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Abstract 

Dioxoisoindolines have been included as a pharmacophore group in diverse drug-like molecules with a wide range 
of biological activity. Various reports have shown that phthalimide derivatives are potent inhibitors of AChE, a key 
enzyme involved in the deterioration of the cholinergic system during the development of Alzheimer’s disease. In the 
present study, 2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione was synthesized, crystallized and evaluated as 
an AChE inhibitor. The geometric structure of the crystal and the theoretical compound (from molecular modeling) 
were analyzed and compared, finding a close correlation. The formation of the C6–H6···O19 interaction could be 
responsible for the non-negligible out of phenyl plane deviation of the C19 methoxy group, the O3 from the carbonyl 
group lead to C16–H16···O3i intermolecular interactions to furnish C(9) and C(14) infinite chains within the (− 4 0 
9) and (− 3 1 1) families of planes. Finally, the biological experiments reveal that the isoindoline-1,3-dione exerts a 
good competitive inhibition on AChE (Ki = 0.33–0.93 mM; 95% confidence interval) and has very low acute toxicity 
(LD50 > 1600 mg/kg) compared to the AChE inhibitors currently approved for clinical use.
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Introduction
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder. Since the gradual damage to neurons leads 
to an irreversible deterioration of memory and learning, 
the afflicted person is eventually unable to carry out cog-
nitive functions [1, 2]. AD is the most common form of 
dementia in the elderly population [3], accounting for 
60–80% of all cases [4–6].

The pathogenesis of AD involves the accumulation of 
soluble amyloid-β peptide [7], the dysfunction of the cho-
linergic system, and the deposition of tau neurofibrillary 
tangles in the brain [8]. These physiological changes lead 

to confusion, memory loss, impaired cognitive and emo-
tional function, and finally dementia [9].

The main drug target is acetylcholinesterase (AChE) 
[8], which hydrolyzes the neurotransmitter acetylcholine 
(ACh) at cholinergic synapses and thus terminates nerve 
transmission. Since low levels of this signaling molecule 
are associated with the development of AD, high levels of 
the same are considered desirable in patients [10–13].

According to the cholinergic hypothesis, impairments 
in the cholinergic pathway play a pivotal role in the patho-
genesis of AD [14]. The main mechanism for enhancing 
the level of ACh is the inhibition of AChE, which is pres-
ently the most effective strategy for treating AD. Hence, 
the current treatments are cholinesterase inhibitors that 
target AChE and butyrylcholinesterase (BuChE), and 
antagonists of N-methyl-d-aspartate (NMDA) receptor 
[1, 2].

In addition to depleting Ach (low concentra-
tions), human AChE accelerates the metabolic rate of 
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formation of the amyloid-β peptide, which exacerbates 
the clinical progression of AD [15, 16]. Other proteins 
involved in the development of this disease are tau, 
α-synuclein and apoE4, and all of them are regulated by 
the activity of AChE [17]. AChE inhibitors (AChEIs) are 
the only type of drug approved for the treatment of AD.

The phthalimide ring (isoindoline-1,3-dione) repre-
sents an important privileged substructure in diverse 
molecules exhibiting neuroprotective agents, antioxi-
dant, antihypertensive activity, etc. [18–20]. Numer-
ous reports have identified phthalimide derivatives as 
potent inhibitors of AChE [21–24] and BuChE [1, 25].

Paneck et  al. synthesized and evaluated phthalimide 
saccharin derivatives, finding one of these to be a selec-
tive AChEI that significantly impeded the accumula-
tion of amyloid-β [26]. Simoni et  al. developed other 
new compounds with an indole moiety in their struc-
ture that are able to simultaneously inhibit AChE and 
amyloid-β aggregation [27].

The pharmacophore isoindoline-1,3-dione is known 
to interact with great affinity at the peripheral anionic 
site (PAS) of human AChE. To optimize the interaction 
with the catalytic active site at the same time, the linker 
between the radical of the drug and the isoindoline-
1,3-dione should include an oligomethylene [28].

Hebda et al. described how phthalimide groups inter-
act with the PAS site of AChE. They found that the two 
carbonyl groups of phthalimide facilitate hydrogen 
bonding with AChE, and the replacement of phthal-
imide groups with a heteroaromatic moiety reduces 
potency [29]. It has also been explained how an elec-
tron donating group as a methoxy substituent, particu-
larly in the para position, confers higher potency to the 
drug. In the case of electron withdrawing groups, such 
as chlorine or fluorine moieties, the ortho position pro-
vides a greater inhibitory effect on AChE [31]. Finally, it 
was reported how the ability of a ligand to bend (due to 
alkyl chains) improves its interaction with the anionic 
and acyl pocket of AChE. Hence, the presence of alkyl 
chains may be necessary for excellent potency in a com-
petitive or non-competitive inhibitor [30].

Taking into account the above information the com-
pound was design based on the literature, where is 
described that for good inhibitory effect on AChE the 
molecule must have an isoindoline group, the pres-
ence of 2 carbonyl groups and also the presence of 
electron donating groups as methoxy moiety, addition-
ally the presences of methylenes are required for good 
potency. The aim of the current study was to synthesize 
and crystallize 2-(2-(3,4-dimethoxyphenyl)ethyl)isoin-
doline-1,3-dione, then compare its molecular X-ray 
structure with that of the same compound simulated 

for molecular modeling. Furthermore, its activity as an 
AChEI was determined in vitro and ED50 in vivo.

Results and discussion
Molecular Structure
The compound 2-(2-(3,4-dimethoxyphenyl)ethyl)isoin-
doline-1,3-dione (1; Fig.  1) was afforded as colorless 
triclinic crystals in the space group P − 1, with Z = 2. 
The molecular structure is shown in Fig. 2 and selected 
bond lengths, bond angles and torsion angles are listed 
in Table  1. Although the mean value of the N–CO 
(1.393(6)  Å) bond length is longer than the mean value 
observed in isolated amide group (N–CO=1.325(9) Å), it 
is within the expected range for imides (1.396(10) Å) [31].  

The dimethoxyphenyl and isoindoline-1,3-dione rings 
are almost coplanar with the torsion angles of − 102.4(2)° 
for C10–C11–C12–C13 and 99.0(2)° for C1–N2–C10–
C11. However, the methyl C19 is markedly more twisted 
than C18. An angle of 3.8(3)° was detected for C18–O18–
C14–C13 and − 9.2(3)° for C19–O19–C15–C16 (Fig.  3) 
these results were confirmed with the theoretical mod-
eling (Table 1).

Molecular modeling
The DFT calculations showed that the optimized struc-
ture for molecular modeling is very similar to the X-ray 
crystal structure. According to the statistical analysis, 
there was no significant difference in bond lengths or 
bond angles between these two structures (two-tailed 
Student’s t-test; p < 0.05). The geometric parameters of 
the crystal structure and calculations are listed in Table 1. 
The optimized structure is illustrated in Fig. 4.

Supramolecular structure
The non-planar arrangement of the C19 methyl may be 
related to the network arrangement of 1 in the crystal. 
The geometric parameters associated with intermolecular 
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Fig. 1  Molecular structure of 2-(2-(3,4-dimethoxyphenyl)ethyl)
isoindoline-1,3-dione (1)
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intermolecular interactions are listed in Table  2. The 
graph set notation is used to describe the intermolecular 
interactions motifs [32].

The O3 and O19 oxygen atoms, from the carbonyl 
and methoxy groups, lead to C16–H16···O3i and C6–
H6···O19ii intermolecular interactions to furnish C(9) 
and C(14) infinite chains within the (− 4 0 9) and (− 3 1 
1) families of planes, respectively. Both motifs combined 

Fig. 2  X-ray molecular structure of 2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione (1) with an atom labeling scheme. ORTEP view at the 
50% probability level

Table 1  Comparison between modeled and crystal geometric structures of 1 

Modeled structure Crystal structure Modeled structure Crystal structure

Energy (kJ/mol) − 2 760 740.50 ELUMO (kJ/mol) − 549.86

EHOMO (kJ/mol) − 777.67 GAP (kJ/mol) − 227.81

Bond lengths (Å)

O1–C1 1.239 1.208(2) N2–C10 1.462 1.456(2)

O3–C3 1.239 1.211(2) C8–C9 1.404 1.381(2)

N2–C1 1.410 1.397(2) C14–O18 1.386 1.367(2)

N2–C3 1.409 1.389(2) O18–C18 1.450 1.427(3)

C1–C8 1.489 1.489(3) C15–O19 1.387 1.371(2)

C3–C9 1.489 1.484(3) O19–C19 1.449 1.428(2)

Bond angles (°)

C9–C3–O3 129.1 129.14(16) C14–O18–C18 118.4 116.60(15)

O3–C3–N2 124.9 124.64(17) C16–C15–O19 124.6 124.52(16)

C3–N2–C10 123.8 123.14(14) C15–O19–C19 118.3 116.51(15)

N2–C10–C11 112.6 111.62(18) O18–C14–C15 115.8 115.22(16)

C13–C14–O18 124.4 125.17(16) O19–C15–C14 116.0 116.96(16)

Torsion angles (°)

O3–C3–N2–C10 1.015 − 3.0(3) C18–O18–C14–C13 0.271 3.8(3)

O1–C1–N2–C10 − 0.935 1.7(3) C19–O19–C15–C16 0.258 − 9.2(3)

N2–C10–C11–C12 177.174 179.44(16) O18–C14–C15–O19 0.038 2.1(3)

C10–C11–C12–C13 − 82.95334 − 102.4(2)

Fig. 3  The molecular structure of 1, viewed along the axis of C11–
O19 atoms. The hydrogen atoms are not included for the sake of 
clarity
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form R4
4
(33) rings that develop the second dimension 

in the bc plane (Fig.  5). The propagation of π-stacking 
interactions between the dione (Cg1 = C1/N2/C3/C8/
C9) and fused benzene (Cg2 = C4–C9) rings results in 
Cg1···Cg2iii stacking (symmetry code iii = 1 − x, 2 − y, 
− z), which develops the third dimension along the direc-
tion of the a-axis (Fig. 6). The value of the intercentroid 
distance between the Cg1 and Cg2 rings (3.5364(14)  Å) 
is very close to the value of the interplanar distance 
(3.4485(10)  Å), corresponding to a face-to-face inter-
action [33], where the dione ring acts as the acceptor 
of electronic density and the benzene fused ring as the 

Fig. 4  Optimized structure of 2-(2-(3,4-dimethoxyphenyl)ethyl)
isoindoline-1,3-dione (B3LYP/6-311G, gas phase)

Table 2  Geometric parameters of the intermolecular interactions of compound 1 

D–H···A Symmetry code D–H (Å) H···A (Å) D···A (Å) D–H···A (°)

C16–H16···O3i x, y − 1, z 0.95 2.58 3.241(3) 127

C6–H6···O19ii x, y + 1, z − 1 0.95 2.58 3.366(2) 140

Fig. 5  Supramolecular structure of 1, based on C16–H16···O3 and C6–H6···O19 interactions. Viewed in the bc plane. Symmetry codes: (i) x, y − 1, z; 
(ii) x, y + 1, z − 1

Fig. 6  The supramolecular 3D structure of compound 1 based on Cg1···Cg2 interactions along the a-axis. Symmetry code: (iii) − 1 − x, 2 − y, − z
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donor. The C6–H6···O19 interaction could be responsi-
ble for the non-negligible out of phenyl plane deviation of 
the methoxy group C19.

The absence of strong hydrogen bonding donors 
results in the participation of only one imide carbonyl in 
hydrogen bonding. The selective activation of one imide 
carbonyl group of the N-phenethylimides by Brønsted 
acids, such as BBr3 [34], TfOH [35] or organometallics 
[36], leads to regioselective intramolecular cyclization to 
deliver tetrahydroisoquinoline derivatives [37, 38]. This 
selective regiochemical polarization could be involved in 
the mode of action of compound 1 as an AChEI, as previ-
ously proposed [39].

In vitro experiments to determine AChE inhibition
An in vitro assay was performed to examine the inhibi-
tory effect of the crystallized compound on AChE. 
The test compound behaves as a competitive inhibitor 
(Fig.  7), with an inhibitory activity slightly weaker than 
that of neostigmine. Acute toxicity, examined in CD1 
male mice by Lorke’s method (Table  3), proved to be 
very low (LD50 > 1600 mg/kg) compared to other AChEIs 

approximately from 43- to 3000-fold less toxic that is 
the case of Neostigmine LD50 = 0.54 ± 0.03  mg/kg. The 
results clearly show that the synthesized compound has 
very low toxicity compared to the drugs currently on the 
market, which allows us to propose this molecule as a 
leader to generate a more potent family of drugs with a 
low toxicity unlike the drugs currently used for the treat-
ment of AD that has many side effects. Due to the mul-
tiple undesirable effects of drugs currently employed to 
treat AD [1, 2], the present values of 2-(2-(3,4-dimeth-
oxyphenyl)ethyl)isoindoline-1,3-dione suggest the 
importance of future studies on this and other structur-
ally related compounds to analyze their selectivity for 
and interactions with cholinesterases, and their potential 
therapeutic use in the treatment of AD [10, 40].

Conclusion
In summary, the crystal of 2-(2-(3,4-dimethoxyphenyl)
ethyl)isoindoline-1,3-dione was obtained and analyzed 
by x-ray crystallography to determine its geometric 
structure, which was compared to the optimized struc-
ture predicted in the in silico experiment. No significant 

Fig. 7  The inhibitory effect on AChE of Electrophorus electricus for: a 2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione (Ki = 0.33–0.93 mM), 
and b neostigmine as the positive control (Ki = 0.093–0.157 mM; non-linear regression with 95% confidence intervals). c Lineweaver–Burk plot for 
2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione
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difference existed between these two structures (experi-
mental and computational modeling) when comparing 
bond lengths or bond angles. Furthermore, an interest-
ing crystalline network was formed by hydrogen bond-
ing acceptors and soft-hydrogen bonding donors, as well 
as by dispersive π–π interactions. Finally, an evaluation 
was made of the inhibitory effect of 2-(2-(3,4-dimeth-
oxyphenyl)ethyl)isoindoline-1,3-dione on AChE, find-
ing a competitive inhibition with a Ki of 330–930  µM 
(95% confidence interval). The acute toxicity is far less 
(LD50 > 1600  mg/kg) than that of AChE inhibitors cur-
rently on the market almost 3000-fold less toxic than 
Neostigmine LD50 = 0.54 ± 0.03 mg/kg. Therefore, future 
studies are needed to explore the inhibitory activity of 
this and related isoindoline-1,3-dione derivatives.

Experimental
Instrumental
All reagents and solvents were used as received from the 
commercial supplier (Sigma-Aldrich). All reactions were 
carried out in an oven-dried flask, agitating the mixtures 
with a stirring bar and concentrating them with a stand-
ard rotary evaporator. The melting point was measured 

in open-ended capillary tubes with a Stuart® SMP40 
automatic melting point apparatus, and is uncorrected. 
Infrared (IR) spectra were obtained on a 100 FT-IR spec-
trometer (Perkin-Elmer) with a universal ATR accessory. 
Thin layer chromatography was performed on 0.25  mm 
thick silica gel 60 F254 plates (Merck, Darmstadt, Ger-
many) and spots were detected under UV light. 1H and 
13C nuclear magnetic resonance (NMR) spectra were 
recorded on a Varian Mercury 300 spectrometer (1H, 
300  MHz; 13C, 75  MHz) with tetramethylsilane (TMS) 
as internal reference. Chemical shifts (δ) are expressed 
in parts per million (ppm). Other parameters contem-
plated were the integration area, multiplicity (s = singlet, 
d = doublet, t = triplet, q = quartet, m = multiplet), and 
coupling constant (Hz). Electrospray ionization (ESI) 
high-resolution mass spectrometry was performed on a 
Bruker micrOTOf-Q-II instrument.

Chemical synthesis and crystallization
2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-di-
one was synthesized by employing a reported proce-
dure with slight modifications [43]. In brief, 491  mg 
(1.50 mmol) phthalic anhydride and 244 mg (1.00 mmol) 

Table 3  Well-known AchE inhibitors with the respective LD50 in comparison with compound 1 

Inhibitors Compound LD50 (mice)

N

O

O
O

O
CH3

CH3

1 > 1600 mg/kg

Donepezil 30 mg/kg [41]

Physostigmine 3 mg/kg [42]

Neostigmine  0.54 ± 0.03 mg/kg [1]

Pyridostigmine 37.5 mg/kg [41]
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2-(3,4-dimethoxyphenyl)ethylamine were mixed and 
placed into a 50 mL round-bottom flask, then stirred and 
heated to gentle melting at 150–200  °C for 15–20  min 
until a dark-yellow color appeared. The reaction was 
cooled to room temperature and monitored by TLC 
(using ethyl acetate:hexane in an 8:2 proportion as elu-
ent) before adding 40 mL ethyl acetate and sonicating the 
reaction to achieve complete dissolution. After the mix-
ture was placed in a separation funnel, 50  mL of water 
(pH 13) were added (three times) to eliminate the excess 
of phthalic anhydride. The ethyl acetate was recovered 
and enough Na2SO4 and activated carbon were added 
to be able to filter the mixture. Finally, the solvent was 
evaporated under a vacuum and the product was recrys-
tallized four times in CH2Cl2 solution to obtain 0.301  g 
of colorless block-like crystals (suitable for X-ray) in 
90% yield, m.p. = 171–172  °C; IR (ATR, cm−1) ύ: 3063 
(C–H, Aromatic), 2943 (C–H, Aliphatic), 2842 (O–CH3, 
Aliphatic), 1705 (C=O), 1600 (C=C), 1466 (CH2), 1427 
(CH3), 1394 (C–N), 1228 (O–CH3). 1H NMR (CDCl3, 
300 MHz) δ 2.93 (t, H-11), 3.90 (t, H-10), 3.80 (s, H-19), 
3.83 (s, H-18), 6.78 (m, H-13,16,17), 7.70 (m, H-5,6), 7.82 
(m, H-4,7); 13C NMR (CDCl3, 75 MHz) δ 168.2 (C-1,3), 
123.19 (C-4,7), 132.0 (C-5,6), 130.4 (C-8,9), 39.3 (C-10), 
34.0 (C-11), 133.9 (C-12), 111.1 (C-13), 148.7 (C-14), 
147.6 (C-15), 111.8 (C-16), 120.8 (C-17), 55.7 (C-18,19). 
ESI (m/z): 334.0956 [M+Na] [43].

X‑ray diffraction methods
Single-crystal X-ray diffraction data was recorded 
on a D8 Quest CMOS (Bruker, Karlsruhe, Germany) 
area detector diffractometer with Mo K α radiation, 
λ = 0.71073  Å. The structure was solved by using direct 
methods in the SHELXS97 [44] program of the WinGX 
package [45]. The final refinement was performed by the 
full-matrix least-squares method on F2 on the SHELXL97 
program. H atoms on C were geometrically positioned 
and treated as riding atoms, with C–H = 0.93–0.98  Å, 
and Uiso(H) = 1.5 Ueq(C). The Mercury program was 
utilized for visualization, molecular graphics and analy-
sis of crystal structures [46]. Material was prepared for 
publication with PLATON software [47]. The crystallo-
graphic data were deposited with the Cambridge Crys-
tallographic Data Centre (CCDC) as supplementary 
publication CCDC number 1563664. Copies of the data 
can be obtained free of charge upon request from the 
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (Fax: 
+44-01223-336033 or E-Mail: deposit@ccdc.cam.ac.uk).

Crystal data for C18H17NO4 (M = 311.3  g/mol): tri-
clinic, space group P − 1 (No. 2), a = 7.4363(4)  Å, 
b = 8.7363(4)  Å, c = 12.1212(5) Å, α = 89.573(2), 
β = 80.073(2), γ = 74.650(2)°, V = 747.40(6) Å3, Z = 2, 

T = 163(2) K, Dcalc = 1.38  g/cm3, 16,483 reflec-
tions measured (2.4° ≤ 2Θ ≤ 25.5°), and 2750 unique 
(Rint = 0.088, Rsigma = 0.0561) were used in all calcu-
lations. The final value of R1 was 0.049 (I > 2σ(I)) and of 
wR2 0.135 (for all data), GooF = 1.058 and Abs. coeffi-
cient = 0.098, min/max (eÅ−3), and ΔF = 0.249/− 0.302.

Molecular modeling
The optimization and vibrational frequency calculations 
were performed on Gaussian 09 software [48] with the 
DFT: B3LYP/6-311G basis set.

In vitro experiments on AChE inhibition
AChE inhibition was evaluated for compound 1 and a 
known inhibitor, neostigmine, employing the colorimet-
ric method reported by Bonting and Featherstone [49], 
with a few modifications. This method determines the 
remaining amount of ACh by measuring the formation 
of hydroxamic acid from the choline ester after incuba-
tion with the enzyme. The color produced by the reaction 
with acid ferric chloride is related to enzymatic activity, 
the value of which was established by fitting the data to a 
typical curve (Fig. 7).

Briefly, Electrophorus electricus was the source of 
AChE (Sigma Chemical Co. C1682) for the assay. A 
mixture was made with 0.1  M buffer (pH 8), 0.2 units 
of AChE, and increasing concentrations of ACh iodide 
(0.2, 0.8, 1.6, 3.2, 6.4, 9.6 and 12.8 mM) as the substrate 
for the enzymatic reaction, and 20 min later the alkaline 
hydroxylamine reagent was added. The test or reference 
compound was placed in the assay solution (at 0.2, 0.4 or 
0.8  mM) and incubated with the enzyme for 20  min at 
37  °C. Subsequently, addition was made of the alkaline 
hydroxylamine reagent and finally the FeCl3 reagent. The 
changes in absorbance at 540 nm were recorded follow-
ing 10 min of incubation in a Benchmark BIO-RAD. To 
exclude interference due to the effects of the reference 
solution, the parameters were determined with the blank, 
which was the same volume of solution with the drugs, 
buffered reagents and the enzyme but without acetylthi-
ocholine. The reaction rates were compared, and the 
inhibition in the presence of the test compounds was cal-
culated. The Ki of each AChE-inhibitor was estimated by 
using a curve constructed with the steady-state enzyme 
inhibition constants.

In vivo experiment (Lethal doses 50) on mice
Briefly, three different groups of 3 (CD1 male mice 
20–25 g) were formed, after that each group received one 
established concentration that was 10, 100 and 1000 mg/
kg of our tested compound to determine a range of tox-
icity. They were observed by 24  h, without presenting 



Page 8 of 9Andrade‑Jorge et al. Chemistry Central Journal  (2018) 12:74 

toxicity. After that we formed 3 new groups that were 
used to opening more of the dose spectrum based on 
first results, this was to probe new doses 1200, 1400 and 
1600 mg/kg [50, 51].
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