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Peanut shell as a green biomolecule support 
for anchoring Cu2O: a biocatalyst for green 
synthesis of 1,2,3‑triazoles under ultrasonic 
irradiation
Zahra Dolatkhah1, Abolfazl Mohammadkhani2, Shahrzad Javanshir1* and Ayoob Bazgir2*

Abstract 

Cu2O supported on peanut shell (Cu2O@PS) was prepared by the reaction of copper acetate and peanut shell powder 
as a naturally available biopolymer support. The prepared catalyst was used as an efficient and reusable heterogene-
ous catalyst in the click reaction of benzyl halide or phenacyl bromides, acetylenes and sodium azide for the synthesis 
of potentially biologically active 1,2,3-triazoles under ultrasonic irradiation in EtOH-H2O as green solvent.
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Introduction
Green chemistry is one of the most important research 
activities for chemists, both in the laboratory and indus-
try. Therefore, many efficient, eco-friendly and clean syn-
thetic strategies have been developed for the synthesis 
of biologically and industrially active molecules [1–5]. 
Meanwhile, metal-catalyzed multi-component reaction is 
one of the significant areas of green chemistry research. 
Transition metal-catalyzed click synthesis of triazoles is 
a powerful method for the synthesis of diverse complex 
molecules. Triazoles derivatives have developing applica-
tion in medicinal chemistry and biological activities [6–
10]. They also have numerous industrial applications as 
florescent whiteners, dyestuffs, photo-stabilizers of poly-
mers, and optical brightening agents [11, 12]. Forasmuch 
as copper-catalyzed click reaction is one of the best meth-
ods for the synthesis of 1,2,3-triazoles [13, 14], numerous 
homogeneous copper catalysts have been reported [15, 
16]. Most of these successful methods suffer from non-
reusability of the catalysts, and the usage of toxic and/or 
expensive ligands [17–20]. To overcome these problems, 

many researchers have focused their efforts on copper-
based heterogeneous systems [17, 21, 22].

Natural biopolymers are the attractive subjects for 
the design of bio-supported catalysts due to their eco-
friendly, low cost and non-toxic properties [23–30]. 
Peanut shell as an agro-industrial waste containing con-
siderable fraction of the biodegradable lignocellulosic 
waste [31] is discarded in the environment or burned 
about 13.7 million tons per year [32, 33]. This promising 
natural and renewable raw material consists of a com-
bination of lignin, cellulose, proteins and hemicellulose 
biopolymers (Fig. 1) [34, 35]. There are many polar func-
tional groups such as hydroxyl, methoxy and carboxyl 
groups on the surface of peanut shell. Therefore, pea-
nut shell is an attractive candidate as a natural, renew-
able, non-toxic and very low, or no cost environmentally 
friendly support for metal nanoparticles.

These days, the application of ultrasonic technology 
has reported for organic compounds synthesis, emulsifi-
cation, extraction, nanoparticle formation, and degassing 
[36–39]. Sonication method has important advantages 
such as high efficiency, selectivity and yield, economic 
performance, short reaction time, and low environmental 
pollution [20, 40–42].

Herein, in continuation of our research toward the 
development of nano bio-based catalytic systems 
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[43–45], the synthesis of copper oxide supported on 
peanut shell (Cu2O@PS) as a heterogeneous nano-bio-
catalyst and its catalytic activity for the click synthesis of 
triazoles in EtOH-H2O as green solvent under ultrasonic 
irradiation is reported.

Results and discussion
Synthesis and characterizations of the catalyst
The preparation of the Cu2O@PS nanocomposite is 
described schematically in Scheme  1. The Cu2O@PS 
nanocomposite obtained by the reaction of peanut shell 
powder with copper acetate in water at 70 °C for 5 h. The 
catalyst was centrifuged and washed with water, ethanol, 
and acetone then dried in the oven at 70 °C.

The Cu2O@PS nanocomposite was characterized 
by FT-IR, thermogravimetric analysis (TGA), atomic 
absorption spectroscopy (AAS), scanning electron 
microscopy (SEM), energy dispersive X-ray spectroscopy 
(EDS) analysis and X-ray diffraction (XRD) measure-
ments. The FT-IR spectrum of peanut shell and Cu2O@
PS are shown in Fig.  2. The band around 3400  cm−1 
was ascribed to the mixed stretching vibration absorp-
tion band of amino and hydroxyl groups. The bands at 
2950 cm−1 were assigned to aliphatic C–H, mainly CH2 
stretching. The small band obtained at 1738  cm−1 was 
assigned to the carbonyl groups stretching vibration [29, 
46]. As can be seen in the FT-IR spectrum of Cu2O@PS, 
the presence of characteristic bands of PS in the 1738 and 
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Fig. 1  Composition of peanut shell (This figure was designed by authors and it has been taken by authors)

Scheme 1  Schematic diagram of catalyst preparation (The source of this diagram is taken from “http://nolin​steel​.com/peanu​ts/” and the used 
softwares are Chemdraw and Paint. The Scheme was designed by authors)

http://nolinsteel.com/peanuts/


Page 3 of 10Dolatkhah et al. BMC Chemistry           (2019) 13:97 

3500 cm−1 regions clearly confirms the existence of PS in 
the final catalyst. Also, the band shift from 1738 cm−1 (in 
PS) to 1727 cm−1 (in Cu2O@PS) reveals the coordination 
of copper to peanut shell [46].

Thermogravimetric analysis was further used to study 
the composition of the catalyst (Fig. 3). The TGA curve 
of the catalyst shows a weight loss at ~ 100 °C that is asso-
ciated with the release of physically adsorbed water. The 
weight loss above ~ 230 °C (and continued to ~ 600 °C) is 
related to the decomposition of PS and organic groups on 
the Cu2O@PS. Thermal analysis showed that the catalyst 
has good thermal stability up to 230 °C. Also, the copper 
content on the Cu2O@PS nanocomposite was measured 
0.28 mmol g−1 by atomic absorption spectroscopy.

Morphologies of fresh peanut shell and the Cu2O@
PS nanocomposite were determined by SEM. The fresh 
PS is basically smooth (Fig.  4a). The SEM images of 

Cu2O@PS show the formation of spherical particles 
in size around 30–40 nm on the surface of the peanut 
shell (Fig. 4b).

In addition, comparing  the EDS analysis of Ps 
and  Cu2O@PS clearly shows the presence of Cu, C, O, 
and N elements in this composite and demonstrate that 
copper was anchored to the PS (Fig.  5a and b). In the 
XRD pattern of the Cu2O@PS nanocomposite, the dif-
fractions at 2θ = 36.4°, 42.5°, 61.4°, and 73.4° can be 
assigned to the (111), (200), (220) and (311) lattice planes 
of Cu2O, in accordance with Cu2O standard data (JCPDS 
card NO. 05–0667) (Fig. 6). 

Catalytic studies
The catalytic activity of Cu2O@PS nanocomposite was 
investigated in the click synthesis of 1,2,3-triazoles. The 
reaction of phenyl acetylene 1, 4-nitrobenzyl bromide 2 

Fig. 2  FT-IR spectra of peanut Shell (A), and Cu2O@PS (B)

Fig. 3  Thermal gravimetric analysis of Cu2O@PS
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and sodium azide (NaN3) was chosen as a model reac-
tion under different conditions. As the first experiment, 
K2CO3 was used as a base in the presence of 1  mol% 
of catalyst, and this reaction was tested by employing 
various solvents such as toluene, MeCN, MeOH, EtOH, 
H2O, EtOH-H2O, and MeOH-H2O at 50 °C under ultra-
sonic irradiation for 45  min (Table  1, entries 1–7). A 
superior yield was obtained when EtOH-H2O (1:1) was 
used as the solvent (Table  1, entry 6). Then, different 

base were screened in the model reaction. A moderate 
yields were obtained with Cs2CO3 and KOt-Bu (entries 
8 and 9) and the reaction proceed in fairly good yields 
in the presence of NaOH and KOH (entries 10 and 11). 
Also, some experiments were carried out at different 
temperatures, and finally 50  °C was chose as optimum 
reaction temperature (entries 6, 12–14). Effect of the 
catalyst loading was also investigated under the opti-
mum reaction conditions. It was found that, when the 
amount of catalyst increased from 0.5 and 1 to 2 mol%, 

Fig. 4  FESEM images of PS (a), and Cu2O@PS (b)

Fig. 5  Energy dispersive X-ray spectroscopy (EDS) of PS (a), and 
Cu2O@PS (b)

Fig. 6  XRD pattern of PS and Cu2O@PS nanocomposite (a), Cu2O (b)
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the yield of product changed from 65 and 91% to 92%, 
respectively. So, 1 mol% of catalyst is sufficient to pro-
mote this reaction (entries 6, 15–16). When this reac-
tion was carried out without catalyst, the yield of the 
product was trace (entry 17). To delineate the role of 
ultrasound, the reaction was investigated without ultra-
sonic irradiation at 50  °C in various solvents. In all 
reactions, the result obtained by the use of ultrasound 
irradiation leads to a higher yield (entries 18–20). 
Finally, when this reaction was carried out with PS or 
Cu2O as catalyst, the yield of the product was trace and 
78% yield, respectively (entries 21 and 22).

To explore the scope of the click reaction various ben-
zyl bromides and aryl acetylenes, containing both elec-
tron donating and electron withdrawing functionalities 

were screened in optimized reaction conditions and high 
isolated yields were obtained (Table 2). Under the same 
reaction conditions benzyl chlorides provided target 
products in good yields (Table 2, entries 12–14).

Observation of great potential activity of Cu2O@PS 
nano-biocatalyst in the Click reaction of benzyl bromides 
and aryl acetylenes encouraged us to investigate the Click 
reaction of aryl acetylenes 1 with phenacyl bromides 4 
and sodium azide in the same reaction conditions. As can 
be seen from Table 3, the Click reaction of aryl acetylenes 
and phenacyl bromides contain electron withdrawing or 
donation groups provide 1H-1, 2, 3-triazol-ethan-1-one 
derivatives 5 in good isolated yields in the presence of 
1 mol% of catalyst in EtOH-H2O under ultrasound irra-
diation at 50 °C.

Table 1  Screening of the reaction conditions 

4-Nitro benzyl bromide (1 mmol), phenylacetylene (1.2 mmol), K2CO3 (2 mmol), NaN3 (1.2 mmol), 45 min
a  Isolated yield
b  Cat. = PS (40 mg)
c  Cat. = Cu2O (1 mol%)

Entry Solvent/T (°C) Base Cat. (mol%) Method Yield (%)a

1 Toluene/50 K2CO3 1 Ultrasound Trace

2 MeCN/50 K2CO3 1 Ultrasound 65

3 MeOH/50 K2CO3 1 Ultrasound 77

4 EtOH/50 K2CO3 1 Ultrasound 72

5 H2O/50 K2CO3 1 Ultrasound 73

6 EtOH-H2O/50 K2CO3 1 Ultrasound 91

7 MeOH-H2O/50 K2CO3 1 Ultrasound 74

8 EtOH-H2O/50 Cs2CO3 1 Ultrasound 53

9 EtOH-H2O/50 KOt-Bu 1 Ultrasound 49

10 EtOH-H2O/50 NaOH 1 Ultrasound 69

11 EtOH-H2O/50 KOH 1 Ultrasound 71

12 EtOH-H2O/70 K2CO3 1 Ultrasound 86

13 EtOH-H2O/40 K2CO3 1 Ultrasound 71

14 EtOH-H2O/room  
temperature

K2CO3 1 Ultrasound 57

15 EtOH-H2O/50 K2CO3 0.5 Ultrasound 65

16 EtOH-H2O/50 K2CO3 2 Ultrasound 92

17 EtOH-H2O/50 K2CO3 – Ultrasound Trace

18 EtOH-H2O/50 K2CO3 1 High-speed stirring 56

19 MeOH-H2O/50 K2CO3 1 High-speed stirring 44

20 H2O/50 K2CO3 1 High-speed stirring 48

21b EtOH-H2O/50 K2CO3 40 mg Ultrasound Trace

22c EtOH-H2O/50 K2CO3 1 Ultrasound 78
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Table 2  Click synthesis of 1H-1,2,3-triazoles 

Reaction conditions: benzyl halide (1 mmol), arylacetylene (1.2 mmol), K2CO3 (2 mmol), NaN3 (1.2 mmol), 45 min
a  Isolated yield

Entry R1 R2 X Product Yield (%)a M.P. (°C) Refs.

1 ph ph Br 3a 90 131–133 [47]

2 ph 4-NO2-ph Br 3b 91 140–141 [48]

3 4-OMe-ph ph Br 3c 86 142–143 [49]

4 4-OMe-ph 4-Me-ph Br 3d 92 149–151 [50]

5 ph 4-Me-ph Br 3e 89 106–107 [51]

6 ph 4-Br-ph Br 3f 93 150–152 [48]

7 4-Me-ph 4-Br-ph Br 3g 92 202–203 [48]

8 4-OMe-ph 4-NO2-ph Br 3h 97 167–168 [47]

9 4-CF3-ph 4-NO2-ph Br 3i 88 215–217 [52]

10 4-Me-ph ph Br 3j 90 153–154 [53]

11 4-Me-ph 4-NO2-ph Br 3k 86 159–160 [54]

12 ph 4-OMe-ph Cl 3l 88 136–138 [49]

13 4-Me-ph 4-OMe-ph Cl 3m 89 133–136 [51]

14 4-OMe-ph ph Cl 3c 88 142–143 [49]

15 ph n-C3H7 Br 3n 64 41–42 [55]

16 ph n-C4H9 Br 3o 65 42 [56]

17 CO2Me ph Br 3p 63 104–105 [57]

18 CO2Me 4-NO2-ph Br 3q 61 189–190 [57]

Table 3  Synthesis of 1H-1, 2, 3-triazol-ethan-1-one derivatives by Click reaction 

Phenacyl bromides (1 mmol), arylacetylene (1.2 mmol), K2CO3 (2 mmol), NaN3 (1.2 mmol), Cu2O@PS (1 mol%), 90 min
a  Isolated yield

Entry R1 R2 Product Yield (%)a M.P. (°C) Refs.

1 H H 5a 93 166–167 [58]

2 OMe H 5b 89 190–191 [58]

3 H Br 5c 86 145–146 [59]

4 H NO2 5d 77 180–181 [60]

5 H Cl 5e 89 150–152 [59]

6 H OMe 5f 88 142–143 [59]

7 CF3 H 5g 81 221–223 [58]

8 Me H 5h 85 165–167 [58]
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Then, we examined the heterogeneous nature of the 
catalyst. Firstly, to assess the copper leaching of the cat-
alyst, we performed hot filtration test for the click reac-
tion of 4-nitro benzyl bromide 2, phenylacetylene 1 and 
NaN3. The reaction was stopped after ~ 50% of the reac-
tion time. Hot filtrate was transferred to another flask 
containing base and H2O-EtOH at 50 °C. Upon further 
heating of the catalyst-free solution for 1.5 h, no consid-
erable progress was observed by GC analysis (Fig. 7a). 
Moreover, atomic absorption spectroscopy (AAS) of 
the same reaction solution at the midpoint of comple-
tion indicated that no significant quantities of copper 
were lost to the reaction medium during the process. 
Furthermore, the reusability of catalyst was investi-
gated in the reaction of 4-nitro benzyl bromide, phe-
nylacetylene, and NaN3. The catalyst could be reused 
successively five times without significant loss of activ-
ity (Fig. 7b). Moreover, atomic absorption spectroscopy 
revealed that the loading of copper was 0.27 mmol g−1 
after five runs and there was no significant change in 
the copper content of the recovered catalyst. All results 
confirm the reaction occurs mainly via a heterogeneous 
pathway. The SEM micrographs of reused catalyst after 
five times reveal that the reused catalyst has a similar 
texture with fresh catalyst (see Additional file 1).

Based on literature reports [61], a possible mecha-
nism for click catalytic synthesis of triazole is proposed 
in Scheme 2. Synthesis of triazole proceeds through the 
formation of copper acetylide (A). The coordination 

of organic azide (B) (formed in  situ by the reaction of 
organic bromide with NaN3) to the copper acetylide, 
followed by the Huisgen 1, 3-dipolar cycloaddition 
reaction of (A) and (B) give the complex (C). Subse-
quently, the desired triazole was obtained by copper-
acidic hydrogen exchange followed by regeneration of 
the catalyst for the next use in the catalytic cycle. It is 
notable; functional groups such as hydroxyl, amine, 
methoxy and carboxyl groups on the surface of peanut 
shell have good potential to coordinate with copper 
nanoparticles.

Reports in Table 4, compares the efficiency of Cu2O@
PS nanocomposite with some other heterogeneous cop-
per catalysts in literature in the Click reaction of pheny-
lacetylene, phenacyl bromides and NaN3. Table 4 shows 
that although all of methods have good efficiency, the 
present catalyst affords some advantages such as bio-
degradability using green nano bio-support for immo-
bilization of copper, reasonable reaction time and low 
temperature which are all energy and time-consuming 
processes.

Experimental
Material and measurements
All chemicals were purchased from Merck, Aldrich or 
Fluka were used without further purification. IR spectra 
were recorded on a Shimadzu FT-IR-470 FT-IR spectro-
photometer. EDS characterization was performed using 

Fig. 7  Hot filtration test observed by GC analysis (a), the reusability of 
the catalyst (b)

Scheme 2  The proposed mechanism of the reaction. The Scheme 
was designed by authors (The sources of Graphical abstract are 
internet “https​://pngtr​ee.com/freep​ng/vecto​r-arrow​-earth​_52072​
3.html”, “http://aisph​ysica​lscie​nce.pbwor​ks.com/w/page/16230​
01/29%20Cu%20-%20Cop​per” and “https​://pngtr​ee.com/so/peanu​
t-shell​s” and the used softwares are Chemdraw and Paint. The 
Scheme was designed by authors)

https://pngtree.com/freepng/vector-arrow-earth_520723.html
https://pngtree.com/freepng/vector-arrow-earth_520723.html
http://aisphysicalscience.pbworks.com/w/page/1623001/29%20Cu%20-%20Copper
http://aisphysicalscience.pbworks.com/w/page/1623001/29%20Cu%20-%20Copper
https://pngtree.com/so/peanut-shells
https://pngtree.com/so/peanut-shells
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an electron microscopy Oxford Instrument Company, 
Germany. Field emission scanning electron microscopy 
(FESEM) was performed using a ZEISS instrument, 
SIGMA VP model, Germany. The NMR spectra were 
recorded on a Brukerdrx-300Avance spectrometer. The 
concentration of Cu was estimated using a Shimadzu 
AA-680 flame atomic absorption spectrophotometer. 
Diffraction data were collected on a STOE STADI P with 
scintillation detector, secondary monochromator and 
Cu-Ka1 radiation (λ = 1. 5406  Å). Gas chromatography 
was performed on a Trace GC ultra from the Thermo 
Company equipped with FID detector and Rtx®-1 capil-
lary column. Melting points of products were measured 
with an Electrothermal 9100 apparatus and are uncor-
rected. Thermogravimetric analysis (TGA) was done by 
D-32609 Hullhorst. The peanut shell was obtained from 
Astaneh Ashrafiyeh Township located in 37° 16′ latitude 
and 49° 56′ longitude in north of Iran.

Preparation of Cu2O@Peanut shell
Crushed peanut shells were ground in a ball mill to a fine 
powder. A mixture of peanut shell powder (1 g) and cop-
per acetate (0.1 g) was stirred in de-ionized water (30 ml) 
at 70  °C for 5  h. The catalyst was then centrifuged and 
washed with water, ethanol, and acetone and dried in the 
oven at 70 °C to obtain Cu2O@Peanut shell.

General procedure for Click reactions
A mixture of Cu2O@PS (1  mol% of Cu, 40  mg), K2CO3 
(2  mmol), aryl bromide (1.0  mmol), phenyl acetylene 
(1.2  mmol), and NaN3 (1.2  mmol) in H2O-EtOH (3  ml, 
1:1) was sonicated at 50  °C for an appropriate time. 
After completion of the reaction monitored by TLC 
(EtOAc:n-hexane (1:3), the catalyst was separated and 
the filtrate was extracted with Chloroform (2 × 2  ml). 
The organic solvents were removed under vacuum and 
the pure product was obtained by recrystallization with 
CHCl3:n-hexane (1:3). All of the Click products are 
known compound and were reported previously.

Conclusions
In summary, Cu2O@Peanut shell nano-biocomposite was 
synthesized and used as an effective heterogeneous cata-
lyst in a one-pot Huisgen 1,3-dipolar cycloaddition reac-
tion under ultrasonic irradiation in EtOH-H2O as a green 
solvent for the synthesis of 1,2,3-triazole derivatives. The 
reusability of the catalyst is high and the catalyst can be 
reused five times without a significant decrease in its cat-
alytic activity. Notable features of this catalytic reaction 
are bio-degradable and bio-renewable polymeric sup-
port, compatibility with a wide range of substrate, mild 
reaction conditions, high atom economy, good-yields of 
the products, ligand-free, leaching-free and eco-friendli-
ness characteristics of the catalyst.

Additional file

Additional file 1. Supporting information including the FESEM images 
of PS, Cu2O@PS, and reused Cu2O@PS after 5 times, characterization of 
triazole products, and HNMR spectrum of products.
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Table 4  Comparison of efficiency of various heterogeneous catalysts for triazole synthesis

Catalyst Cu (mmol g−1) Catalyst (mol%) Time (h) T (°C) Solvent Yield (%) Refs.

GO/Pim/Cu 2.1 1 1.5 50 H2O 90 [62]

Cell-CuI NPs 0.37 3.7 2 70 H2O 96 [51]

P[imCl/IL][Cu] 1.3 0.1 3.5 55 H2O/tBuOH 98 [63]

Mag-Cu 0.46 2 6 55 H2O/tBuOH 93 [64]

PANI@CuI-NPs 0.94 5 0.5 100 H2O 85 [65]

Fe3O4@SiO2-ABT/Cu(OAc)2 3 0.02 2 70 PEG/H2O 85 [66]

Cu2O-Ag NPs 2.8 3.5 2 25 H2O-EtOH 92 [67]

Cu2O@PS 0.28 1 1.5 50 H2O-EtOH 93 This work

https://doi.org/10.1186/s13065-019-0612-9
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