered to give the intermediate A. Next, A Kno-
evenagel condensation of isatin 3 with malononitrile or 
ethyl cyanoacetate 4 is presented to provide the inter-
mediate C. Next, the Michael addition of the inter-
mediate A to C catalyzed by Fe3O4@l-arginine which 
provided the intermediate D. Then, the intermediate 
F was prepared via the intramolecular cyclization of 
intermediate D. Eventually, the intermediate F is tau-
tomerized to product 5 (Fig. 10).

Conclusions
In conclusion, we have demonstrated that 
Fe3O4@l-arginine nanocomposite is an effective cata-
lyst for the MCRs of hydrazine, β-keto esters, isatins, 
and malononitrile or ethyl cyanoacetate under solvent-
free conditions at room temperature. The heterocyclic 
compounds including spiro[indoline-3,4′-pyrano[2,3-c]
pyrazole] derivatives were obtained in high yields. The 
catalyst can be recovered and reused at least up to five 
runs for the synthesis of corresponding product. The 
one-pot nature and the use of heterogeneous solid Brøn-
sted basic catalyst as an eco-friendly structure make it 
an interesting alternative to multi-step approaches.

Experimental section
Chemicals and apparatus
Chemicals were purchased from the Sigma-Aldrich and 
Merck in high purity. All of the materials were of com-
mercial reagent grade and were used without further 
purification. The synthesis and characterization of the 
studied compounds were previously reported [49]. Melt-
ing points of products were determined by Electro ther-
mal 9200. 1H NMR and 13C NMR spectra were obtained 
on Bruker 400  MHz spectrometer with DMSO-d6 as 
solvent using TMS as an internal standard. FT-IR spec-
trum was recorded on Magna-IR, spectrometer 550. The 
elemental analyses (C, H, N) were obtained from a Carlo 
ERBA Model EA 1108 analyzer. Powder X-ray diffrac-
tion (XRD) was carried out on a Philips diffractometer of 
X’pert Company with mono chromatized Cu Kα radia-
tion (λ = 1.5406 Å). Microscopic morphology of products 
was visualized by SEM (LEO 1455VP). The composi-
tional analysis was done by energy dispersive analysis of 
X-ray (EDX, Kevex, Delta Class I). Transmission elec-
tron microscopy (TEM) was performed with a Jeol JEM-
2100UHR, operated at 200 kV.

Preparation of Fe3O4@l‑arginine nanocomposite
Fe3O4@l-arginine was prepared according to previous 
report in the literature with some modifications [50]. 
In a typical experiment, FeCl3·6H2O (13  g, 0.048  mol), 
FeCl2·4H2O (4.8  g, 0.024  mol) and arginine (16.7  g, 
0.096  mol) were dissolved in 100  mL deionized water. 
Then, the solution pH was adjusted to 11 with NaOH 
solution (2 M) to form a black suspension. Next, the reac-
tion mixture was reflux under Ar atmosphere for 12  h. 
Finally, the prepared nanocomposite was separated from 
the reaction media by an external magnet and washed 
several times with deionized water and dried in an oven 
overnight to yield Fe3O4@l-arginine (Fig. 11).

Table 3  Synthesis of  spiro[indoline-3,4′- pyrano[2,3-c]
pyrazole] derivatives using Fe3O4@l-arginine under 
solvent-free conditions

a  Isolated yield
b  New Products

Entry Product Yield (%)a M.p.  °C Lit. M.p.  °C

1 5{1,1,1,1} 96 286–288 285–286 [18]

2 5{1,1,2,1} 91 297–298 297–298 [18]

3 5{1,1,3,1} 95 283–285 282–283 [18]

4 5{2,1,1,1} 90 225–227 227–229 [18]

5 5{1,2,3,1} 91 257–259 256–257 [18]

6 5{1,2,1,1} 90 282–284 280–281 [18]

7 5{1,2,1,2} 87 240–242 242–243 [18]

8 5{1,2,3,2} 89 256–258 257–259 [18]

9 5{1,2,2,2} 85 266–268 265–267 [18]

10 5{1,1,4,1} 94 278–280 279–281 [18]

11 5{1,2,4,1} 86 246–248 247–249 [18]

12 5{1,2,4,2} 87 262–264 260–263 [18]

13 5{2,1,4,1} 89 220–222 222–224 [18]

14 5{2,1,3,2} 92 212–214 –b

15 5{2,1,2,2} 90 279–281 –b

16 5{2,1,4,2} 97 198–200 –b

Table 4  The catalyst reusability for  the  synthesis of  spiro 
[indoline-3,4′-pyrano[2,3-c]pyrazole]

a  Yields refer to the isolated pure product

Cycle First Second Third Fourth Fifth

Yield (%)a 96 94 93 89 88
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General procedure for the synthesis 
of spiro[indoline‑3,4′‑pyrano[2,3‑c]pyrazole]
Fe3O4@l-arginine (8  mol  %) was added to a solution 
of hydrazine (1  mmol), β-keto esters (1  mmol), isatin 
derivatives (1  mmol), and malononitrile/ethyl cyanoac-
etate (0.06 g, 1 mmol). The reaction mixture was stirred 
under solvent-free conditions at room temperature for 
the appropriate times. After completion of the reaction 
[as determined by thin layer chromatography (TLC)], the 
reaction mixture was dissolved in dichloromethane and 
the catalyst was separated magnetically. The solvent was 
evaporated and the residue was recrystallized from etha-
nol to afford the pure product.

All of the products were characterized and identified 
with m.p., 1H NMR, 13C NMR and FT-IR spectroscopy 

techniques. Spectral data of the new products are given 
below.

Spectral data of new compounds
Ethyl‑6′‑amino‑5‑bromo‑3′‑methyl‑2‑oxo‑1′‑phenyl‑1′H‑
spiro[indoline‑3,4′‑pyrano[2,3‑c]pyrazole]‑5′‑carboxylate 
(5{2,1,3,2})
White solid, m.p. 212–214  °C. IR (KBr) (νmax/cm−1): 
3396 (NH2), 3143 (NH), 1714 (CO); 1H NMR (400 MHz, 
DMSO-d6) δ: 0.92 (t, 3H, J = 7.6, CH3CH2OCO), 1.23 
(s, 3H, CH3), 3.70 (q, 2H, J = 7.8, CH3CH2OCO), 6.93 
(d, 1H, J = 7.6, ArH(isatin)), 7.34 (d, 1H, J = 7.4, ArH 
(isatin)), 7.51–7.58 (m, 3H, ArH(PhNHNH2)), 7.61 (s, 2H, 
NH2), 7.74 (s, 1H, ArH(isatin)), 7.78 (d, 2H, J = 7.8, ArH 
(PhNHNH2)), 10.90 (s, 1H, NH); 13C NMR (100  MHz, 

Fig. 10  The proposed mechanism for the synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] catalyzed by Fe3O4@l-arginine nanocomposite
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DMSO-d6) δ: 11.2, 14.8, 26.8, 57.2, 91.2, 113.1, 119.9, 
124.5, 126.6, 129.1, 129.7, 131.2, 131.9, 135.2, 139.6, 
148.7, 152.1, 161.8, 162.9, 171.2, 177.5; Anal. Calcd for 
C23H19BrN4O4 (Mr = 495.33) (%): C 55.77, H 3.87, N 
11.31. Found (%): C 55.87, H 3.79, N 11.36.

Ethyl‑6′‑amino‑5‑chloro‑3′‑methyl‑2‑oxo‑1′‑phenyl‑1′H‑
spiro[indoline‑3,4′‑pyrano[2,3‑c]pyrazole]‑5′‑carboxylate 
(5{2,1,2,2})
White solid, m.p. 279–281  °C. IR (KBr) (νmax/cm−1): 
3377 (NH2), 3185(NH), 1712 (CO); 1H NMR (400 MHz, 
DMSO-d6) δ: 1.09 (t, 3H, J = 7.8, CH3CH2OCO), 1.24 
(s, 3H, CH3), 3.72 (q, 2H, J = 7.6, CH3CH2OCO), 6.82 
(d, 1H, J = 7.4, ArH(isatin)), 7.21 (d, J = 7.6, ArH(isatin)), 
7.48–7.53 (m, 3H, J = 7.7 ArH(PhNHNH2)), 7.68 (s, 2H, 
NH2), 7.72 (s, 1H, ArH(isatin)), 7.81 (d, 2H, J = 7.8 ArH 
(PhNHNH2)), 10.93 (s, 1H, NH); 13C NMR (100  MHz, 
DMSO-d6) δ: 10.8, 15.1, 23.9, 55.2, 93.2, 113.1, 120.1, 
123.5, 125.1, 128.7, 129.9, 132.1, 133.1, 135.1, 140.2, 
147.1, 151.4, 162.4, 162.9, 174.1, 178.1; Anal. Calcd for 
C23H19ClN4O4 (Mr = 450.88) (%): C 61.27, H 4.25, N 
12.43. Found (%): C 61.20, H 4.33, N 12.39.

Ethyl‑6′‑amino‑3′,5‑dimethyl‑2‑oxo‑1′‑phenyl‑1′H‑spiro[ind
oline‑3,4′‑pyrano[2,3‑c]pyrazole]‑5′‑carboxylate (5{2,1,4,2})
White solid, m.p 198–200  °C. IR (KBr) (νmax/cm−1): 
3370 (NH2), 3181 (NH), 1709 (CO); 1H NMR (400 MHz, 
DMSO-d6) δ: 1.13 (t, 3H, J = 7.6, CH3CH2OCO), 1.22 
(s, 3H, CH3), 2.25 (s, 3H, CH3), 3.78 (q, 2H, J = 7.7, 
CH3CH2OCO), 7.08 (d, 1H, 2H, J = 7.8, ArH (isatin)), 
7.16 (d, 1H, 2H, J = 7.6, ArH (isatin)), 7.34–7.41 (m, 3H, 
m, p, ArH (PhNHNH2)), 7.45 (s, 1H, ArH (isatin)), 7.66 

(s, 2H, NH2), 7.68 (d, 2H, 2H, J = 7.6, ArH (PhNHNH2)), 
10.78 (s, 1H, NH); 13C NMR (100  MHz, DMSO-d6) δ: 
11.6, 14.8, 21.4, 25.7, 56.1, 92.7, 115.4, 117.9, 121.2, 123.4, 
125.8, 126.9, 128.6, 129.1, 129.9, 137.1, 147.1, 148.3, 
159.4, 162.6, 173.2, 176.8; Anal. Calcd for C24H22N4O4 
(Mr = 430.46) (%): C 66.97, H 5.15, N 13.02. Found (%): C 
66.91, H 5.19, N 12.97.

Abbreviations
MCR: multi-component reactions; EtOH: ethanol; SEM: scanning electron 
microscope; TEM: transmission electron microscopy; FT-IR: Fourier transform 
infrared spectroscopy; XRD: powder X-ray diffraction; EDX: energy disper‑
sive analysis of X-ray; NMR: Nuclear Magnetic Resonance; TLC: thin layer 
chromatography.
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