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Synthesis of (1E,3E)‑1,4‑diarylbuta‑1,3‑dienes 
promoted by μ‑OMs palladium–dimer complex
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Abstract 

A convenient approach for (1E,3E)-1,4-diarylbuta-1,3-dienes via intermolecular Heck reaction of olefins and 
β-bromostyrenes promoted by μ-OMs palladium–dimer complex has been successfully developed. The products 
1,4-conjugated dienes could be obtained with good yield (up to 82%). The catalyst system has excellent chemical 
selectivity and group tolerance which could supply an alternative way to gain the valuable biaryl linkage building 
blocks. Furthermore, fluorescence studies of dienes showed that some of them may have potential applications as 
luminescent clusters.
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Introduction
1,4-Diarylbuta-1,3-dienes are found not only as the 
important building blocks in polymers, but also in variety 
of synthetic/naturally occurring biologically active mol-
ecules, which possess a wide range of bioactivities [1–4]. 
Several methods have been developed for the synthesis 
of 1,3-dienes via cross-coupling reaction catalyzed by 
transition metal catalysts, such as Ni [5, 6], Cu [7, 8] and 
Pd [9, 10] (Fig. 1, equation 1). Some alternative methods 
were also reported. For example, 1,3-dienes could also be 
achieved via the Suzuki–Miyaura reaction between vinyl 
boric acid and vinyl bromides [11, 12] (Fig. 1, equation 2). 
The coupling of (1E,3E)-1,4-diiodobuta-1,3-diene with 
arylboronic reagents was reported for the synthesis of 
symmetrical 1,4-diarylbuta-1,3-dienes [13] (Fig. 1, equa-
tion  3). Controlled hydrogenation of the triple bond of 
1,2-diphenylacetylenes under high pressure and tempera-
ture could lead to the formation of stilbenes without the 
formation of new C–C bond [14, 15] (Fig. 1, equation 4). 
Homocoupling of potassium alkenyltrifluoroborates 
is an effective method for the synthesis of symmetri-
cal 1,3-dienes [16] (Fig. 1, equation 5). However, despite 
these major advances, discovery of new catalyst system 
for the construction of 1,3-diene units (both symmetrical 

and unsymmetrical ones) with good chemical selectivity 
and easy gained catalyst is still an attractive goal.

Heck reactions is one of the most important reaction 
among transition metal catalyzed C–C bond formation 
methods and many important catalyst systems have been 
achieved. However, most of the results which have been 
described with Pd catalysts, were obtained for the cou-
pling of aryl halides [17–21]. Relatively few results have 
been reported with vinyl halides. The researchers have 
put more attentions to improve the Heck reaction condi-
tions and catalysts such as immobilized catalyst, fluorine 
chemical, no phosphorus catalyst, et al. [22–25]. μ-OMs 
palladium–dimer was first reported by Buchwald, which 
was used as Pd-precatalyst for C–N/C–C coupling reac-
tions [26]. Although, the μ-OMs dimer is very easy to 
obtain and always used as the optimal palladium source 
in many reactions, it has not been used directly as the 
catalyst for Heck reaction. For the long run, our research 
interests focus on the studies on noble metal salts cata-
lyzed reactions [27–32]. As our continuous research 
interest, herein, we report that Pd–dimer (namely μ-OMs 
dimer) which is a typically non-phosphorus Buch-
wald Pd-precatalyst could be successfully applied in the 
Heck reaction of olefins and β-bromostyrenes afford-
ing 1,4-conjugated dienes with good yield and excellent 
chemical selectivity (Fig. 1b).

Open Access

BMC Chemistry

*Correspondence:  xuzhou@xzhmu.edu.cn 
School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 
Province, China

http://orcid.org/0000-0002-9703-8245
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-019-0561-3&domain=pdf


Page 2 of 8Zhou et al. BMC Chemistry           (2019) 13:39 

Results and discussion
To begin, we chose the Heck reaction between (E)-
(2-bromovinyl)benzene (1a) and styrene (2a) in the 
presence of Pd(OAc)2 as the model system to optimize 
the reaction conditions for the synthesis of the product 
3a. In an initial experiment, the reaction was performed 
in toluene at 80 °C catalyzed by 5 mol% Pd(OAc)2 with 
K2CO3 as the base, isolating (1E,3E)-1,4-diphenylb-
uta-1,3-diene (3a) in 19% yield after 24  h (Table  1, 
entry 1). Then, we investigated different palladium 
catalysts on the reaction yield and catalytic efficiency. 
As depicted in Table  1, when Pd2(dba)3 or Pd(TFA)2 
was used in place of Pd(OAc)2, similar results were 

achieved (Table  1, entries 2–3). The homemade dimer 
palladium catalyst was then examined, and the results 
showed that its catalytic activity was superior to other 
palladium catalysts (entries 4 vs 1–3). To our surprise, 
when the coupling reaction was carried with traditional 
Xphos or PPh3 as supporting ligands and with μ-OMs 
dimer as palladium source, the results clearly indicated 
that both XPhos and PPh3 were the poor ligands for 
this transformation (Table  1, entries 5–6). When the 
reaction temperature was increased to 120 °C, the yield 
of the product improved significantly and the reaction 
time was also shortened (Table 1, entry 7).

a

b

Fig. 1  Representative synthetic strategies for 1,4-diarylbuta-1,3-dienes and our approach
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Subsequently, different solvents were examined using 
μ-OMs Pd–dimer as the catalyst, in the presence of 
K2CO3 under an argon atmosphere. In a series of reaction 
solvent, we found that toluene as low polar solvent was 
the best one among the solvents screened. Polar aprotic 
solvents, such as DMF, NMP and DMSO gave almost 
the same level yield, while CH3CN gave much poor yield 
(Table  1, entries 8–11). Thus, toluene was used as the 
best solvent for further studies. Finally, we investigated 
the effect of bases on the reaction, including K3PO4, 
Li2CO3, Cs2CO3 and Et3N. Of the base screened, the best 
result was obtained with K2CO3 which could make the 
reaction faster and more efficiency (entry 6). Cs2CO3, 
K3PO4 and Et3N gave slightly inferior yield than K2CO3 
(entries 13–15), while using Li2CO3 as the base gave com-
plexed mixture which might due to the strong basicity of 
Li2CO3. The yield was reduced by reducing the amount of 
catalyst from 5 to 2.5% (Table 1, entry 16).

Under the above optimized reaction conditions, we 
explored the generality and applicability of the protocol. 
Firstly, the reaction between different styrenes and (E)-
(2-bromovinyl)benzene was examined. When chlorine 

was in the ortho, meta- or para-position of benzene ring 
in styrene substrates, the para position substrate gave 
the highest yield of the corresponding product with 82%, 
while the ortho-position substrate gave the lowest yield 
which might due to the steric effect (Table  2, entries 
1–3). Styrene with electron-donating group on the ben-
zene ring, such as methyl group on the para- position, 
gave lower yield than that of electron withdrawing one 
(Table 2, entry 1 vs 4). A wide variety of vinyl bromides, 
bearing either electron-donating or electron-withdraw-
ing substituents, were successfully coupled with styrene 
partner with 54–68% yield. Generally, electron-with-
drawing groups have positive impacts on the building of 
conjugated dienes, compared with electronic-donating 
ones (Table 2, entries 5, 7, 11 vs 6, 8–9). Unfortunately, 
when R1 group was 4-Br, the reaction gave a messy 
mixture which may due to the different active reaction 
sites of the vinyl bromide (Table  2, entry 10). Interest-
ingly, when R2 group was 4-Br, the reaction could pro-
ceed smoothly and afforded the corresponding product 
with 61% yield (Table  2, entry 16). The substituent on 
the aryl ring of β-bromostyrene such as a para-fluride, a 

Table 1  Optimization for the reaction condition

Reactions were carried under Ar in Schlenk flasks. 1a (0.5 mmol), 2a (0.5 mmol), Pd* (5 mol%), solvent (2 mL), base (2.0 equiv.), 80–120 °C
a  Isolated yields
b  Reaction condition: μ-OMs dimer (0.01 mmol)/PPh3 (0.011 mol) was stirred at room temperature in DCM (1 mL) under Ar for 0.5 h, then 1a (0.5 mmol), 2a (0.5 mmol), 
toluene (2 mL), K2CO3 (2.0 equiv.) were added and stirred at 80 °C
c  The catalyst loading is 2.5 mol%

Entry Catalyst/5% Solvent Base T/°C t/h Yield/%a

1 Pd(OAc)2 Toluene K2CO3 80 36 19

2 Pd2(dba)3 Toluene K2CO3 80 24 11

3 Pd(OAcCF3)2 Toluene K2CO3 80 24 15

4 μ-OMs dimer Toluene K2CO3 80 36 51

5b μ-OMs dimer/PPh3 Toluene K2CO3 80 24 Trace

6 Pd-Xphos Toluene K2CO3 80 24 Mix

7 μ-OMs dimer Toluene K2CO3 120 18 74

8 μ-OMs dimer DMF K2CO3 120 12 52

9 μ-OMs dimer CH3CN K2CO3 120 12 21

10 μ-OMs dimer NMP K2CO3 120 12 50

11 μ-OMs dimer DMSO K2CO3 120 12 48

12 μ-OMs dimer Toluene Li2CO3 120 24 mix

13 μ-OMs dimer Toluene Cs2CO3 120 15 68

14 μ-OMs dimer Toluene K3PO4 120 20 62

15 μ-OMs dimer Toluene Et3N 120 18 70

16c μ-OMs dimer Toluene K2CO3 120 24 65
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para-cholor group decreased slightly the reaction rates 
and the yields (Table 2, entry 1 vs 12–13). An electron-
donating substituent, such as a para-methyl group, on 
the aryl ring of β-bromostyrene could afford better yields 
than electron-withdrawing ones (Table  2, entries 12–13 
vs 15, 2 vs 14).

Interestingly, when the reaction between (Z)-(2-bro-
movinyl) benzene and styrene was examined, only 
(1E,3E)-diene was obtained which indicated that our 

catalyst system had excellent chemical selectivity (Fig. 2) 
[33].

To broaden the possible usage of these compounds, the 
fluorescence activity of 3a, 3m and 3e was studied. As 
can be seen from Fig. 3, 3a and 3m showed fluorescence, 
and the excitation wavelength was 650  nm and 657  nm 
respectively, which reach the near infrared region. They 
may have potential applications as fluorescent materials. 
While at the same concentration, 3e has no fluorescence.

Table 2  Scope of the reaction

The reactions were carried in Schlenk flask under Ar. Olefins (0.5 mmol), β-bromostyrenes (0.5 mmol), μ-OMs dimer–Pd (5 mol%), toluene (2 mL), k2CO3 (2.0 equiv.), 
120 °C
a  For entry 11, R′ = Me, for other entries, R′ = H
b  Isolated yield

Entrya R1 R2 Product t/h Yield/%b

1 H 4-Cl 3b 18 82

2 H 3-Cl 3c 18 61

3 H 2-Cl 3d 24 58

4 H 4-CH3 3e 18 68

5 4-Cl H 3b 24 75

6 4-OCH3 H 3f 36 55

7 4-F H 3g 18 82

8 4-CH3 H 3e 18 68

9 4-OCOCH3 H 3h 30 54

10 4-Br H – 24 Mixture

11 4-Cl, R′ = Me H 3i 18 65

12 4-F 4-Cl 3j 24 71

13 4-Cl 4-Cl 3k 24 63

14 4-CH3 3-Cl 3l 18 66

15 4-CH3 4-Cl 3m 20 74

16 4-F 4-Br 3n 24 61

Fig. 2  Chemical selectivity of the reaction
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Conclusions
In summary, we have successfully developed an approach 
for the synthesis of (1E,3E)-1,4-diarylbuta-1,3-dienes 
via intermolecular Heck reaction of olefins and 
β-bromostyrenes promoted by μ-OMs palladium–dimer 
complex catalyst. The products 1,4-conjugated dienes 
could be obtained with good yield (up to 82%). The cat-
alyst system has good chemical selectivity and excellent 
group tolerance which would supply an alternative way to 
gain the valuable biaryl linkage building blocks.

Experimental
General information
Commercially available reagents were used without 
further purification. The solvents used for experiment 
research were all through pretreatment on condition of 
anaerobic and without water. Reactions were monitored 
by TLC using Silicycle precoated silica gel plates. Flash 
column chromatography was performed over Silicycle 
silica gel (300–400 mesh). 1H NMR and 13C NMR spectra 
were recorded on JMTC-400/54/SS 400 MHz spectrom-
eters using residue solvent peaks as internal standards 
(CHCl3, 1H: 7.26  ppm; 13C: 77.00  ppm). The fluores-
cence spectra of samples were detected with a Fluores-
cence spectrophotometer (F-4600FL Spectrophotometer, 
Hitachi, Japan) using a Xenon lamp as the excitation 
source at room temperature, and the excitation wave-
length was 331 nm, 228 nm and 237 nm.

General procedure for the synthesis 
of 1,4‑diarylbuta‑1,3‑dienes
A Schlenk tube was charged with styrene (20.8  mg, 
0.2  mmol), (E)-(2-bromovinyl) benzene (36.6  mg, 
2.0  mmol), μ-OMs dimer (7.3  mg, 5% mmol), K2CO3 

(55.3  mg, 2.0  mmol), and anhydrous toluene 1.0  mL 
under an Ar atmosphere. The Schlenk tube was sealed 
with a Teflon valve, and then the reaction mixture was 
stirred at 110  °C for 24  h, monitoring by TLC. After 
the reaction was completed, the reaction mixture was 
extracted with ethyl acetate three times. Then the fil-
trates were dried over Na2SO4 and concentrated under 
reduced pressure. The residue obtained was purified by 
chromatography (silica gel, PE–EtOAc, 100:1) to give the 
product.

Product characterization data
(1E,3E)‑1,4‑diphenylbuta‑1,3‑diene (3a) [34–36]
The product was obtained as white solid in 74% yield. 
1H NMR (400  MHz, CDCl3) δ 7.44 (d, J = 7.4  Hz, 4H), 
7.33 (t, J = 7.8 Hz, 4H), 7.24 (d, J = 5.6 Hz, 2H), 6.96 (dd, 
J = 12.0, 2.6 Hz, 2H), 6.67 (dd, J = 12.0, 2.6 Hz, 2H); 13C 
NMR (100  MHz, CDCl3) δ 137.3, 132.8, 129.2, 128.6, 
127.5, 126.4 (see Additional file 1).

1‑Chloro‑4‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)benzene (3b) 
[37]
The product was obtained as white solid in 82% yield. 
1H NMR (400  MHz, CDCl3) δ 7.43 (d, J = 7.4  Hz, 2H), 
7.39–7.20 (m, 7H), 7.02–6.84 (m, 2H), 6.75–6.53 (m, 2H); 
13C NMR (100 MHz, CDCl3) δ 137.3, 136.0, 133.5, 131.5, 
130.0, 129.0, 128.9, 128.8, 127.8, 127.6, 126.5 (see Addi-
tional file 1).

1‑Chloro‑3‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)benzene (3c) 
[38]
The product was obtained as white solid in 61% yield. 1H 
NMR (400  MHz, CDCl3) δ 7.49–7.39 (m, 3H), 7.33 (t, 
J = 7.5  Hz, 2H), 7.29 (dt, J = 7.6, 1.5  Hz, 1H), 7.27–7.21 
(m, 4H), 7.19 (dt, J = 7.6, 1.6  Hz, 1H), 7.00–6.85 (m, 
2H), 6.78–6.64 (m, 1H), 6.64–6.53 (m, 1H); 13C NMR 
(100  MHz, CDCl3) δ 139.3, 137.1, 134.6, 133.9, 131.1, 
130.6, 129.8, 128.7, 128.7, 127.8, 127.4, 126.5, 126.1, 124.5 
(see Additional file 1).

1‑Chloro‑2‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)benzene (3d) 
[39]
The product was obtained as white solid in 58% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 7.8, 1.4 Hz, 1H), 
7.45 (d, J = 7.3 Hz, 2H), 7.39–7.30 (m, 3H), 7.29–7.20 (m, 
4H), 7.15 (td, J = 7.7, 1.5 Hz, 1H), 7.11–6.88 (m, 3H), 6.71 
(d, J = 15.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 137.1, 
135.3, 133.9, 133.2, 131.6, 129.9, 129.1, 128.7, 128.4, 
128.4, 127.8, 126.8, 126.2 (see Additional file 1).

Fig. 3  Fluorescence spectra of 3a, 3e and 3m (concentration: 
10 μmol/L) upon excitation at 331 nm, 228 nm and 237 nm 
respectively. Samples were dissolved in DMSO/PBS (30%)
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1‑Methyl‑4‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)benzene (3e) 
[40, 41]
The product was obtained as white solid in 68% yield. 
1H NMR (400 MHz, CDCl3) δ 7.49–7.39 (m, 2H), 7.38–
7.27 (m, 4H), 7.24–7.18 (m, 1H), 7.13 (d, J = 8.2  Hz, 
2H), 7.01–6.80 (m, 2H), 6.64 (td, J = 10.7, 6.6 Hz, 2H), 
2.34 (s, 3H); 13C NMR (100  MHz, CDCl3) δ 137.6, 
137.6, 134.7, 132.9, 132.3, 129.5, 129.5, 128.7, 128.4, 
127.5, 126.4, 21.4 (see Additional file 1).

1‑Methoxy‑4‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)benzene 
(3f) [42]
The product was obtained as white solid in 55% yield. 
1H NMR (400 MHz, CDCl3) δ 7.46–7.35 (m, 4H), 7.31 
(t, J = 7.5  Hz, 2H), 7.23–7.17 (m, 1H), 7.01–6.73 (m, 
4H), 6.61 (d, J = 15.1  Hz, 2H), 3.81 (s, 3H); 13C NMR 
(100  MHz, CDCl3) δ 159.3, 137.5, 132.4, 131.7, 129.5, 
128.6, 127.6, 126.2, 114.1, 55.3 (see Additional file 1).

1‑Fluoro‑4‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)benzene (3g) 
[41]
The product was obtained as white solid in 82% yield. 
1H NMR (400 MHz, CDCl3) δ 7.50–7.37 (m, 4H), 7.33 
(t, J = 7.5  Hz, 2H), 7.25–7.20 (m, 1H), 7.09–6.99 (m, 
2H), 6.90 (qd, J = 14.9, 10.5 Hz, 2H), 6.65 (t, J = 14.4 Hz, 
2H); 13C NMR (100 MHz, CDCl3) δ 163.7, 135.9, 133.5 
(d, J = 3.8  Hz), 133.2, 132.2, 131.5, 129.7, 128.9, 128.7 
(d, J = 1.9  Hz), 128.0 (d, J = 8.6  Hz), 127.6, 115.8 (d, 
J = 21.0 Hz) (see Additional file 1).

4‑((1E,3E)‑4‑phenylbuta‑1,3‑dien‑1‑yl)phenylacetate (3h)
The product was obtained as white solid in 54% yield. 
1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 8.7 Hz, 4H), 
7.37–7.29 (m, 2H), 7.24–7.17 (m, 1H), 7.05 (dt, J = 9.3, 
2.3  Hz, 2H), 7.00–6.78 (m, 2H), 6.72–6.59 (m, 2H), 
2.33–2.24 (3H); 13C NMR (100  MHz, CDCl3) δ 169.5, 
150.0, 137.3, 135.2, 133.0, 131.7, 129.5, 129.1, 128.7, 
127.6, 127.3, 126.4, 121.8, 21.2; IR (cm−1): 3043, 2994, 
2990, 1772, 1665, 1502, 1480, 1111, 990; HRMS ESI–
TOF: m/z = 265.1134 [M+H]+ (265.1129 calcd for 
C18H17O2) (see Additional file 1).

1‑Chloro‑4‑((2E,4E)‑5‑phenylpenta‑2,4‑dien‑2‑yl)benzene (3i) 
[43]
The product was obtained as white solid in 65% yield. 
1H NMR (400  MHz, CDCl3) δ 7.53–7.38 (m, 4H), 
7.37–7.27 (m, 4H), 7.24–7.03 (m, 2H), 6.77–6.55 (m, 
2H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 141.3, 

137.5, 135.4, 133.4, 132.8, 128.7, 128.4, 127.7, 127.6, 
126.8, 126.4, 125.5, 16.1 (see Additional file 1).

1‑Chloro‑4‑((1E,3E)‑4‑(4‑fluorophenyl)buta‑1,3‑dien‑1‑yl) 
benzene (3j) [44]
The product was obtained as white solid in 71% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.48–7.34 (m, 4H), 7.33–7.27 
(m, 2H), 7.03 (t, J = 7.8 Hz, 2H), 6.97–6.78 (m, 2H), 6.62 
(t, J = 14.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 135.8, 
133.4, 133.4, 132.1, 131.4, 129.6, 128.8, 127.9, 127.9, 
115.8, 115.6 (see Additional file 1).

(1E,3E)‑1,4‑bis(4‑chlorophenyl)buta‑1,3‑diene (3k) [45, 46]
The product was obtained as white solid in 63% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.42–7.33 (m, 4H), 7.33–7.27 
(m, 4H), 6.96–6.83 (m, 2H), 6.69–6.57 (m, 2H); 13C NMR 
(100  MHz, CDCl3) δ 135.7, 133.2, 131.9, 129.5, 128.9, 
127.5 (see Additional file 1).

1‑Chloro‑3‑((1E,3E)‑4‑(p‑tolyl)buta‑1,3‑dien‑1‑yl)benzene (3l)
The product was obtained as white solid in 66% yield. 
1H NMR (400  MHz, CDCl3) δ 7.46–7.41 (m, 1H), 7.36 
(d, J = 8.2  Hz, 2H), 7.32–7.24 (m, 2H), 7.20 (dt, J = 7.6, 
1.7 Hz, 1H), 7.16 (d, J = 7.8 Hz, 2H), 7.02–6.82 (m, 2H), 
6.69 (d, J = 14.6 Hz, 1H), 6.58 (d, J = 14.6 Hz, 1H), 2.37 (s, 
3H); 13C NMR (100 MHz, CDCl3) δ 139.4, 137.8, 134.6, 
134.3, 133.9, 130.8, 130.5, 129.8, 129.4, 127.8, 127.2, 
126.4, 126.1, 124.5; IR (cm−1): 3033, 2990, 2984, 1768, 
1640, 1512, 1486, 1123; HRMS ESI-TOF: m/z = 255.0941 
[M+H]+ (255.0947 calcd for C17H16Cl) (see Additional 
file 1).

1‑Chloro‑4‑((1E,3E)‑4‑(p‑tolyl)buta‑1,3‑dien‑1‑yl)benzene 
(3m) [44]
The product was obtained as white solid in 74% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.43–7.33 (m, 4H), 7.33–7.29 
(m, 2H), 7.16 (d, J = 7.8 Hz, 2H), 7.04–6.80 (m, 2H), 6.78–
6.51 (m, 2H), 2.37 (s, 3H); 13C NMR (100 MHz, CDCl3) 
δ 137.7, 136.0, 134.4, 133.4, 132.9, 130.8, 130.0, 129.4, 
128.8, 127.9, 127.4, 126.4, 21.3 (see Additional file 1).

1‑Bromo‑4‑((1E,3E)‑4‑(4‑fluorophenyl)buta‑1,3‑dien‑1‑yl)
benzene (3n) [45, 46]
The product was obtained as white solid in 61% yield. 
1H NMR (400  MHz, CDCl3) δ 7.53–7.35 (m, 4H), 7.29 
(d, J = 8.2 Hz, 2H), 7.03 (t, J = 8.7 Hz, 2H), 6.96–6.77 (m, 
2H), 6.73–6.53 (m, 2H); 13C NMR (100  MHz, CDCl3) 
δ 163.7, 136.5, 133.7 (d, J = 2.8  Hz), 132.5, 132.1, 131.7, 
130.0, 128.9 (d, J = 1.9  Hz), 128.2 (d, J = 7.8  Hz), 128.1, 
121.6, 115.9 (d, J = 20.0 Hz) (see Additional file 1).
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Additional file

Additional file 1. The synthesis of starting materials, general procedure 
for the products and 1H-NMR and 13C-NMR spectra of all products.
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