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Abstract 

Masitinib (MST) is an orally administered drug that targets mast cells and macrophages, important cells for immunity, 
by inhibiting a limited number of tyrosine kinases. It is currently registered in Europe and USA for the treatment of 
mast cell tumors in dogs. AB Science announced that the European Medicines Agency has accepted a conditional 
marketing authorization application for MST to treat amyotrophic lateral sclerosis. In our work, we focused on study-
ing in vivo metabolism of MST in Sprague–Dawley rats. Single oral dose of MST (33 mg kg−1) was given to Sprague–
Dawley rats (kept in metabolic cages) using oral gavage. Urine was collected and filtered at 0, 6, 12, 18, 24, 48, 72 and 
96 h from MST dosing. An equal amount of ACN was added to urine samples. Both organic and aqueous layers were 
injected into liquid chromatography-tandem mass spectrometry (LC–MS/MS) to detect in vivo phase I and phase 
II MST metabolites. The current work reports the identification and characterization of twenty in vivo phase I and 
four in vivo phase II metabolites of MST by LC–MS/MS. Phase I metabolic pathways were reduction, demethylation, 
hydroxylation, oxidative deamination, oxidation and N-oxide formation. Phase II metabolic pathways were the direct 
conjugation of MST, N-demethyl metabolites and oxidative metabolites with glucuronic acid. Part of MST dose was 
excreted unchanged in urine. The literature review showed no previous articles have been made on in vivo metabo-
lism of MST or detailed structural identification of the formed in vivo phase I and phase II metabolites.
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EMA has accepted a conditional marketing authorization 
application for MST to treat ALS in human. MST found 
to be e�ective for the treatment of severely symptomatic 
indolent or smouldering systemic mastocytosis [12].

Drug metabolism research is an integral part of the 
drug discovery process and is very often the factor that 
determines the success of a given drug to be marketed 
and clinically used [13]. Drug metabolism research is 
generally conducted using in� vitro and/or in� vivo tech-
niques. In� vitro techniques involve the incubation of 
drugs with di�erent types of in� vitro preparations (e.g. 
liver microsomes, hepatocytes) isolated from rats and 
subsequent sample processing and analysis using spec-
troscopic techniques [14, 15]. In�vivo techniques involve 
the administration of a single dose of the drug to rat, and 
the subsequent collection of urine that contain the drugs 
and their potential metabolites. In this work, we focused 
in the in� vivo phase I metabolites and in� vivo phase II 
MST metabolites identi�cation using LC–MS/MS [16]. 
All measurements were done using Agilent LC–MS/MS 
system that consisted of LC (Agilent HPLC 1200) cou-
pled to MS/MS detector (6410 QqQ MS) through an 
electrospray ionization source (Agilent Technologies, 
USA) [17].

MST chemical structure contains cyclic tertiary amine. 
Phase I metabolism of cyclic tertiary amines produces 
metabolites of oxidative products including N-dealkyla-
tion, ring hydroxylation, �-carbonyl formation, N-oxy-
genation, and ring opening metabolites that can be 
formed through iminium ion intermediates [18, 19].

Chemicals and methods
Chemicals
All chemicals are listed in Table�1.

In vivo metabolism of MST in Sprague–Dawley Rats
Rat dosing protocol
Male Sprague–Dawley rats (n = 6, average: 340�g, 4�weeks 
of age) were housed individually in special purpose 
metabolism cages. Cages are placed in the animal care 
facility in a 12�h light/dark cycle (7:00–19:00) and were 
allowed free access to standard animal feed and water 

that were placed in the special food and water compart-
ments attached to the metabolism cages. Rats were accli-
mated in metabolism cages for 72�h prior to the start of 
the study. MST was formulated in (4% DMSO, 30% PEG 
300, 5% Tween 80, HPLC  H2O) for oral dosing of rats. 
Doses were individually calculated for each rat such that 
everyone receives a speci�c dose. �e average dose of 
MST (Kinavet-CA1) in dogs was 10�mg�kg−1. By using the 
following equations [20–22]:

So the dose for each rat was 33.3�mg/kg. All rats except 
one were given a single dose of MST. All MST doses were 
administered by oral gavage. Urine draining into the spe-
cial urine compartments �tted to the metabolism cages 
were collected prior to drug dosing as blank control ref-
erence and at 6, 12, 18, 24, 48, 72 and 96�h following MST 
dosing. Urine samples taken from all metabolism cages 
were pooled together, labeled, and stored at (− 20�°C).

Sample preparation
Urine samples were thawed to room temperature and 
�ltered over 0.45�µm syringe �lters. Liquid liquid extrac-
tion (LLC) was used to extract MST and its related 
metabolites. Equal volume of ice cold acetonitrile (ACN) 
was added to each sample then vigorously shaken by 
vortexing for 1� min. Phase separation [23, 24] between 
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Fig. 1 Chemical structure of MST

Table 1 List of materials and chemicals

a  All solvent are HPLC grade and reference powders are of AR grade

Namea Source

Masitinib LC Labs (USA)

Tween 80 Eurostar Scientific Ltd. (UK)

Ammonium formate, HPLC grade 
acetonitrile (ACN), Dimethyl 
Sulfoxide (DMSO), Polyethylene 
glycol 300 (PEG 300) and formic 
acid

Sigma-Aldrich (USA).

Water (HPLC grade) Milli-Q plus purification system 
(USA)

Sprague–Dawley rats Animal Care Center, College of 
Pharmacy, King Saud University 
(Saudi Arabia)
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an aqueous sample and a water-miscible solvent (ACN) 
into two layers achieved by using ice cold ACN that was 
added to urine and the mixture was stored at 4�°C over-
night [25]. Low temperature leads to phase separation 
of ACN/urine mixture. �e pH of urine and the nature 
of urine matrix which contains high concentration of 
salt participated in phase separation [26]. As we did not 
want to miss any MST-related metabolites, both layers 
were removed and evaporated to dryness under stream of 
nitrogen. �e dried extracts were reconstituted in 1�mL 
of mobile phase and transferred to 1.5� mL HPLC vials 
for LC–MS/MS analysis. Control urine samples obtained 
from rats prior to drug dosing were prepared in the exact 
way described for each method of sample puri�cation.

LC–MS/MS conditions
�e LC–MS/MS parameters optimized for chromato-
graphic separation and identi�cation of rat urine extract 
components are listed in Table�2.

Identification of in vivo MST metabolites
MST-related metabolites were concentrated in the ACN 
layer while endogenous urine components and polar 
metabolites (e.g. glucuronide conjugates) were found in 
the aqueous layer. Extracted ion chromatograms for the 
expected metabolites were used to �nd metabolites in 
the total ion chromatogram of both organic and aque-
ous layers. PI studies were for the suspected compounds 
and results were interpreted and compared with the 
PI of MST. Mass scan and PI scan modes of the triple 

quadrupole mass analyzer were used for detection of 
in� vivo phase I and phase II MST metabolites. PI mass 
spectra were used to propose the metabolite chemical 
structure by reconstructing the marker daughter ions.

Results and discussion
Identification of in vivo phase I metabolic pathways of MST
�e in� vivo metabolites of MST underwent fragmenta-
tions similar to that of the parent ion that allowed us to 
identify and determine changes in the metabolite struc-
tures. �e product ion mass spectra of some metabo-
lites exhibited particular fragmentation pathways that 
provided more structural information as shown below. 
Comparison of PI mass spectra between urine extracts 
with control samples in addition to the comparison 
of PI of MST and its anticipated metabolites (Table�3) 
resulted in the detection of twenty in� vivo phase I and 
four phase II metabolites (Fig.�2). Ten in� vivo phase I 
metabolites are reported in the case of in�vitro metabo-
lism [27]. We concentrated on the structural identi�ca-
tion of the new ten in� vivo phase I and the other four 
in� vivo phase II MST metabolites. Metabolic pathways 
for in� vivo phase I metabolites were supposed to be 
N-demethylation, N-oxide formation, oxidation, oxida-
tive deamination, reduction, oxidative cleavage, benzyl 
oxidation and hydroxylation while for phase II metabo-
lites were N-conjugation of MST and the N-demethyl 
metabolite with glucuronic acid and oxidative metabo-
lites glucuronidation.

Table 2 Adjusted parameters of the supposed LC–MS/MS methodology

Parameters of LC Parameters of MS/MS

HPLC Agilent 1200 Mass spectrometer Agilent 6410 QQQ

Gradient mobile phase A:  H2O (10 mM Ammonium formate,
pH:4.1)

Ionization source Positive ESI

B: ACN Drying gas:  N2 gas
Flow rate (12 L/min)
Pressure (55 psi)

Flow rate: 0.2 mL/min

Run time: 45 min

Injection volume: 20 µL

Agilent eclipse plus  C18 column Length 50 mm ESI temperature: 350 °C

Internal diameter 2.1 mm Capillary voltage: 4000 V

Particle size 1.8 μm Collision gas High purity  N2

Temperature: 24 °C Modes Mass scan and product ion (PI)

Gradient system Time %B Analyte MST and its related in vivo phase I and phase II 
metabolites0 5

40 40 Mass parameters Fragmentor voltage: 130 V

43 40

45 5

Post time (15 min) 5 Collision energy of 20 eV
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MST excretion of in rat urine
Part of the MST oral dose was excreted unmetabolized 
in rat urine. MST parent ion was detected at m/z 499 in 
full mass scan spectrum. MST of and its major in� vivo 
metabolites (M1 and MO6) excretion in urine was 
observed after 6� h of dosing. Comparative concentra-
tions of MST, M1 and MO6 were high after 6�h and then 
began to decline by time until almost vanished after 96�h 
from dosing as shown in the overlayed PI chromatograms 
(Check Additional �le�1). Peak area ratios of MST and its 
major metabolite (M1 and MO6) in urine were plotted 
against time. Peak area ratio of each MST, M1 and MO6 
were measured at di�erent collection time considering 
the biggest peak is 100% (Fig.�3) [28].

Fragmentation of MST (Fig.�4) was explained in 
Scheme�1. Comparison of PI of MST with suspected 
peaks allowed the identi�cation of metabolic changes in 
the supposed in�vivo metabolites.

M1 in vivo phase I metabolite
�e major metabolic pathway for MST is N-demethyala-
tion. M1 was detected at m/z 485 in mass scan spectrum.

M2, M3 and M4 in vivo phase I metabolite
M2, M3 and M4 were detected at m/z 501 at di�erent 
retention times in mass scan spectrum of organic urine 
extract. PI scan for the three metabolites gave di�erent 
daughter ions. In the case of M2, parent ion at m/z 501 
was fragmented to one ion at m/z 401. �e daughter 
ion at m/z 401 supposed that there is no change in the 
methyl piperazine group. �e metabolic pathway for M2 
metabolite was supposed to be the reduction of the car-
bonyl group.

In the case of M3, parent ion at m/z 501 was frag-
mented to ions at 400.2 and 367.2 (Fig.�5). Metabolic 
pathways for M3 were supposed to be hydroxylation of 
pyridine ring and N-demethylation (Scheme�2).

In the case of M4, parent ion at m/z 501 was frag-
mented to two daughter ions at m/z 483 and at m/z 399 
(Fig.�6). �e daughter ion at m/z 399 supposed that there 
all metabolic changes occured in the methyl pipera-
zine group. Metabolic pathways for M4 metabolite were 
hydroxylation and N-demethylation of N-methyl pipera-
zine (Scheme�3).

Table 3 In vivo phase I MST metabolites

[M + H]+ PI RT (min) In vivo phase I metabolic reaction

MST 499 399 24.9

M1 485 399 27.9 N-demethylation

M2 501 401 26.6 Carbonyl group reduction

M3 501 400.2, 367.3 24.4 N-demethylation and Hydroxylation of pyridine ring

M4 501 482.9, 399.3 26.5 N-demethylation and Hydroxylation of N-methyl piperazine

M5 529 511, 429 25.1 Benzyl oxidation to carboxylic acid

M6 529 486, 400 26.9 Pyridine ring hydroxylation and N-methyl piperazine oxidation

M7 529 511,482 399, 247 29.6 Oxidation and Hydroxylation of N-methyl piperazine

MO1 515 497.2, 415, 396.8 21.7 N-oxide formation

MO2 515 497.2, 396.9 22.2 Benzylic hydroxylation

MO3 515 497.0, 400.1 23.0 Pyridine ring hydroxylation

MO4 515 497, 399, 415, 217 23.1 Pyridine ring N-oxidation

MO5 515 497, 399, 415, 217 24.0 N-oxidation

MO6 515 428, 415, 400, 381.3, 98.1, 28.0 Piperazine ring N-oxidation

M8 531 488, 402, 123 26.7 Pyridine ring hydroxylation and piperazine ring hydroxylation

M9 531 415, 381, 123 27.3 Piperazine ring hydroxylation and benzyl hydroxylation

M10 531 501, 401 29.3 Oxidative cleavage of N-methyl piperazine ring to carboxylic acid

M11 547 511 30.7 N-oxide formation of pyridine and piperazine ring and Benzylic hydroxylation [27]

MA1 431 255 10.2 Oxidative deamination

MA2 447 271 13.2 Phenyl hydroxylation and oxidative deamination

MA3 447 285, 271, 164, 111 14.5 Benzyl hydroxylation and oxidative deamination
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Fig. 2 PI chromatograms: a (MST), b (M1), c (M2–M4), d (M5–M7), e (M8–M10) and f (MO1–MO6)
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MO1 to MO6 in vivo phase I metabolite
Oxidized MST metabolite (M + O) was detected at m/z 
515 in mass scan spectrum at di�erent retention times. 
Fragmentation of parent ions at m/z 515 gave di�erent 
daughter ions as shown in the Table�3. �e structure of 
each metabolite was supposed �e metabolic pathway for 
MO metabolites was supposed to be either by hydroxyla-
tion or N-oxidation of MST [27].

M5, M6 and M7 in vivo phase I metabolite
M5, M6 and M7 metabolites were detected at m/z 529 
in full mass scan spectrum at di�erent retention times. 
PI scan for parent ions at m/z 529 gave di�erent daugh-
ter ions. In the case of M5, parent ion at m/z 529 was 

Fig. 3 MST, M1 and MO6 excretion rate

Fig. 4 PI of MST parent ion at m/z 499
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fragmented to ions at m/z 511 and at m/z 429 (Fig.�7). 
�e metabolic pathway for M5 was supposed to be ben-
zyl oxidation to carboxylic acid (Scheme�4).

In the case of M6, parent ion at m/z 529 was frag-
mented to ions at 486 and 400 (Fig.�8). �e metabolic 
pathway for M6 was supposed to be hydroxylation and 
oxidation of methyl piperazine ring (Scheme�5).

In the case of M7, parent ion at m/z 529 was frag-
mented to ions at 511, 399 and 98 (Fig.�9). Metabolic 
pathways for M7 were supposed to be hydroxylation and 
oxidation of methyl piperazine ring (Scheme�6).

M8, M9 and M10 in vivo phase I metabolite
M8, M9 and M10 metabolites were detected at m/z 531 
in full mass scan spectrum at di�erent retention times. PI 
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In the case of M9, parent ion at m/z 531 was frag-
mented to ions at 513, 415, 381 and 123 (Fig.�11). Met-
abolic pathways for M9 were supposed to be benzyl 
hydroxylation and hydroxylation of methyl piperazine 
ring (Scheme�8).

Fig. 9 PI mass spectrum of parent ion (M7) at m/z 529
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Fig. 10 PI mass spectrum of parent ion (M8) at m/z 531

scan for parent ions at m/z 531 gave di�erent daughter 
ions. In the case of M8, parent ion at m/z 531 was frag-
mented to ions at 488, 402 and 123 (Fig.�10). Metabolic 
pathways for M8 were supposed to be hydroxylation of 
pyridine and hydroxylation of methyl piperazine ring 
(Scheme�7).
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In the case of M10, parent ion at m/z 531 was frag-
mented to ions at 501 and 401 (Fig.�12). Metabolic path-
ways for M10 were supposed to be oxidative cleavage of 
N-methyl piperazine ring to carboxylic acid (Scheme�9).

M11 in vivo phase I metabolite
M11 was detected at m/z 547 in mass scan spectrum 
of the urine organic extract. PI chromatogram of urine 
organic extract at m/z 547 showed one peak at 30.72�min. 
PI scan for M11 at m/z 547 gave daughter ions at m/z 511. 
Metabolic reactions for M11 metabolite were supposed 
to be hydroxylation of benzylic carbon, oxidation of pyri-
dine nitrogen and oxidation of piperazine nitrogen.
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In vivo phase I oxidative deamination metabolic pathway 
(MA1, MA2 and MA3)
�e loss of the piperazine moiety by oxidative deamina-
tion and rapid further oxidation of the intermediate alde-
hyde to a carboxylic acid metabolite were observed for 
MA1, MA2 and MA3 in the aqueous layer of the urine/
ACN mixture. Fragmentation of parent ions at m/z 431 
and at m/z 447 gave di�erent daughter ions. �e struc-
ture of each metabolite was supposed.

MA1 was detected at m/z 431 in mass scan spectrum 
of the aqueous layer urine extract. PI chromatogram 
of urine aqueous extract at m/z 431 showed one peak 
at 10.2�min. PI scan for MA1 at m/z 431 gave daughter 
ions at m/z 255 (Fig.�13). �e daughter ion at m/z 255 
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supposed the loss of the piperazine moiety by oxidative 
deamination and rapid further oxidation of the interme-
diate aldehyde to a carboxylic acid (Scheme�10).

MA2 and MA3 were detected at m/z 447 in mass scan 
spectrum of the aqueous layer urine extract. PI chroma-
togram of urine aqueous extract at m/z 447 showed two 
peaks at 18.6 and 19.5�min. PI scan for MA2 and MA3 
at m/z 447 gave di�erent daughter ions at two di�erent 
retention times (Figs.�14 and 15).

In the case of MA2, the daughter ion at m/z 271 sup-
posed the loss of the piperazine moiety by oxidative 
deamination and rapid further oxidation of the interme-
diate aldehyde to a carboxylic acid in addition to phenyl 
hydroxylation (Scheme�11).
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In the case of MA3, the daughter ion at m/z 271 sup-
posed the loss of the piperazine moiety by oxidative 
deamination and rapid further oxidation of the inter-
mediate aldehyde to a carboxylic acid. �e other daugh-
ter ion at m/z 285 supposed benzyl hydroxylation 
(Scheme�12).

Identification of in vivo phase II metabolic pathways 
of MST
Phase II metabolic pathways were supposed to be 
N-conjugation of MST and the N-demethyl metabolite 
with glucuronic acid, and glucuronidation of oxidative 
metabolites (Table�4). Phase II metabolites were found in 
the aqueous layer of the rat urine extract in a very small 
concentration compared to in� vivo phase I metabolites. 
Excretion of all in�vivo phase II metabolites in urine was 
observed after 12�h of rat dosing and disappeared rapidly 
after 48�h of rat dosing.

MG1 in vivo phase II metabolite
MG1 was detected at m/z 675 in mass scan spectrum 
of the aqueous layer urine extract. PI chromatogram of 
urine aqueous extract at m/z 675 showed one peak at 
18.9�min. PI scan for MG1 at m/z 675 gave daughter ions 
at m/z 499 and 399 (Fig.�16). �e daughter ion at m/z 399 
supposed that direct N-conjugation of MST with glucu-
ronic. �e other daughter ion at 499 refers to the agly-
cone (MST) formed in the triple quadrupole by the loss 
of anhydroglucuronic acid (Scheme�13).

Fig. 14 PI mass spectrum of parent ion (MA2) at m/z 447

Fig. 15 PI mass spectrum of parent ion (MA3) at m/z 447
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MG2 in vivo phase II metabolite
MG2 was detected at m/z 661 in mass scan spectrum 
of the aqueous layer urine extract. PI chromatogram of 
urine aqueous extract at m/z 661 showed one peak at 
18.7�min. PI scan for MG2 at m/z 661 gave daughter ions 
at m/z 485 (Fig.�17). �e daughter ion at 485 refers to the 
aglycone (N-demethyl MST) formed in the triple quadru-
pole by the loss of anhydroglucuronic acid (Scheme�14).

MG3 and MG4 in vivo Phase II metabolites
MG3 and MG4 were detected at m/z 691 in mass scan 
spectrum of the aqueous layer urine extract. PI chroma-
togram of urine aqueous extract at m/z 691 showed two 
peaks at 18.6 and 19.5�min. PI scan for MG3 and MG4 
at m/z 691 gave di�erent daughter ions at two di�erent 
retention times (Figs.�18, 19).
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Table 4 In vivo phase II MST metabolites

Mass scan Daughter ions Retention time (min) Phase II metabolic pathway

MG1 675 499, 399 18.93 Direct N-conjugation with glucuronic acid

MG2 661 485 18.77 N-demethylation and direct N-conjugation with glucuronic acid

MG3 691 514.8 18.7 Glucuronidation of hydroxy MST at N-methyl piperazine ring

MG4 691 515.3, 414.9 19.46 Glucuronidation of hydroxy MST at benzyl carbon

Fig. 16 PI mass spectrum of parent ion (MG1) at m/z 675
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Fig. 19 PI mass spectrum of parent ion (MG4) at m/z 691
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In the case of MG3, the daughter ion at m/z 515 sup-
posed that direct O-glucuronidation of hydroxy MST. 
�e daughter ion at 515 refers to the aglycone (hydroxy 
MST) formed in the triple quadrupole by the loss of 
anhydroglucuronic acid. (Scheme�15). Hydroxylation was 
supposed to be in the N-methyl piperazine ring. In the 
case of MG4, the daughter ion at m/z 515 supposed that 
direct O-glucuronidation of hydroxy MST. �e daughter 
ion at 515 refers to the aglycone (hydroxy MST) formed 
in the triple quadrupole by the loss of anhydroglucuronic 
acid (Scheme�16). �e other daughter at m/z 415 sup-
posed that the hydroxylation of benzyl carbon.
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Conclusions
MST was excreted partially unchanged in rat urine. 
Twenty in�vivo phase I metabolites were formed by oral 
dosing of MST to Sprague–Dawley rats through six 
metabolic pathways: N-demethylation, N-oxidation, oxi-
dation, reduction, hydroxylation and oxidative deamina-
tion. Four in� vivo phase II glucuronide conjugates were 
found in the aqueous layer of rat urine extract (Fig.�20).
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