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Abstract 

Laser Engineered Net Shaping (LENS™) was used to produce a compositionally graded Ti-xMo (0 ≤ x ≤ 12 wt %) speci-
men and nine Ti-15Mo (fixed composition) specimens at different energy densities to understand the composition–
processing–microstructure relationships operating using additive manufacturing. The gradient was used to evaluate 
the effect of composition on the prior-beta grain size. The specimens deposited using different energy densities were 
used to assess the processing parameters influence the microstructure evolutions. The gradient specimen did not 
show beta grain size reduction with the Mo content. The analysis from the perspective of the two grain refinement 
mechanisms based on a model known as the Easton & St. John, which was originally developed for aluminum and 
magnesium alloys shows the lower bound in prior-beta grain refinement with the Ti–Mo system. The low growth 
restriction factor for the Ti-Mo system of Q = 6,5C0 explains the unsuccessful refinement from the solute-based 
mechanism. The energy density and the grain size are proportional according to the results of the nine fixed compo-
sition specimens at different energy densities. More energy absorption from the material represents bigger molten 
pools, which in turn relates to lower cooling rates.
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Introduction
In the recent years, several studies have been conducted 
to assess the influence of various alloys [1, 2] and addi-
tive manufacturing processing parameters [3, 4] on the 
microstructure evolution of titanium alloys. Knowing 
the microstructure is determinant to predict the prop-
erties of the material and for this reason, the effects of 
composition and processing parameters are critical for 
the development of new alloys. The titanium market has 
been traditionally dominated by the aerospace industry, 
but recently other industries as biomedical and chemi-
cal have seen increasing demands for titanium and its 
alloys [5]. The continuous development of new additive 

manufacturing techniques and the growing applicability 
of titanium alloys demand the understanding of the influ-
ence of composition and processing on different aspects 
of microstructure such as grain size, grain orientation 
(texture), compositional fluctuations, porosity and any 
change in the morphology.

Additive manufacturing (AM) is associated with con-
ditions that lie far away from the thermodynamic equi-
librium, leading to lower solute partitioning compared 
to casting due to the rapid solidification nature of the 
process and the possibility to affect a range of composi-
tions in a single specimen by adopting a combinatorial 
approach. AM is fundamentally a combination of physi-
cal phenomena including heat transfer, fluid dynamics, 
phase transformations and thermophysical properties 
that define the microstructure evolutions [6]. There are 
several efforts to simulate the molten pool [7, 8] and the 
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solidification process [9] in AM to understand and pre-
dict the microstructure.

Most of the previous work has focused on the process-
ing variation as a function of distance from the build plate 
[10–13], part size [11] and the energy input and traverse 
speed [3, 13–15]. However, in the main, the vast majority 
of previous work has focused on the alloy Ti-6Al-4V.

From the chemical composition perspective, several 
studies regarding the grain refinement of Ti-based alloys 
with different alloy elements have shown the applicability 
of two refinement mechanisms by the Easton & St. John 
model [16–20], but not generally for additive manufac-
turing. For solidification, the solute-based mechanism 
considers the grain growth restriction factor and the 
nuclei-based mechanism takes into account the avail-
ability of nucleant particles. However, those studies were 
using conventional casting processes. Combinatorial 
approaches using additive manufacturing techniques 
have been performed on different Ti-based alloys. Micro-
structure evolutions as a function of composition gradi-
ent in the as-deposited condition from elemental blends 
for several binary alloys such as Ti-xCr [21], Ti-xAl [22] 
and Ti-xTa [23] have been studied in the past. In the spe-
cific case of Ti-Mo system, our previous work has been 
focused on the composition–microstructure relationship. 
The Ti-Mo system has been considered as an important 
material due to its potential corrosion resistance, duc-
tility and biocompatibility depending on its Mo content 
and the associated metallurgical condition [24]. Studies 
by Furuhara et al. [25] on alloy buttons of Ti-Mo in the 
range of 10 to 40 wt% indicate that at certain aging tem-
peratures the lpha laths form on the beta grain bound-
aries, and grow into the beta grains. Ho et  al. reported 
the crystal structure and the morphology variations on 
cast Ti-Mo alloys with molybdenum content from 6 to 
20 wt% [26] and more recently Zhao et al. focused on the 
biomedical applications as vertebral fixation using a Mo 
content of 15–18 wt% [27]. However, these studies were 
not specifically focused on the additive manufacturing 
processes and the as-deposited condition. One published 
work was focused on a compositional gradient, from ele-
mental Ti to Ti-40 wt% alloy. It was deposited using the 
Laser Engineered Net-Shaping (LENS™) process by Col-
lins et  al. [28]. The microstructure across the gradient 
was α/β with the reduction of α fraction inasmuch the 
Mo content increases. In addition, microhardness and α 
lath thickness was quantified, observing a reduction from 
1.04 μm at ~ 1.6 wt% Mo to 0.31 μm (310 nm) at ~ 18 wt% 
Mo [28]. Nevertheless, an assessment of the prior-beta 
grain refinement using the Easton & St. John model con-
cepts was not performed. The evaluation of Mo as a grain 
refiner and the extended applicability of the model to the 

Ti-Mo system are important for a better understanding of 
the composition-microstructure relationship in Ti-alloys.

In this work, the purpose is to observe the changes in 
the microstructure features associated with the variations 
of composition and processing parameters of the additive 
manufacturing of the LENS™ process. In our previous 
research work [29], we were focus on the Ti–W system 
due to its high growth restriction factor of about 22.65C0. 
Here our interest is to evaluate the lower bound in terms 
of grain refinement from the perspective of the growth 
restriction factor that for the Ti-Mo system is 6.5C0. 
For this purpose, a compositional gradient of Ti-xMo 
(0 ≤ x ≤ 12 wt%) and nine specimens with different energy 
densities within the range of ~ 149 to ~ 448 kJ cm−3 for 
a fixed composition of Ti-15Mo were produced using 
LENS™ technology. Here, prior beta grain refinement 
through the concept of refinement mechanisms was the 
primary focus, although clearly grain refinement would 
lead to other potential benefits such as texture modi-
fication [30] and potential impacts on the mechanical 
properties. In addition to prior-beta grain size, other 
characteristics such as porosity and unmelted particles 
will be also analyzed from the perspective of fluctuation 
in processing parameters.

Materials and methods
A compositionally graded Ti-xMo (0 ≤ x ≤ 12  wt  %) 
specimen was produced using an Optomec LENS™ 750 
at the University of North Texas from high purity ele-
mental metal powders of Ti (99.9% pure, − 150 mesh 
from Alfa Aesar) and Mo (99.8% pure, − 100 + 325 mesh 
from Micron Metals). In this first AM system, the laser 
is a fixed optic Nd:YAG laser operating at 1064 nm pro-
vided by US Laser. The laser was operated between 350 
and 500  W, and the atmosphere was kept elow 20  ppm 
oxygen. In addition, a series of Ti-15 wt% Mo alloys were 
deposited using an Optomec LENS™ system at Ames 
Laboratory. In this second AM system, the laser is a fiber 
optic Nd:YAG laser operating at 1064  nm provided by 
IPG. The IPG laser was operated between 183 and 367 W, 
and the atmosphere was kept below 5 ppm oxygen.

In both of these LENS™ systems, a computer-aided 
design (e.g. CAD) file is used in LENS™, from which a 
tool path is extracted for the subsequent laser deposi-
tion of a three dimensional specimen. The CAD file is 
converted and sliced into layers with a nominal thickness 
of 0.25 mm. Each layer consists of multiple parallel lines 
with a nominal hatch width of ~ 0.38 mm. The tool path 
that is generated based upon these variables is used to 
control the motorized stages (x, y) and a deposition head 
consist of focusing lens and powder nozzles mounted on 
the z motorized stage. The 2D (x, y) in-plane motion of 
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the stage accompanied by—z vertical motion of the depo-
sition head produce near-net-shape metallic pieces.

This research conducted two separate aspects. The first 
research activity used the fixed-optic laser equipped with 
two powder feeders to assess the influence of Mo on the 
microstructure, in particular on the grain size and tex-
ture. To conduct this first research activity, the LENS™ 
is equipped with two independently controlled pow-
der feeders, which were loaded with pure Ti powder in 
powder feeder #1, and with a Ti-12  wt% Mo mechani-
cally mixed elemental powder blend in powder feeder 
#2. An inert gas (here Ar) carries the powders from 
powder feeders into a controlled atmosphere box. The 
fluidized powders are injected (by four convergent Cu 
nozzles) into a localized melt pool created by a focused 
high energy Nd:YAG laser and an energy density of 
10.2 MJ in−3 (~ 622.4 kJ cm−3). A 6 mm thick Ti-6Al-4V 
substrate was used as the base for the laser deposition 
of the powder blend and in  situ alloying. The dimen-
sions of the deposited rectilinear graded specimen was 
38  mm × 25  mm × 12  mm rectilinear solid. The inde-
pendent computer control of the powder flow rate allows 
for pre-programmed incremental changes in the relative 
mass flow rate from powder feeders and consequently 
variation in the local composition along the length of the 
sample.

The second research activity used the fiber-optic laser 
to assess the influence of processing parameters on the 
microstructure evolutions. Specifically, in this second 
study the travel speed and power were changed between 
~ 8.5 and ~ 12.5  mm/s and between 183 and 367  W 
respectively, to vary the energy density between 2.4  MJ 
in−3 (~ 149  kJ/cm−3) and 7.4  MJ in−3 (~ 448  kJ  cm−3) 
[31]. Nine depositions were made within the range of 
energy densities. The geometry of these deposits are right 

cylinders with a diameter of 7.62  mm and a height of 
12.7 mm.

Following depositions, the deposits were sectioned 
from the substrate and cut in half longitudinally (z dep-
osition direction). The specimen cross section was then 
prepared for materials characterization using conven-
tional metallographic techniques. The sections were 
ground using 240–800 grit wet/dry SiC abrasive papers 
followed by polishing using a 0.04 colloidal silica suspen-
sion. Following preparation, the specimen was cleaned 
using a solution sequence of acetone, water–surfactant 
mixture, water, and methanol. Imaging of the microstruc-
ture was carried out using a FEI™ Quanta 250 FE-SEM 
equipped with a field emission gun (FEG) source and a 
backscatter detector and an Lx-31’s Optical Microscope. 
The local compositions along the graded specimen were 
determined using standardless energy dispersive spec-
troscopy (EDS) and the values are reported to the nearest 
whole wt.%. Average grain size measurements following 
the intercept method [32] were conducted for further 
analysis and interpretation.

Results and discussion
Composition effect on the as‑deposited microstructure
Macrostructure observations revealed that the compo-
sitional gradient is columnar in nature, with the axis of 
growth in the build direction of the deposit (Fig. 1b). The 
expected columnar morphology of the prior-beta grains 
in additive manufactured specimens has been widely 
reported in several studies [12, 15, 33]. The prior-beta 
grain growth is preferential in the direction with the 
highest thermal gradient. In additive manufacturing, the 
z-direction (build direction) generally offers the highest 
thermal gradient because the heat source and the heat 
sink (substrate) are well positioned for that condition 

Fig. 1  Micrographs corresponding to the compositionally graded Ti-xMo (0 ≤ x ≤ 12 wt %) specimen a backscatter SEM top, b optical micrograph 
bottom
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[33], although it can be disrupted under certain condi-
tions [34, 35]. However, as observed in Fig.  1a, b the 
columnar grains are not perfectly aligned in the z-direc-
tion, yet still obey the principal thermal gradient, as they 
are perpendicular to the bottom of the molten pool. It 
can be attributed to a slightly tilting associated with the 
direction of laser motion [12] or due to the Marangoni 
effect in the molten pool that is generating a local high-
est thermal gradient in the perpendicular direction of 
the bottom in the molten pool [29]. In addition, Fig. 1a, b 
shows a discontinuity that is often termed as a “fish-scale” 
pattern [36, 37]. This feature could be a consequence of 
macrosegregation [6] or an inherent result of the layer by 
layer deposition in additive manufacturing [38].

Backscattered electron micrographs shown in Fig. 2a–c 
were taken along the graded specimen from the regions 
with a local average composition of 0.9  wt.%, 2.8  wt.% 
and 8.2  wt.% of Mo, respectively. For the entire gradi-
ent, the morphology is columnar beta grains with alpha 
laths within them. There is no evidence of reduction 
in the prior-beta grain width because of Mo additions 
across the gradient. To explain these results in terms of 
grain refinement mechanisms that are inoperable in these 
specimens, two different scenarios were reported in the 
Easton & St. John model as the possible mechanism of 
grain refinement in Ti-alloys by addition of an alloying 
element [16, 17, 39]. The first is the solute-based mecha-
nism which is expressed and includes are growth restric-
tion factor Q [40], while the second is a nucleant-based 
mechanism. In this case, molybdenum has a low Q fac-
tor of about 6.5C0 [17] which indicates that at least from 
the perspective of solute-based mechanism, Mo is not a 
good grain refiner. The low presence of unmelted parti-
cles across the Ti-xMo gradient and the columnar mor-
phology of the grains from bottom to top indicate that 
the nucleant-based mechanism is not operating. This is 
in contrast to the previous results of Ti–W system [29], 

where both refinement mechanisms were responsible 
for grain refinement. In that case, tungsten was acting 
as a good grain refiner due to its high Q factor of about 
22.65C0 and unmelted W particles were acting as a good 
source of new nuclei, possibly due to the high energy 
required to melt tungsten (~ 120  kJ  mol−1) compared 
to the energy required to melt molybdenum from room 
temperature (~ 97 kJ mol−1).

Microstructure observations of Fig.  2a–c revealed 
that the size and aspect ratio of the alpha laths are being 
reduced inasmuch the molybdenum content is increas-
ing. Figure 2c shows very small alpha precipitates and a 
visible increment in the beta fraction at 8.2 wt.% Mo. This 
variation in microstructural features with the addition of 
Mo is consistent with the literature [28]. However, it is 
very important to point out that in an individual speci-
men with no variation in composition, the alpha laths 
tend to be bigger at the top and smaller at the bottom as 
reported by Wu et al. [41], most likely due to variations in 
the heat transfer and cooling rates. The substrate acts as 
a heat sink, producing faster cooling rates at the bottom 
compared to the top. It is well known that faster cooling 
rates correspond with smaller the grain (or here, pre-
cipitate) sizes. Based on this analysis and the results, the 
alpha laths variation observed here can be attributed to 
the compositional effects.

The effect of energy density on the as‑deposited 
microstructure
Backscattered electron micrographs showing large fields 
in the xz plane for the highest and lowest energy density 
deposited specimens (Ti-15Mo fixed composition) are 
presented in Fig. 3a, b for 2.4 MJ in−3 (~ 149 kJ cm−3) and 
7.4 MJ in−3 (~ 448 kJ cm−3), respectively. As expected, the 
specimen with the highest energy density shows more 
compositional homogeneity and so much less unmelted 
particles fraction. On the other hand, the specimen with 

Fig. 2  Backscatter SEM micrographs corresponding to the local average composition of a Ti-0.9 wt.% Mo, b Ti-2.8 wt.% Mo, c Ti-8.2wt.% Mo
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the lowest energy density contains multiple lack of fusion 
regions between the deposition layers, some of them as 
large as 500 μm in length. The relationship between the 
unmelted particles fraction and the energy density across 
the nine specimens with different energy densities are 
shown in Fig. 4. The trend in this relationship is similar 
to the Ti–W system. However, at higher energy densities 
the fraction of unmelted particle for the Ti-Mo system is 
smaller than the corresponding value for Ti–W system. 
Therefore, when comparing the Ti-Mo results here, they 
require far less energy than the Ti–W binary system [29, 
42]. This observation is also an indication of the reason 
for the ineffective nucleant-based mechanism of grain 
refinement discussed in the previous section for the gra-
dient specimen.

Despite the fact that the set of specimens were depos-
ited at a fixed composition of Ti-15Mo, it is clear that a 
compositional fluctuation exists over large length scales. 
The average atomic mass strongly influences the contrast 
in the backscattered electron micrographs as shown in 
Fig. 3a, b. Consequently, the brighter regions correspond 
to Mo rich regions and the darker gray regions corre-
spond to Ti rich regions. Similar to the Ti–W system [29], 
in Fig. 3b the darker (Ti-rich) regions are near of Mo par-
ticle cluster due to the additional energy required to melt 
the Mo particles. In addition, the borders of the molten 
pools (fish scale patterns) are brighter zones correspond-
ing to higher Mo content that will have an effect on the 
alpha laths precipitation. Molybdenum is a β-stabilizer 
element in titanium alloys.

Figure 5a–c shows optical macro-morphologies of the 
Ti-15Mo specimens at the same location with three dif-
ferent energy densities.1 The macrostructures of all of the 
deposits were columnar in nature. The energy density 

Fig. 3  Backscatter SEM micrographs for two deposited specimens a 2.4 MJ in−3 (~ 149 kJ cm−3) and b 7.4 MJ in−3 (~ 448 kJ cm−3)

Fig. 4  Fraction of unmelted particles of Mo as a function of energy 
density

1  Energy density may be defined in the following way:
ρenergy =

P
v·tlayer spacing ·thatch width

where P is the laser power, v is the velocity of the laser, tlayer spacing is the layer 
spacing, and thatch width is the distance between passes. Both layer spacing 
and hatch width provide information regarding the radial distribution of 
temperature.
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term has been associated to properties and defects in 
previous studies [34, 43] and here it is related to the 
resultant columnar grain size (width). Figure 6 shows the 
variation of grain width with energy density. Inasmuch 
as the energy density increases, the columnar grain size 
(width) also increases, identical to what was observed 
previously for the Ti-xW system. Higher energy densities 
lead to bigger molten pools that translates to slower cool-
ing rates. Therefore, there is a clear relationship between 
grain size and cooling rate, which is expected.

Conclusions
A compositionally graded Ti-xMo specimen 
(0 ≤ x ≤ 12 wt %) was produced to determine the appli-
cability of the Easton & St. John model concepts to the 

grain refinement effect of molybdenum and the associ-
ated mechanisms in Ti-based alloys. No reduction on 
the prior-beta grain size was observed and the mor-
phology was columnar in nature across the entire gra-
dient. The analysis of these results from the perspective 
of the two possible refinement mechanisms confirms 
their applicability. The low growth restriction factor for 
the Ti-Mo system of Q = 6,5C0 explains the unsuccess-
ful refinement of the solute-based mechanism, but also 
importantly provides a guiding lower bound for the 
applicability of such growth restriction factors for addi-
tively manufactured titanium alloys. On the other hand, 
the low presence of unmelted particles in the specimen 
and the comparatively low energy required to melt Mo 
could explain the unsuccessful refinement of the nuclei-
based mechanism.

The energy density and the grain size are propor-
tional according to the results from the nine fixed com-
position specimens at different energy densities. More 
energy absorption from the material represents bigger 
molten pools, which in turn implicates lower cooling 
rates.
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