
Upadhyay and Ali ﻿Chemistry Central Journal  (2018) 12:33 
https://doi.org/10.1186/s13065-018-0395-4

RESEARCH ARTICLE

Molecular recognition of flunarizine 
dihydrochloride and β‑cyclodextrin inclusion 
complex by NMR and computational approaches
Santosh Kumar Upadhyay1*   and Syed Mashhood Ali2*

Abstract 

Background:  Flunarizine dihydrochloride (FLN) is used in the prophylactic treatment of migraine, vertigo, occlusive 
peripheral vascular disease and epilepsy. Cyclodextrins (CDs) are chiral, truncated cone shaped macrocycles known 
for their inner hydrophobic and outer hydrophilic site. They form complexes with hydrophobic drug molecules and 
enhance the solubility and bioavailability of such compounds by enhancing drug permeability through mucosal tis-
sues. NMR spectroscopy and computational docking have been recognized as an important tool for the interaction 
study of CDs-drug inclusion complexes in solution state.

Results:  The structural assignments of FLN and β-CD protons were determined by 1H NMR and 2D 1H-1H COSY NMR 
spectroscopy. 1H NMR spectroscopic studies of FLN, β-CD and their mixtures confirmed the formation of β-CD-FLN inclu-
sion complex in solution. 1H NMR titration data for β-CD-FLN inclusion complex showed 1:1 stoichiometry, an association 
constant of Ka = 157 M−1 and change in Gibbs free energy of ∆G = − 12.65 kJ mol−1. The binding constant of the β-CD 
inclusion complex with two nearly similar structures, FLN and cetirizine dihydrochloride, were compared. Two-dimen-
sional 1H-1H ROESY spectral data and molecular docking studies showed the modes of penetration of the aromatic rings 
from the wider rim side into the β-CD cavity. The possible geometrical structures of the β-CD-FLN inclusion complex 
have been proposed in which aromatic rings protrude close to the narrower rim of the β-CD truncated cone.

Conclusion:  NMR spectroscopic studies of FLN, β-CD and FLN:β-CD mixtures confirmed the formation of 1:1 inclu-
sion complex in solution at room temperature. Two-dimensional 1H-1H ROESY together with molecular docking study 
confirmed that the F-substituted aromatic ring of FLN penetrates into β-CD truncated cone and the tail of aromatic 
rings were proximal to narrower rim of β-CD. The splitting of aromatic signals of FLN in the presence of β-CD suggests 
chiral differentiation of the guest FLN by β-CD.

Keywords:  Flunarizine dihydrochloride, β-Cyclodextrin, Inclusion complex, NMR spectroscopy, Molecular 
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Introduction
Migraine is a severe headache often unilateral, com-
monly accompanied by nausea, vomiting, and extreme 
sensitivity to sound and light. Flunarizine dihydrochlo-
ride (FLN) is a large hydrophobic fluorinated pipera-
zine derivative, used in the prophylactic treatment of 

migraine, vertigo, occlusive peripheral vascular disease 
and epilepsy [1]. FLN (Fig. 1a) is a di-fluorinated deriva-
tive of cinnarizine and a poorly water-soluble drug. FLN 
is a selective calcium entry blocker with calmodulin 
binding properties and histamine H1 blocking activity. 
It is also known to prevent hepatitis C virus membrane 
fusion in a genotype-dependent manner [2] and to sup-
press endothelial angiopoietin-2 in a calcium-dependent 
fashion in sepsis [3]. FLN is reportedly effective against 
hepatitis C virus activity, preferably for the genotype 2 
viruses [4].
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Cyclodextrins (CDs) or cycloamyloses are truncated 
cone-shaped macrocycles (Fig.  1b) produced from 
starch through enzymatic degradation. CDs are a family 
of cyclic oligosaccharides and have been studied exten-
sively as supramolecular hosts [5, 6]. The three common 
CDs are crystalline, homogeneous, nonhygroscopic sub-
stances, consisting of six (α-), seven (β-), and eight (γ-) 
d-glucose units, respectively, linked by α-d-(1→4) gly-
cosidic bonds (Fig. 1b) [5, 6]. The glucose residue in CD 
has 4C1 (chair) conformation [5]. The primary hydroxyl 
groups (n) are located at the narrower rim whereas the 
wider rim is lined with secondary hydroxyl groups (2n). 
The outer surfaces of the CDs are highly hydrophilic due 
to the presence of a large number of hydroxyl groups but 
the central cavities are relatively hydrophobic (Fig.  1b). 
The outer dimension of these three common CDs are 
constant at 0.78 nm but their inner dimensions are vari-
able, being 0.57 nm for α-, 0.78 nm for β-, and 0.95 nm 
for γ-CD respectively [6]. The H-3′ and H-5′ protons of 
these CDs are located in the hydrophobic central cavity 
whereas other protons (H-1′, H-2′, H-4′ and H-6′) are 
located at the outer surface (Fig. 1b), which is relatively 
hydrophilic. These properties facilitate their aqueous sol-
ubility and ability to encapsulate hydrophobic moieties 
within their central cavities through non-covalent inter-
actions. CDs form host–guest inclusion complexes upon 
penetration of guest molecule in the central cavity of host 
CDs.

CDs are extensively studied in various areas of chem-
istry including macrocyclic [7], supramolecular [8, 9], 
agro [10], click [11], analytical [12], chromatography 
[13, 14], sugar-based surfactants [15], foods [16], cataly-
sis [17, 18], membranes [19], textiles [20], cosmetics [21, 
22], fragrance and aromas [23, 24], enzyme technology 
[25], pharmacy and medicine [26–28], microencap-
sulation [29], nanotechnologies [30–33], remediation 

[34], decontamination [35] and biotechnology [36]. The 
unique properties of CDs allow their various applica-
tions in many areas [37–40]. CDs are used to prepare 
inclusion complexes with pharmaceuticals for biomedi-
cal applications and biomedicine [22, 31, 36–38]. CDs 
are widely used in food industry as food additives, stabi-
lizing flavours, to remove undesirable compounds such 
as cholesterol, and also as agents to avoid microbiologi-
cal contaminations in the food [16]. CDs can be used to 
enhance solubility, bioavailability and stability of phar-
maceuticals [41–43]. Upon complexation with phar-
maceutical compounds, CDs form inclusion complexes 
with the ability to alter the physiochemical properties 
of the complexed drug. Various drugs such as nime-
sulide, omeprazole, piroxicam, mitomycin, diclofenac 
sodium, indomethacin and others complexed with CDs 
are approved and available in the market [42]. Inclusion 
complexes with dimethyl-β-CD are used in the prepa-
ration of vaccine Deptacel (Sanofi Group, Pasteur) for 
protection against diphtheria, tetanus and pertussis. 
CDs are also used to stabilize sensitive substances to 
light or oxygen [44], proteins [45], nanoparticles [46], 
and add value addition of taste and colour of toothpaste 
[44].

Among various known spectroscopic methods such as 
Ultraviolet–visible (UV–Vis), Fourier-transform infrared 
(FTIR) spectroscopy for the studies of inclusion complexes 
between host CDs and guest molecules, Nuclear Magnetic 
Resonance (NMR) spectroscopy is considered as one of 
the most significant analytical tool for understanding the 
interaction between host and guest molecules [47]. This 
technique provides not only the structural assignments 
of host and guest molecules but also data on the inclusion 
complex formation. Further NMR spectroscopy could also 
offer valuable information on chiral recognition or chiral 
discrimination or both [47–49]. NMR titration data can be 

Fig. 1  Structural representation of a FLN (guest) ligand and b β-CD (host) macrocycle [Source Adopted from “NMR and molecular modelling studies 
on the interaction of fluconazole with β-cyclodextrin” by S.K. Upadhyay et al. (2009) Chemistry Central Journal 3:9]



Page 3 of 9Upadhyay and Ali ﻿Chemistry Central Journal  (2018) 12:33 

used to determine the stoichiometry and association con-
stant of the host–guest complexes [50–52].

Two-dimensional (2D) NMR method such as 1H-1H 
COSY (COrrelation SpectroscopY) is a useful technique, 
which provides information on the 1H signals arising 
from neighbouring protons connected through bonds 
and protons signals emerging from up to 4 bonds can be 
captured. Two-dimensional 1H-1H Rotating-frame Over-
hauser Effect SpectroscopY (ROESY) has been found to 
be useful for the investigation of the interaction between 
CD and guest molecule as the Nuclear Overhausser 
Effect (NOE) cross-peaks are observed between the pro-
tons that are close in space even if they are not bonded 
[47, 50–52]. Two-dimensional 1H-1H ROESY provides 
useful information about the location and depth of inclu-
sion of guest molecule into CD cavity [47, 50–52].

The formation of inclusion complex of a guest mol-
ecule with CDs results in the 1H chemical shift changes 
(∆δ) in both the host and guest protons. The inclusion of 
a molecule inside the hydrophobic cavity of CD is mainly 
characterized by the chemical shift variation of the CD 
protons located inside the central cavity (H-3′ and H-5′), 
whereas other CD protons (H-1′, H-2′, H-4′ and H-6′) 
are less affected. During host–guest inclusion complex 
formation the guest molecule protons generally show 
downfield chemical shift changes but sometimes upfield 
chemical shift changes are also observed [47].

These analytical procedures revealing the structural 
details of complexes are used in pharmaceutical indus-
tries for characterization. In order to understand cor-
rect inclusion architecture of interaction between guest 
FLN and host β-CD, we report here a high-resolution 
NMR spectroscopic and computer-based molecular 
docking study. We describe our results based on the 1H 
NMR spectral data with chemical shift changes, 2D 1H-
1H COSY spectrum for assignment of protons and 1H-
1H ROESY spectrum together with molecular docking 
approaches thus elucidating the structure of the β-CD-
FLN inclusion complex.

Materials and methods
Materials
Flunarizine dihydrochloride (FLN) was a kind gift from 
Geno Pharmaceutical Ltd. India. β-cyclodextrin (β-CD) 
was obtained from Geertrui Haest, Cerestar Application 
Centre, Food & Pharma Specialities, France. These mate-
rials were used as obtained.

NMR spectroscopy
1H NMR and 2D 1H-1H NMR (COSY, ROESY) spec-
tra were recorded on a JEOL α-500 MHz instrument in 
D2O. The sample temperature was maintained at 300  K 
during all NMR experiments. The mixing time (τmix) for 

2D 1H-1H ROESY spectra was 500 ms under the spinlock 
condition using standard 1H-1H ROESY pulse sequences. 
The chemical shift values (δ) are reported in ppm. No 
external indicator was used and HDO peak at 4.80 ppm 
was considered as an internal reference throughout 
this work. 1H NMR spectra of six samples of mixtures 
of β-CD and FLN with FLN/β-CD molar ratios rang-
ing from 0.2 to 1.8 were recorded. The FLN/β-CD molar 
ratios were calculated by direct NMR integration of their 
appropriate signals. The concentration of β-CD was kept 
constant at 10  mM while that of FLN was varied from 
2.0 to 18.0 mM. Chemical shifts changes (Δδ) were cal-
culated according to the formula: �δ = δ(complex)− δ(free)

Molecular docking studies
Molecular docking studies were performed using Auto-
dock Vina 1.1.2 [53]. Three-dimensional coordinates of 
β-CD (PDB Id: 1DMB) were sourced from http://www.
rcsb.org/ while FLN was sourced from the UCSF ZINC 
database (ZINC19360739) [54]. Molecular docking of 
FLN into β-CD cavity was carried out following the 
methods as reported previously [50]. The grid centre of 
docking coordinates were x = − 6.89 Å, y = − 7.65 Å and 
z = 4.34 Å. The grid dimensions were 54 Å , 56 Å  and 
44 Å in x, y and z-axes respectively.

Results and discussion
2D 1H‑1H ROESY spectrum of β‑CD‑FLN mixture 
and structure of the β‑CD‑FLN inclusion complex by NMR 
and molecular docking approaches
The understanding of host–guest supramolecular struc-
ture is important for the pharmaceutical industry for 
development of drug-CD based new formulations. In 
order to clearly establish the identity of the aromatic 
ring involved in complexation between β-CD and FLN, 
a 2D 1H-1H ROESY spectrum of the mixture of β-CD 
and FLN was analyzed. The NMR spectroscopic stud-
ies and assignments of β-CD and FLN protons are dis-
cussed in “1H NMR spectral assignments and chemical 
shift change data of β-CD” and “1H NMR spectral assign-
ments and chemical shift change data of FLN” sections. 
Two-dimensional 1H-1H ROESY spectrum exhibited 
strong cross-correlation peak between the cavity pro-
tons of β-CD and the protons of the F-substituted aro-
matic ring of FLN thereby confirming the penetration of 
F-substituted aromatic rings into the β-CD cavity. The 
cross peaks between phenyl ring protons and β-CD cav-
ity protons were also observed but these were relatively 
weak. It is apparent from the 2D 1H-1H ROESY spectrum 
that H-1 exhibited cross peak with only H-5′ while H-2 
displayed cross peaks with both the H-3′ and H-5′ pro-
tons. The quality of 2D 1H-1H ROESY spectrum is not 
as good as required. Expansions of the parts of the 2D 

http://www.rcsb.org/
http://www.rcsb.org/
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1H-1H ROESY spectrum showing cross peaks between 
protons of aromatic rings of FLN and β-CD cavity pro-
tons are shown in Fig. 2. The full 2D 1H-1H ROESY spec-
trum displaying protons of β-CD and FLN and their NOE 
cross-correlation peaks close to proposed interaction site 
are presented in Additional file 1: Figure S1.

On the basis of 1:1 stoichiometry of the β-CD-FLN 
inclusion complex (see “Stoichiometry and association 
constant of β-CD-FLN complex” section) and 2D 1H-1H 
ROESY spectral data, it can be inferred that F-containing 
aromatic ring preferentially enters into the β-CD cavity to 
form the inclusion complex. Also, the non-observance of 
the cross peak between H-3′ and H-1 (Fig. 2b) suggested 
the position of H-1 towards narrower rim side. The pen-
etration from wider rim side would have brought H-1 
closer to H-3′ also. It appears that there are interactions 
between the phenyl ring and β-CD but the amount is 
lower compared to complex formed involving F-contain-
ing aromatic ring. The penetration of FLN into β-CD cav-
ity was reported to be from wider rim side based on 2D 
1H-1H ROESY results [55] without clear inclusion archi-
tecture. The plausible mode of inclusion and structure 
of the β-CD-FLN inclusion complex cannot be achieved 
only from 2D 1H-1H ROESY spectral data and therefore, 
another approach was required. In order to understand 
the β-CD-FLN inclusion complex structure, computer-
based molecular docking was performed using Auto-
dock Vina 1.1.2 [53]. Molecular docking studies provide 
us not only the mode of inclusion but also the depth of 
penetration inside the β-CD cavity during complexation 
process. The best-docked model of β-CD:FLN complex is 
shown in Fig. 3. It is evident that the mode of penetration 

of FLN guest into the β-CD cavity was from the wider 
rim side and similar to 2D 1H-1H ROESY results the 
F-containing aromatic ring participates more favourably 
than phenyl ring. We compared our result with cetirizine 
dihydrochloride (CTZ) which has some structural simi-
larity with FLN. CTZ, an antihistamine drug used to treat 
allergies, formed 1:1 inclusion complexes in which the 
penetration of CTZ into the β-CD cavity was from wider 

Fig. 2  a and b Partial 2D 1H-1H ROESY (500 MHz) spectra of the mixture of β-CD and FLN showing interactions between FLN and β-CD cavity 
protons (τmix = 500 ms)

Fig. 3  Computational best molecular docked conformation model 
of β-CD:FLN inclusion complex performed by Autodoc Vina 1.1.2 
[53] showing penetration of F-substituted aromatic ring into β-CD 
cavity from wider rim side. The docking affinity was obtained to be 
− 5.4 kcal mol−1. Also, see Fig. 4 and Additional file 1: Figure S2 for 
other docked conformations obtained during docking. β-CD is shown 
as ball and stick with the surface while FLN is shown as stick bond. 
All atoms are shown in their elemental colour. Non-polar hydrogens 
are not shown for the sake of clarity. The figure was prepared using 
Chimera (http://www.cgl.ucsf.edu/chimera)

http://www.cgl.ucsf.edu/chimera
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rim side [56]. Similarly our 2D 1H-1H ROESY and molec-
ular docking approach together provide information 
about the penetration of FLN from the wider rim side of 
the β-CD cavity [56]. Moreover, F-containing aromatic 
ring of FLN positioned towards the narrower rim of the 
β-CD truncated cone, which is also observed in 2D 1H-
1H ROESY spectrum containing the cross peak between 
H-1, H-2 and H-5′. In the other dockings conformations 
models, it is apparent that the phenyl ring also partici-
pates in complexation (Fig.  4). Interestingly, similar to 
2D 1H-1H ROESY results, the phenyl ring protrudes on 
the opening of the narrower rim side of the β-CD cav-
ity (Fig. 4b, f, h). The docking binding affinity for the best 
energy minimized β-CD:FLN complex was obtained to 
be − 5.4 kcal mol−1, which is favourable for such type of 

complex [50]. The ensemble of all possible computational 
docking conformations of β-CD:FLN complex is shown 
in Additional file 1: Figure S2. Based on molecular dock-
ing studies performed, it is apparent that all aromatic 
rings dock into the β-CD cavity but F-containing aro-
matic ring participates more favourably than the phenyl 
ring.

1H NMR spectral assignments and chemical shift change 
data of β‑CD
The assignment of the β-CD protons, in the spectra 
of β-CD and FLN mixture, was made with the help of 
their 1H signals and 2D 1H-1H COSY spectral data [47]. 
Expansion of 2D 1H-1H COSY spectrum of an FLN:β-CD 
mixture showing β-CD regions are shown in Additional 

Fig. 4   a–i Different binding conformations obtained during FLN docked into β-CD cavity. The docking affinity is shown under the model. β-CD is 
shown as ball and stick with the surface while FLN is shown as stick bond. All atoms are shown in their elemental colour. Non-polar hydrogens are 
not shown for the sake of clarity. The figure was prepared using Chimera (http://www.cgl.ucsf.edu/chimera)

http://www.cgl.ucsf.edu/chimera
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file 1: Figure S3. On the investigation of 1H NMR spectra 
of mixtures of β-CD and FLN, an upfield shift in H-3′ and 
H-5′ (located inside the central cavity) signals of β-CD 
was observed [47, 50–52, 56]. Other β-CD signals (H-1′, 
2′, 4′, 6′) also exhibited shift changes but these were neg-
ligible compared to H-3′ and H-5′. In the presence of 
FLN, ∆δ for H-5′ were more pronounced than those of 
H-3′ signal of β-CD.

The upfield shift of 1H signals located inside the cav-
ity, namely H-3′ and H-5′, have been attributed to the 
magnetic anisotropy effect in the β-CD cavity due to the 
inclusion of groups rich in π-electrons [51]. The con-
tinuous upfield shift changes of 1H signals observed in 
H-3′ and H-5′ of β-CD in the 1H NMR spectra of β-CD-
FLN mixtures thus confirm the formation of the inclu-
sion complex between β-CD and FLN [47, 50–52, 56]. 

Expansions of part of 1H NMR spectra of pure β-CD and 
mixture of β-CD and FLN in varying amounts of FLN are 
displayed in Fig. 5 and their ∆δ data are listed in Table 1.

1H NMR spectral assignments and chemical shift change 
data of FLN
The resonance assignment of guest FLN aromatic ring 
protons in the free as well as host β-CD bound state were 
achieved using 1H NMR as well as 2D 1H-1H COSY spec-
tral data. Part of the 2D 1H-1H COSY spectrum of the 
mixture of β-CD and FLN displaying through bond cross 
connection peaks between aromatic protons of FLN is 
shown in Fig. 6.

The aromatic protons were observed as three signals, 
a triplet at 7.20 ppm integrating for four protons, a mul-
tiplet at 7.45  ppm for three protons and a multiplet at 
7.58 ppm for six protons. Fluorine has a slight ‘donor sub-
stituent’ effect in the benzene ring. For instance, ortho-, 
meta-, and para-proton signals of fluorobenzene appear 
at 6.99, 7.24 and 7.08 ppm, respectively. In styrene, ortho, 
meta and para protons are increasingly shielded. In order 
to elucidate the question on H-1 and H-2 assignment, we 
examined for intramolecular NOE cross peaks between 
H-2 and H-3 in 1H-1H ROESY spectrum. The triplet at 
7.20 ppm (J = 8.6 Hz) was assigned to H-1 protons and it 
showed the 1H-1H COSY interaction with the multiplet 
at 7.58  ppm, which was ascribed to H-9 and H-2 pro-
tons. The observed shape of H-1 and H-2 (like triplets) 
are undoubtedly from 1H-19F cross coupling interac-
tions. It is well known that, for fluorobenzene derivatives, 
the coupling constants 3J(H, F) = 6.2–10.1 Hz and 4J(H, 
F) = 6.2–8.3  Hz. The multiplet at 7.45  ppm was due to 
H-10, 11 protons. In FLN:β-CD mixtures, the signal for 
H-2 and H-9 separated and the nature of H-2 resem-
bles a triplet. A doublet at 6.97 ppm (J = 16.0 Hz), which 
appeared in the aromatic region was ascribed to H-8, 
while the H-7 was found resonating as a merged doublet 
of the triplet at 6.32 ppm.

The aromatic protons of FLN were deshielded and pat-
tern of their 1H NMR peaks splitting in presence of β-CD 
suggests some chiral differentiation of guest FLN by 

Fig. 5  A part of 1H NMR spectra (500 MHz) showing protons of β-CD 
in the absence, as well as in the presence, of varying amount of FLN

Table 1  1H NMR (500 MHz) chemical shift change (Δδ) data for the β-CD protons in the presence of FLN

Negative values indicate upfield shift changes

[FLN]/[β-CD] H-1′ H-2′ H-3′ H-4′ H-5′ H-6′

0.2 − 0.056 − 0.001 − 0.105 − 0.022 − 0.117 − 0.009

0.4 − 0.067 − 0.003 − 0.157 − 0.033 − 0.184 − 0.019

0.7 − 0.078 − 0.005 − 0.203 − 0.043 − 0.239 − 0.045

1.0 − 0.084 − 0.008 − 0.227 − 0.058 − 0.275 − 0.052

1.3 − 0.086 − 0.011 − 0.244 − 0.060 − 0.294 − 0.053

1.8 − 0.088 − 0.007 − 0.258 − 0.062 − 0.319 − 0.057
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host β-CD [48, 49]. The 1H NMR signal for H-9, 2 which 
appeared as a merged signal in the spectrum of unbound 
FLN, separated in the spectra of some FLN:β-CD mix-
tures. The 1H NMR spectra of expanded aromatic regions 
of guest FLN in the bound as well as unbound with host 
β-CD is shown in Additional file  1: Figure S4. The 1H 
NMR shielding and deshielding pattern of β-CD and FLN 
protons in the bound state indicate the involvement of 
aromatic ring group in complexation [47] but the iden-
tity of the aromatic rings penetrating into β-CD cavity 
could not be achieved and therefore further studies were 
required. Two-dimensional 1H-1H ROESY and molecu-
lar docking studies further applied to understand β-CD-
FLN inclusion complex structure (see “2D 1H-1H ROESY 
spectrum of β-CD-FLN mixture and structure of the 
β-CD-FLN inclusion complex by NMR and molecular 
docking approach” section).

Stoichiometry and association constant of β‑CD‑FLN 
complex
Next, we wanted to determine the stoichiometry, associa-
tion constant (Ka) and the Gibb’s free energy (∆G) of the 
β-CD-FLN inclusion complex. The stoichiometry and Ka 
of the β-CD-FLN complex were established with the help 
of the Scott’s method [57]. In Scott’s equation,

where [FLN]t is the molar concentration of the guest, 
Δδobs the observed chemical shift change for a given 
[FLN]t concentration, Δδc the chemical shift change 
between a pure sample of complex and the free compo-
nent at the saturation. The plot of Δδ for the β-CD pro-
tons (H-3′ and H-5′) against [FLN] in the form of [FLN]/
Δδobs versus [FLN] appeared to be linear fits (Fig. 7) sug-
gesting 1:1 stoichiometry for the β-CD-FLN inclusion 
complex. The slope of the plot (Fig. 7) is thus equal to 1/
Δδc and the intercept with the vertical axis to 1/KaΔδc 
allowing the estimation of Ka to be 157 M−1, which is the 
average of two Ka.

We were also interested to probe the differences 
between binding constants of two nearly similar struc-
tures. The binding constant of β-CD-CTZ complex was 
reported earlier to be 70 M−1 [56], which is nearly half of 
the binding constant calculated for β-CD-FLN complex. 
This could be due to the structural differences between 
CTZ and FLN. The ∆G associated during β-CD and FLN 
inclusion complex was calculated using standard Eq. (2):

where R is the universal gas constant (J mol−1 K−1), T is 
temperature (Kelvin) and Ka is the binding constant. The 
∆G value was calculated to be − 12.65 kJ mol−1.

(1)[FLN]t/�δobs = [FLN]t/�δc + 1/Ka�δc

(2)�G = − RTlnKa

Conclusions
The 1H NMR spectral data of pure FLN, pure β-CD and 
mixtures of β-CD and FLN in D2O confirmed the com-
plexation between β-CD and FLN. The 1H NMR together 
with 2D 1H-1H COSY spectral data provided the reso-
nance assignment of host and guest molecules. The 
stoichiometry, association constant and the Gibb’s free 
energy were determined using 1H NMR titration data. 
Two-dimensional 1H-1H ROESY spectral data together 
with computational molecular docking simulation stud-
ies confirmed that F-substituted aromatic ring of guest 
penetrates into the host β-CD cavity from the wider rim 
side. The tail end aromatic rings of guest FLN were prox-
imal near to narrower rim side of truncated host β-CD 

Fig. 6  Part of the 2D 1H-1H COSY spectrum (500 MHz) of a mixture of 
β-CD and FLN, displaying through the bond interaction of aromatic 
protons of FLN
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cone. The splitting of the most of the aromatic ring pro-
tons of the FLN, in the presence of β-CD, suggests some 
chiral differentiation of guest FLN by host β-CD. The 
structural studies of FLN-β-CD inclusion complex may 
open new avenues for new drug formulation in the phar-
maceutical industry.
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