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Abstract 

(Z,Z’)-1,1′-(4-ortho-Caboranyldimethyl)-bis(2-methoxyphenylethan-1-oxime) intermediate 3 was synthesized by a 
three-step reaction with a final treatment with base to give a new series of ortho-carboranyl biphenyloxime deriva-
tives (4–8). Compounds 7 and 8 showed high solubility and the in vitro study results revealed high levels of accumu-
lation in HeLa cells with higher cytotoxicity and boron uptake compared to l-boronphenylalanine.
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Introduction
Carborane  (C2B10H12, Fig.  1) is a spherical compound 
formed by one or more boron peaks of polyhedral boron 
compounds, which is formed by carbon atoms. The vol-
ume is similar to that of a benzene ring [1–5]. This is a 
special large steric skeleton with a very strong hydro-
phobic structure. Therefore, improvement of the chemi-
cal structure can alter the stability, water solubility, and 
biological activity of compatibility and allow wider appli-
cations of carborane as a BNCT agent [6–9]. Boron 
neutron capture therapy (BNCT) was first proposed as 
a potential cancer therapy in 1936, based on the ther-
mal neutron captured by 10B atoms then produces a 4He 
(α-particle) and a 7Li ion [10, 11]. However, its success-
ful application in the treatment of cancer patients still 
presents a challenge in medical research [12]. A major 
challenge in designing boron containing drugs for BNCT 
of cancer is the selective delivery of 10B to the tumor as 
well as water solubility [13]. Our synthetic strategy was to 
use heterocyclic alkyl chains as a boron delivery system, 
the target molecules being the heterocyclic alkyl oxime 
chains in which the boron functionality was present as a 
ortho-carborane. The large number of boron atoms has 
a clear advantage for BNCT [14]. This paper reports the 

hydrophilic carboranylbenzyloxime moiety, such as alky-
lmorpholine, alkylpiperidine, phenoxyalkyl, and pyridine, 
on carbon–oxygen combined with chemical bonding. 
These compounds have higher solubility in polar solvents 
and increased the boron uptake in tumor cells, highlight-
ing the potential use of carborane as a hydrophilic car-
rier into the body that can pass the Blood Brain Barrier 
(BBB rule) to the cells within the organization for drug 
evaluation.

Experimental
All manipulations were performed under a dry nitrogen 
atmosphere using standard Schlenk techniques. Tet-
rahydrofuran (THF) was purchased from Aladdin Pure 
Chemical Company and dried over sodium metal distil-
lation prior use. The reactions were monitored on Merck 
F-254 pre-coated TLC plastic sheets using hexane as 
the mobile phase. All yields refer to the isolated yields 
of the products after column chromatography using 
silica gel (200–230 mesh). All glassware, syringes, mag-
netic stirring bars, and needles were dried overnight in 
a convection oven. Ortho-carborane  (C2H2B10H10) was 
purchased from HENAN WANXIANG Fine Chemical 
Company and used after sublimation. The NMR spec-
tra were recorded on a Bruker 300 spectrometer oper-
ated and the chemical shifts were measured relative to 
the internal residual peaks from the lock solvent (99.9% 
 CDCl3 and  CD3COCD3), and then referenced to Si(CH3)4 
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(0.00 ppm). The Fourier transform infrared (FTIR) spec-
tra of the samples were recorded on an Agilent Cary 600 
Series FT-IR spectrometer using KBr disks. Elemental 
analyses were performed using a Carlo Erba Instruments 
CHNS–O EA1108 analyzer (Additional file 1).

Synthetic routes and experimental data
Synthesis of bis(3-methoxybenzyl)-ortho-carborane 
(1). A 2.5  M n-BuLi (4.0  mL, 10  mmol) solution was 
added via a syringe to a solution of o-carborane (1.44 g, 
10  mmol) in 50  mL of THF at − 78  °C. A solution of 
1-(bromomethyl)-3-methoxybenzene (4.22  g, 21  mmol) 
in THF 10 mL was added slowly to the reaction flask at 
− 78 °C, and the reaction temperature was maintained at 
− 78  °C for 1 h. The reaction mixture was then warmed 
slowly to room temperature, stirred for an additional 
12  h, and quenched with distilled  H2O (30  mL). The 
crude product was then extracted with methylene chlo-
ride (30  mL × 3). The organic layer was washed with 
 H2O, dried with anhydrous  Na2SO4, and filtered then 
concentrated. The residue was purified by flash column 
chromatography (ethyl acetate/hexane 1:10) to give com-
pound 1 as a colorless oil: yield: 3.6 g (93%). IR(KBr pel-
let),  cm−1, ν: (B-Ho-carborane) 2593. 1HNMR  (CDCl3), δ, 
ppm: 3.2–0.8 (br, B-Ho-carborane, 10H), 3.61 (s, –CH2, 4H), 
3.83 (s, –OCH3, 6H), 6.77 (s, 1-Hbenzene, 2H), 6.84–6.82 
(d, J = 6.9  Hz, 2-Hbenzene, 2H), 6.90–6.88 (d, J = 6.9  Hz, 
3-Hbenzene, 2H), 7.32–7.29 (m, 4-Hbenzene, 2H). Found, %: 
C 56.31; H 7.65.  C18H28B10O2. Calculated, %: C 56.23; H 
7.34.

Synthesis of 1,1′-(4-caboranyldimethyl)-bis(2-meth-
oxy-4,1-phenylene-ethan-1-one) (2). Acetyl chloride 
(1.4 mL, 20 mmol) was added via a syringe to a solution 
of aluminum chloride (2.6 g, 20 mmol) in 50 mL of meth-
ylene chloride at 0 °C and stirred for 30 min. A solution 
of compound 1 (3.5  g, 10  mmol) in methylene chloride 
10  mL was added slowly to the reaction flask at 0  °C, 
and the reaction temperature was maintained at 0 °C for 
30  min. The reaction mixture was then warmed slowly 
to room temperature, stirred for an additional 3  h, and 
quenched with a saturated  NaHCO3 (30  mL) solution. 
The crude product was then extracted, and the organic 

layer was washed with  H2O, dried with anhydrous 
 Na2SO4, and filtered then concentrated. The residue was 
purified by flash column chromatography (ethyl acetate/
hexane 1:8) to give compound 2 as a colorless oil: yield: 
4.1 g (97%). IR (KBr pellet),  cm−1, ν: (B-Ho-carborane) 2602. 
1HNMR(CDCl3), δ, ppm: 3.2–0.8 (br, B-Ho-carborane, 10H), 
3.64 (s, –CH3, 6H), 3.66 (s, –CH2, 4H), 3.95 (s, –OCH3, 
6H), 6.82 (s, 1-Hbenzene, 2H), 6.89–6.86 (d, J = 7.8  Hz, 
2-Hbenzene, 2H), 7.77–7.74 (d, J = 7.8 Hz, 3-Hbenzene, 2H). 
Found, %: C 56.42; H 6.67.  C22H32B10O4. Calculated, %: C 
56.39; H 6.88.

Synthesis of (Z,Z′)-1,1′-(4-caboranyldimethyl)-bis(2-
methoxyphenylethan-1-oxime) (3). A solution of com-
pound 2 (3.8  g, 8.1  mmol) and hydroxylamine (1.2  g, 
17.8  mmol) in 40  mL of methanol was heated under 
reflux for 2  h. The reaction mixture was then cooled to 
room temperature, and the crude product was concen-
trated. The residue was purified by flash column chro-
matography (ethyl acetate/hexane 1:4) to give compound 
3 as a colorless oil: Yield: 3.7  g (92%). IR (KBr pellet), 
 cm−1, ν: (B-Ho-carborane) 2586. 1H NMR  (CD3COCD3), δ, 
ppm: 3.16 (s, –CH3, 6H), 3.2–0.8 (br, B-Ho-carborane, 10H), 
3.88 (s, –OCH3, 6H), 3.93 (s, –CH2, 4H), 6.97–6.95 (d, 
J = 7.5 Hz, 2-Hbenzene, 2H), 7.05 (s, 1-Hbenzene, 2H), 7.30–
7.28 (d, J = 7.5 Hz, 3-Hbenzene, 2H). Found, %: C 52.68; H 
6.81; N 5.69.  C22H34B10N2O4. Calculated, %: C 52.99; H 
6.87; N 5.62.

Synthesis of (1Z,1′Z)-1,1′-(carboranyldimethyl)-bis-
(2-methoxy-4,1-phenylene-ethan-1-one)-O,O-dipyridin-
2-ylmethyldioxime (4). A solution of compound 3 (0.7 g, 
1.4  mmol) and potassium carbonate (0.4  g, 3.0  mmol) 
in 10  mL of acetonitrile was stirred at room tempera-
ture for 30  min. Subsequently, (2-bromomethyl)pyri-
dine (0.5  g, 3.0  mmol) was added at room temperature, 
and then heated under reflux for 5 h. The crude product 
was then concentrated, and the residue was purified by 
flash column chromatography (ethyl acetate/hexane 1:4) 
to give compound 4 as a yellow oil: Yield: 0.8  g (88%). 
IR (KBr pellet),  cm−1, ν: (B-Ho-carborane) 2607. 1HNMR 
 (CD3Cl), δ, ppm: 2.31 (s, –CH2, 6H), 3.2–0.8 (br, B-Ho-

carborane, 10H), 3.63 (s, –CH3, 4H), 3.84 (s, –OCH3, 6H), 
5.37 (s, –CH2, 2H), 6.73 (s, 1-Hbenzene, 2H), 6.80–6.77 
(d, J = 7.8  Hz, 2-Hbenzene, 2H), 7.29–7.24 (m, 3-Hbenzene 

and pyridine, 4H), 7.47–7.44 (d, J = 7.8  Hz, 3-Hpyridine, 2H), 
7.76–7.70 (t, J = 7.8  Hz, 2-Hpyridine, 2H), 8.61–8.59 (d, 
J = 4.8 Hz, 1-Hpyridine, 2H). Found, %: C 59.36; H 6.63; N 
8.35.  C34H44B10N4O4. Calculated, %: C 59.98; H 6.51; N 
8.23.

Synthesis of (1Z,1′Z)-1,1′-(carboranyldimethyl)-
bis(2-methoxy-4,1-phenylene-ethan-1-one)-O,O-di(2-
phenoxyethyl)dioxime (5). A procedure analogous to 
the preparation of 4 was used and a colorless oil was 
obtained. Yield: 0.9  g (89%). IR (KBr pellet),  cm−1, ν: 

Fig. 1 Comparison of the o-Carborane and benzene



Page 3 of 7Jin et al. Chemistry Central Journal  (2018) 12:76 

(B-Ho-carborane) 2577. 1H NMR  (CD3Cl) δ, ppm: 2.22 (s, 
–CH3, 6H), 3.2–0.8 (br, B-Ho-carborane, 10H), 3.64 (s, –
CH2, 4H), 3.85 (s, –OCH3, 6H), 4.31–4.28 (t, J = 4.8 Hz, 
–CH2 alkyl-1, 4H), 4.56–4.52 (t, J = 5.1 Hz, –CH2 alkyl-2 4H), 
6.75 (s, 1-Hbenzene-1 2H), 6.83–6.80 (d, J = 7.5 Hz, 2-Hben-

zene-1, 2H), 7.00–6.95 (m, 1-Hbenzene-2, 6H), 7.34–7.29 (m, 
2-Hbenzene-1 and 2, 6H). Found, %: C 61.47; H 6.92; N 3.84. 
 C38H50B10N2O6. Calculated, %: C 61.77; H 6.82; N 3.79.

Synthesis of (1Z,1′Z)-1,1′-(carboranyldimethyl)-bi-
s(2-methoxy-4,1-phenylene-ethan-1-one)-O,O-di(3-
phenoxypropyl)dioxime (6). A procedure analogous 
to the preparation of 4 was used and a colorless oil was 
obtained. Yield: 0.9  g (86%). IR (KBr pellet),  cm−1, ν: 
(B–H) 2589. 1H NMR(CD3Cl), δ, ppm: 2.25–2.17 (m, –
CH3 and -CH2 alkyl-1, 10H), 3.2–0.8 (br, B-Ho-carborane, 
10H), 3.64 (s, –CH2, 4H), 3.85 (s, –OCH3, 6H), 4.16–4.12 
(t, J = 6.0  Hz, –CH2 alkyl-2, 4H), 4.40–4.36 (t, J = 6.0  Hz, 
–CH2 alkyl-3, 4H), 6.74 (s, 1-Hbenzene-1, 2H), 6.82–6.79 (d, 
J = 7.8  Hz, 2-Hbenzene-1, 2H), 6.96–6.93 (m, 1-Hbenzene-2, 
6H), 7.33–7.30 (m, 2-Hbenzene-1 and 2, 6H). Found, %: C 
62.52; H 7.12; N 3.77.  C40H54B10N2O6. Calculated, %: C 
62.64; H 7.10; N 3.65.

Synthesis of (1Z,1′Z)-1,1′-(carboranyldimethyl)-bi-
s(2-methoxy-4,1-phenylene-ethan-1-one)-O,O-di(2-
piperidin-1-ylethyl)dioxime (7). A procedure analogous 
to the preparation of 4 was used and a colorless oil was 
obtained. Yield: 0.8 g (82%) colorless oil. IR (KBr pellet), 
 cm−1, ν: (B-Ho-carborane) 2591. 1H NMR  (CD3Cl), δ, ppm: 
1.47–1.45 (m, 1-Hpiperidine, 4H), 1.64–1.60 (m, 2-Hpiperidine, 
4H), 1.88–1.86 (m, 3-Hpiperidine, 4H), 2.19 (s, –CH3, 6H), 
2.53–2.51 (m, 8H), 2.76–2.72 (t, J = 6.0  Hz, –CH2 alkyl-1, 
4H), 3.2–0.8 (br, B-Ho-carborane, 10H), 3.63 (s, –CH2, 4H), 
3.85 (s, –OCH3, 6H), 4.36–4.32 (t, J = 6.0 Hz, –CH2 alkyl-

2, 4H), 6.74 (s, 1-Hbenzene, 2H), 6.82–6.79 (d, J = 7.8  Hz, 
2-Hbenzene, 2H), 7.31–7.29 (d, J = 7.8 Hz, 3-Hbenzene, 2H). 
Found, %: C 59.65; H 8.34; N 7.68.  C36H60B10N4O4. C 
59.97; H 8.39; N 7.77.

Synthesis of (1Z,1′Z)-1,1′-(carboranyldimethyl)-bis-
(2-methoxy-4,1-phenylene-ethan-1-one)-O,O-di(2-
morpholinoethyl)dioxime (8). A procedure analogous 
to the preparation of 4 was used and a colorless oil was 
obtained. Yield: 0.9  g (84%). IR (KBr pellet),  cm−1, ν: 
(B-Ho-carborane) 2596. 1HNMR  (CD3Cl), δ, ppm: 2.52 (s, 
–CH3, 6H), 2.55–2.54 (m, –CH2 alkyl-1, 4H), 2.77–2.72 
(t, J = 6.9 Hz, –CH2 alkyl-2, 4H), 3.2–0.8 (br, B-Ho-carborane, 
10H), 3.64–3.59 (m, 1-Hmorpholine, 8H), 3.76–3.73 (m, 
2-Hmorpholine, 8H), 3.85 (s, –OCH3, 6H), 6.83–6.76 (m, 
2-Hbenzene, 4H), 7.31 (s, 2-Hbenzene, 2H). Found, %: C 56.38; 
H 7.83; N 7.64.  C34H56B10N4O6. C 56.33; H 7.79; N 7.73.

Cell viability assay (MTT assay)
HeLa cells in a 3 × 104/mL cell suspension per hole in 
96 well plates were digested by adding 100  μL of a cell 

suspension and culturing for 24  h to absorb the origi-
nal culture medium followed by the addition of 200  μL 
configured compounds-4, 5, 6, 7, 8 and BPA (l-boron-
phenylalanine). Each concentration was made from 4 
compound holes, and the holes around the 96 well plates 
were sealed with PBS, the negative control. The blank 
control group lacked the compounds. After 24 h, 20 μL 
of a MTT solution was added to each hole, and cultured 
for 4  h. Subsequently, DMSO 150  μL was added to the 
medium through a suction hole and shaken for 10 min. 
The OD of each hole was determined at 490 nM, and the 
sample inhibition rate in different concentrations was cal-
culated: inhibition rate = (Control OD value/Delivery OD 
value)/Control OD value × 100%. Finally, the  IC50 value 
of the sample was calculated using the related software.

Boron uptake
HeLa cells (5 × 103) were incubated for 48 h in the pres-
ence of various concentrations of compounds 4, 5, 6, 7, 
8, and BPA. After washing three times, the cumulative 
boron concentration was determined by inductively cou-
pled plasma atomic emission spectrometry (ICP-AES) 
[15, 16]. (± is the average value).

Results and discussion
This paper reports the hydrophilic function of the ortho-
carboranylbenzyloxime moiety, such as alkylmorpho-
line, alkylpiperidine, phenoxyalkyl and pyridine, on 
carbon–oxygen combined with chemical bonding. These 
compounds have higher solubility in polar solvents and 
increasing boron uptake in tumor cells within the organi-
zation for a drug evaluation.

A general procedure for the preparation for 4-ortho-
caboranyldimethyl-bis(phenyloxime) consisted of a serial 
reaction, such as Grignard, Friedel–Crafts, amination, 
and electrophilic substitution under basic conditions. 
A series of carborane intermediates 1–3 were prepared 
using the optimized procedure from the starting material. 
Ortho-Carborane was dissolved in dry tetrahydrofuran at 
− 78 °C, and treated with a Grignard reagent carbanion, 
and then substituted with an aromatic halide. Subse-
quently, aluminum chloride was used in the Friedel–Craft 
reaction to afford 1,1′-(4-ortho-caboranyldimethyl)-
bis(2-methoxy-4,1-phenylene-ethan-1-one), which was 
followed by the addition of hydroxylamine-hydrochloride 
salt to give the (Z,Z′)-1,1′-(4-ortho-Caboranyldimethyl)-
bis(2-methoxyphenylethan-1-oxime) form in the pres-
ence of compound-3 (Scheme 1) [17–21].

Finally, ortho-carboranyl hydrophilic ether 
compounds were generated from (Z,Z′)-1,1′-(4-
ortho-Caboranyldimethyl)-bis(2-methoxyphenylethan-
1-oxime) and side hydrophilic alkyl or aromatic 
halide reagents, followed by a treatment with potassium 
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carbonate to result in the target compounds 4–8 
(Scheme  2) [22, 23]. A treatment of ortho-carborane 
 (C2H2B10H10) with aromatic halide as a base in tet-
rahydrofuran produced the target compounds 1–3 in 
moderate yields (1 93, 2 97, and 3 92%). Compounds 
1–3 showed absorption bands in the infrared (IR) spec-
trum at 2602 and 2593 cm−1. The diagnostic signals of 

compounds 1–3 were the aromatic peaks observed at δ 
7.77 and 6.77 in the 1H NMR spectra and a broad sig-
nal caused by B–H peaks for the ortho-carborane units 
from δ 3.2–0.8.

The major requirement of a BNCT agent is a high 
water solubility, high boron uptake, and low cytotoxicity. 
The HeLa cervical carcinoma cells were treated with the 

Scheme 1 Preparation of (Z,Z’)-1, 1′-(4-Caboranyldimethyl)-bis(2-methoxyphenylethan-1-oxime)

Scheme 2 Preparation of (Z,Z′)-1,1′-(4-Caboranyldimethyl)-bis (hydrophilic functional) derivatives(4–8)
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candidate compounds 4–8 for 2 days, and the cell viabil-
ity was determined by a MTT assay. Compounds 4–8 
exhibited boron uptake in the range of 0.106–0.520 ppm 
(Table  1), and the cell cytotoxicity was in the range of 
1.134–2.516  µM, as shown Fig.  2. In particular, com-
pounds 7 and 8 showed high boron uptake in HeLa cells, 
and both compounds had higher cytotoxicity than BPA 
(l-boronphenylalanine). Morpholine and piperidine is a 
heterocyclic nitrogen and oxygen member six-ring rea-
gent with a simple structure that improves the water 
solubility and bioactivity improvement. They are used in 

the preparation of pharmaceutical drugs for their anti-
inflammation, anticancer, and antiviral activity [24–28].

Conclusion
In conclusion, we reported the series of ortho-carborane 
substituted bipolar-function derivatives, such as alkyl 
pyridine, alkyl phenoxide, alkyl morpholine, and alkyl 
piperidine, were synthesized. The target compounds 
coupling of the aryl-oxime with chain functional group 
proceeded successfully for introduction of an ortho-car-
borane moiety in the molecules, which can easily be fur-
ther four-step substituted to high yield final compound. 
The effects of synthesized compounds on biology activ-
ity were assay in HeLa cells. Both cyclic alkyl derivatives 
of ortho-carborane and oxime containing compounds, 7 
and 8, respectively, were exhibit high boron uptake and 
higher cytotoxicity than BPA (l-boronphenylalanine). 
This resulted in carborane compounds with improved 
water solubility for the BNCT agent. The knowledge 
gained from modified bipolar groups could facilitate both 
drug selection and evaluations.

Table 1 Cytotoxicity  (IC50) to HeLa cervical carcinoma cells

a The results represent the means ± s.d.

Compounds Cytotoxicity  IC50 (μM)a Boron uptake (ppm)

4 2.516 ± 0.022 0.127 ± 0.113

5 1.924 ± 0.014 0.106 ± 0.120

6 2.383 ± 0.301 0.114 ± 0.015

7 1.582 ± 0.027 0.481 ± 0.026

8 1.134 ± 0.035 0.520 ± 0.017

BPA 4.16 ± 0.021 0.226 ± 0.016

0
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BPA 4 5 6 7 8
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Fig. 2 Accumulation of compounds 4–8 into HeLa cells
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