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Abstract 

Background:  Myricetin and 1,3,4-thiadiazole derivatives were reported to exhibit favorable antiviral and antibacterial 
activities. Aiming to discover novel myricetin analogues with potent activities, a series of novel myricetin derivatives 
containing 1,3,4-thiadiazole moiety were synthesized, and their antibacterial and antiviral activities were evaluated.

Result:  Bioassay results indicated that some target compounds exhibited potential antibacterial and antiviral activi-
ties. Among them, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhibited excellent antibacterial activities against 
Xanthomonas oryzae pv. Oryzae (Xoo), with EC50 values of 42.7, 38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 29.4 μg/mL, respec-
tively, which were better than that of thiadiazole-copper (94.9 μg/mL). Compounds 3b, 3d, 3e, 3f, 3i and 3o showed 
good antibacterial activities against Ralstonia solanacearum (Rs), with EC50 values of 37.9, 72.6, 43.6, 59.6, 60.6 and 
39.6 μg/mL, respectively, which were superior to that of thiadiazole-copper (131.7 μg/mL). In addition, compounds 
3d, 3f, 3i and 3m showed better curative activities against tobacco mosaic virus (TMV), with EC50 values of 152.8, 99.7, 
127.1, and 167.3 μg/mL, respectively, which were better than that of ningnanmycin (211.1 μg/mL).

Conclusions:  A series of myricetin derivatives containing 1,3,4-thiadiazole scaffold were synthesized, and their 
antibacterial activities against Xoo and Rs and their antiviral activity against TMV were evaluated. Bioassays indicated 
that some target compounds exhibited potential antibacterial and antiviral activities. These results indicated this kind 
of myricetin analogues could be further studied as potential alternative templates in the search for novel antibacterial 
and antiviral agents.
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Background
The rational use of agrochemicals plays a pivotal role in 
agricultural production by effectively controlling plant 
diseases [1, 2]. Unfortunately, the application of tradi-
tional pesticides is greatly limited due to their negative 
impacts on the environment and the rapid emergence of 
resistance [2, 3]. Therefore, searching for high-efficiency 

and environmentally friendly agrochemicals remains an 
arduous challenge in pesticide chemistry [1, 4]. In this 
process, natural products and their derivatives with new 
modes of action have been developed as pesticides that 
are safe to the environment [5, 6].

As one of important natural products in medicinal 
chemistry, myricetin was reported to exhibit extensive 
bioactivities including antibacterial [7], antiviral [8], 
anticancer [9], anti-inflammatory [10], antioxidant [11], 
and hypoglycemic activities [12]. Our previous study 
extracted a mixture containing myricetin from the bark 
of Toona sinensis and found it to exhibit moderate anti-
viral activity against tobacco mosaic virus (TMV) [13]. 
Using natural myricetin as the lead molecule, some 
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myricetin derivatives bearing Schiff-base moiety, which 
displayed good inhibitory activity against telomerase and 
excellent anticancer activity against human breast can-
cer cells MDA-MB-231, were synthesized by Xue et  al. 
[14]. Furthermore, the acceptable antibacterial activities 
against Xanthomonas oryzae pv. oryzae (Xoo) and Ralsto-
nia solanacearum (Rs) of myricetin derivatives contain-
ing acidamide moiety were also recently reported by us 
[15]. Obviously, myricetin derivatives as possible active 
ingredients play a key role in the searching for novel 
agrochemicals and pharmaceuticals (Fig. 1).

1,3,4-Thiadiazoles, which represent important nitroge-
nous heterocycles in medicinal chemistry, have attracted 
much attentions because of their various pharmacologi-
cal activities, including antibacterial [16], antifungal [17], 
antiviral [18], anticonvulsant [19], anxiolytic [20], antino-
ciceptive [21] and anticancer [22] activities. Among the 
above biological activities, acceptable antibacterial and 
antiviral activities displayed by 1,3,4-thiadiazoles have 
been reported well by chemists in recent years. For exam-
ple, Li et al. [23] found that some 1,3,4-thiadiazole sulfone 
derivatives exhibited satisfactory antibacterial activities 
against rice bacterial leaf blight and leaf streak. Recently, 
we also found some 1,3,4-thiadiazole derivatives bearing 

1,4-pentadiene-3-one moiety to exhibit remarkable anti-
viral activities against plant viruses [24].

Considering these above results, we speculated that 
introducing 1,3,4-thiadiazole fragment into myricetin 
might generate novel lead compounds with greater bio-
logical activities. Thus, a series of myricetin derivatives 
containing 1,3,4-thiadiazole scaffold were synthesized 
(Scheme 1), and their antibacterial activities against Xoo 
and Rs and their antiviral activity against TMV were 
evaluated.

Results and discussion
Chemistry
A series of myricetin derivatives containing thiadiazole 
moiety were successfully prepared in two steps in our 
current work. All of the target compounds 2, 3a–3q were 
characterized by infrared spectrum (IR), nuclear mag-
netic resonance (NMR) spectroscopy, and high resolu-
tion mass spectrum (HRMS) analysis. The IR spectral 
data of compounds 2, 3a–3q showed characteristic  fre-
quencies at 1723–1709  cm−1 and 1640–1621  cm−1, 
which are assigned to the characteristic vibrations of 
C=O and C=N–, respectively. In the 1H NMR spectra, 
the characteristic −CH2—groups between myricetin 
scaffold and 1,3,4-thiadiazole heterocycle was observed 

Toona sinensis

Extract O

OH

OH

O
OH

HO

OH

Myricetin

Structural
optimization

O

OMe

OMe

O
O

MeO

OMe

Target srtuctures
N N

S
S

R

OH OMe

Fig. 1  Design strategy for target molecules
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as a signal at approximately 5.27–5.21 ppm. The chemi-
cal shifts at 165.59–161.63 and 161.70–154.04 ppm in the 
13C NMR spectra confirmed the existence of C=O and 
C=N-groups, respectively.

Antibacterial activity screening of the title compounds 
against Xac and Rs in vitro
Using Ralstonia solanacearum (strain MR111, Guizhou 
University, China) and Xanthomonas oryzae pv. oryzae 
(strain PXO99A, Nanjing Agricultural University, China) 
as the tested bacterial strains, the antibacterial activities 
of title compounds have been evaluated by the turbidim-
eter test [1, 3, 4, 6], and the commercial agent thiadia-
zole-copper was tested as the control. Some compounds 
with good antibacterial activity against Xoo and Rs were 
tested at five double-declining concentrations (100, 50, 
25, 12.5 and 6.25 μg/mL) to obtain the corresponding 
EC50 values.

The title compounds (2, 3a–3q) were evaluated for 
antibacterial activities against Xoo and Rs in vitro. Results 
in Table  1 indicated that most synthesized compounds 
exhibited appreciable antibacterial activities against Xoo 
and Rs. For example, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m 
and 3p showed excellent antibacterial activities against 
Xoo at 100 μg/mL, with inhibition rates of 84.5, 84.9, 99.6, 
87.3, 77.5, 84.5, 99.3 and 84.3%, respectively, which were 

better than that of thiadiazole-copper (52.3%). The inhi-
bition rates of compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 
3p against Xoo at 50 μg/mL were 54.6, 60.1, 65.2, 90.7, 
82.6, 68.2, 80.8 and 71.2%, respectively, which were bet-
ter than that of thiadiazole-copper (28.7%). Additionally, 
compounds 3b, 3d, 3e, 3f, 3i and 3o demonstrated good 
antibacterial activities against Rs at 100 μg/mL, with 
inhibition rates of 81.4, 64.3, 75.7, 69.3, 64.3 and 65.4%, 
respectively, which were superior to  that of thiadiazole-
copper (46.7%). Compounds 3b, 3d, 3e, 3f, 3i and 3o 
showed good antibacterial activities against Rs at 50 μg/
mL (60.2, 30.4, 65.5, 40.5, 52.2 and 52.1%, respectively), 
which were better than thiadiazole-copper (32.2%).

To further understand antibacterial activity of synthe-
sized compounds, the EC50 values of some target com-
pounds, which exhibited better antibacterial activities 
against Xoo and Rs than thiadiazole-copper, were calcu-
lated and summarized in Table  2. Notably, compounds 
2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhibited excellent anti-
bacterial activities against Xoo, with EC50 values of 42.7, 
38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 29.4 μg/mL, respec-
tively, which were better than that of thiadiazole-copper 
(94.9 μg/mL). Meanwhile, compounds 3b, 3d, 3e, 3f, 3i 
and 3o showed remarkable antibacterial activities against 
Rs, with EC50 values of 37.9, 72.6, 43.6, 59.6, 60.6 and 

Table 1  Inhibition effect of the compounds 4, 5a–5q against Xoo and Rs

Average of three replicates
a  Thiadiazole-copper and myricetin were used for comparison of antibacterial activity

Compd. R Xoo Rs

100 μg/mL 50 μg/mL 100 μg/mL 50 μg/mL

2 – 84.5 ± 3.9 54.6 ± 8.5 46.5. ± 9.7 28.1 ± 7.8

3a H 84.9 ± 5.8 60.1 ± 2.5 36.0 ± 2.6 32.4 ± 6.1

3b 4-NO2Ph 81.4 ± 4.6 65.2 ± 9.0 81.5 ± 6.7 60.2 ± 6.9

3c 2-MePh 47.2 ± 1.5 25.9 ± 3.7 49.3 ± 6.7 30.3 ± 3.8

3d 4-ClPh 99.6 ± 0.1 90.7 ± 4.0 64.3 ± 8.8 30.4 ± 4.1

3e Me 58.2 ± 5.1 27.4 ± 5.4 75.7 ± 8.1 65.5 ± 9.9

3f 2-ClPh 87.3 ± 2.5 82.6 ± 2.6 69.3 ± 0.8 46.5 ± 9.1

3g 2-FPh 79.7 ± 3.6 21.0 ± 4.9 45.2 ± 5.9 38.3 ± 2.4

3h 4-OMePh 37.3 ± 6.2 15.5 ± 8.9 28.1 ± 7.6 27.1 ± 6.0

3i 2,4-di-ClPh 77.5 ± 1.4 68.2 ± 5.4 64.3 ± 6.1 52.1 ± 2.8

3j 3-NO2Ph 30.0 ± 1.2 79.8 ± 9.7 45.2 ± 8.3 31.1 ± 4.3

3k 4-BrPh 47.3 ± 4.7 23.3 ± 7.5 26.4 ± 2.6 10.7 ± 1.6

3l 2-BrPh 50.7 ± 1.9 31.6 ± 4.5 24.0 ± 4.7 16.2 ± 0.7

3m 2-Cl-thiazol-5-yl 99.4 ± 3.9 80.8 ± 3.7 26.3 ± 3.2 25.0 ± 6.6

3n Ph 38.3 ± 4.5 17.7 ± 0.1 45.3 ± 5.6 44.7 ± 5.1

3o 4-MePh 52.6 ± 3.3 37.6 ± 5.5 65.4 ± 1.7 52.1 ± 5.7

3p Pyridin-3-yl 84.3 ± 3.8 71.2 ± 5.3 38.0 ± 6.2 12.8 ± 6.0

Myricetina – 40.1 ± 8.3 21.0 ± 5.6 28.6 ± 2.2 17.5 ± 3.3

Thiadiazole-coppera – 52.4 ± 2.0 28.7 ± 4.1 46.7 ± 2.0 32.2 ± 2.1
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39.6 μg/mL, respectively, which were superior to that of 
thiadiazole-copper (131.7 μg/mL).

The inhibitory rates in Tables  1 and 2 indicated that 
most synthesized compounds bearing the same substi-
tuted fragment were found to exhibit better antibacte-
rial activity against Xoo than Rs. For example, the EC50 
values of title compounds 3b, 3d, 3f and 3i against Xoo 
were respectively 20.8, 12.9, 22.7 and 27.3 μg/mL, which 
were better than that against Rs (37.9, 72.6, 59.6 and 60.6 
μg/mL, respectively). The antibacterial results in Tables 1 
and 2 also indicated that the different groups on R had 
significant effects on the antibacterial activity of the tar-
get compounds. Obviously, the presence of heterocycles 
can effectively enhance the antibacterial activity against 
Xoo. As examples of this phenomenon, the compounds 
3m and 3p, which contain respectively 2-Cl-thiazol-
5-yl and pyridin-3-yl groups, exhibited fine antibacterial 
activities against Xoo at 50 μg/mL, with the inhibition 
rates of 80.8 and 71.2%, respectively, which were supe-
rior to that of  thiadiazole-copper (28.7%). Meanwhile, 
when R was substituted with 4-NO2Ph, 4-ClPh, 2-ClPh 
and 2,4-di-ClPh groups, the corresponding compounds 
3b, 3d, 3f and 3i exhibit remarkable antibacterial activi-
ties against Xoo, with the EC50 values of 20.8, 12.9, 22.7 
and 27.3 μg/mL, respectively, which were better than that 
of thiadiazole-copper (94.9 μg/mL).

Antiviral activity screening of the title compounds 
against TMV in vivo
Using growing N. tobacum L. leaves at the same age as 
the test subjects, the curative and protective activi-
ties against TMV were evaluated based on the half-leaf 
blight spot method [25–27], and the commercial agent 
ningnanmycin was tested as the control under the same 

conditions. The antiviral activity against TMV in  vivo 
at 500 μg/mL was listed in Tables 3 and 4. The prelimi-
nary bioassays results indicated that the inhibitory rates 
of title compounds against TMV at 500 μg/mL ranged 
from 18.2 to 68.4% in terms of their curative activity, and 
ranged from 21.5 to 60.8% in terms of their protective 
activity. Among them, the inhibitory rates of compounds 
3d, 3f, 3i and 3m in curative activity were 59.8, 68.4, 66.8 
and 57.1%, respectively, which were better than that of 
ningnanmycin (51.8%). Moreover, compounds 3c, 3i and 
3m were found to exhibit significant protective activities 
(58.4, 60.8 and 56.7%, respectively), which were similar to 
ningnanmycin (58.3%). 

To further understand antiviral activity of synthesized 
compounds, the EC50 values of 3d, 3f, 3i and 3m were 
calculated and summarized in Table 4. Notably, the EC50 
values of 3d, 3f, 3i and 3m were respectively 152.8, 99.7, 
127.1 and 167.3  μg/mL, which were better than that of 
ningnanmycin (211.1 μg/mL).

The antiviral results in Tables  3 and 4 indicated that 
most of synthesized compounds bearing the same sub-
stituted fragment exhibited better protective activity 
than curative activity against TMV. Meanwhile, Results 
in Tables 3 and 4 also indicated that the different groups 
on R had significant effects on the anti-TMV activity of 
the target compounds. Obviously, the presence of ben-
zyl chloride groups can effectively enhance the curative 
activity of title compounds against TMV. For example, 
compounds 3d, 3f, 3i and 3m, which contain respectively 
2-ClPh, 4-ClPh, 2,4-di-ClPh and 2-Cl-thiazol-5-yl groups, 
exhibited excellent curative activities against TMV, with 
the EC50 values of 152.8, 99.7, 127.1 and 167.3  μg/mL, 
respectively, which were better than that of  ningnanmy-
cin (211.1 μg/mL). Furthermore, when the R was 2-MePh, 

Table 2  EC50 values of target compounds against Xoo and Rs

Average of three replicates
a  The commercial agricultural antibacterial agent thiadiazole-copper was used for comparison of antibacterial activity

Compd. Xoo Rs

Regression equation r EC50 (µg/mL) Regression equation r EC50 (µg/mL)

2 y = 2.513x + 0.902 0.99 42.7 ± 2.6 / / /

3a y = 2.885x + 0.454 0.99 38.6 ± 1.4 / / /

3b y = 1.199x + 3.420 0.99 20.8 ± 3.6 y = 2.685x + 0.762 0.99 37.9 ± 1.0

3d y = 2.328x + 2.418 0.97 12.9 ± 5.8 y = 2.770x-0.154 0.99 72.6 ± 1.6

3e / / / y = 2.485x + 0.925 0.98 43.6 ± 3.8

3f y = 1.982x + 2.314 0.98 22.7 ± 3.6 y = 3.004x-0.332 0.99 59.6 ± 2.0

3i y = 1.401x + 2.989 0.99 27.3 ± 1.8 y = 2.365x + 0.786 0.99 60.6 ± 2.1

3m y = 2.723x + 1.565 0.98 18.3 ± 3.6 / / /

3p y = 2.058x + 1.979 0.99 29.4 ± 1.0 / / /

3o / / / y = 1.017x + 3.375 0.96 39.6 ± 5.3

Thiadiazole-coppera y = 1.999x + 1.047 0.99 94.9 ± 2.2 y = 0.930x + 3.028 0.98 131.7 ± 2.9
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2,4-di-ClPh and 2-Cl-thiazol-5-yl groups, the protective 
activities of corresponding compounds 3c, 3i and 3m at 
500 μg/mL were 58.4, 60.8 and 56.7%, respectively, which 
were similar to that of ningnanmycin (58.3%).

Methods and materials
Chemistry
The melting points of the products were determined 
on an XT-4 binocular microscope (Beijing Tech Instru-
ment Co.). The 1H NMR and 13C NMR (CDCl3 or 
DMSO as solvents) spectroscopies were performed on 
a JEOL-ECX 500 NMR spectrometer at room tempera-
ture using TMS as an internal standard. The IR spectra 
were recorded on a Bruker VECTOR 22 spectrometer 
using KBr disks. High-performance liquid chromatog-
raphy mass spectrometry was performed on a Thermo 
Scientific Q Exactive (USA). Unless noted, all solvents 
and reagents were purchased from Shanghai Titan Sci-
entific Co., Ltd, and were treated with standard meth-
ods. Based on the synthesis procedures described in our 
previous work [14], intermediates 1 (2-((5,7-dimethoxy-
4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)
oxy)aceto-hydrazide) were prepared using myricetrin 

(5,7-dihydroxy-3-(3,4,5-trihydroxy-6-methyltetrahydro-
2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-
chromen-4-one) as the starting material.

General synthesis procedure for 5,7‑dimethoxy‑2‑(3,4,5‑tri‑
methoxyphenyl)‑3‑ ((5‑mercapto‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (2)
To a solution of intermediate 1 (1.00  g, 2.17  mmol) 
in methanol (30  mL), potassium hydroxide (0.20  mL, 
3.16  mmol) and carbon disulfide (0.21  mL, 3.47  mmol) 
were added, and the reaction mixture was heated under 
reflux for 16  h. After the reaction was cooled to room 
temperature, 50 mL of water was added to the mixture, 
and the pH of the solution was adjusted to five with dilute 
HCl. Then, a solid precipitated was filtered and recrys-
tallized with ethanol to obtain the intermediate 2. white 
solid, m. p. 154–155 °C, yield 50.1%; IR (KBr, cm−1): 3229, 
2939, 2837, 1639, 1634, 1608, 1575, 1498, 1466, 1357, 
1253, 1211, 1130, 944, 816; 1H NMR (500 MHz, DMSO-
d6) δ 7.24 (s, 2H, Ar–H), 6.87 (d, J = 2.1 Hz, 1H, Ar–H), 
6.53 (d, J = 2.1 Hz, 1H, Ar–H), 5.09 (s, 2H, CH2), 3.91 (s, 
3H, OCH3), 3.86 (s, 9H, 3 OCH3), 3.77 (s, 3H, OCH3); 13C 
NMR (125 MHz, DMSO-d6) δ 183.1, 176.9, 169.4, 165.6, 

Table 3  Antiviral activities of the title compounds against TMV in vivo at 500 μg/mL

Average of three replicates
a  Ningnanmycin and myricetin were used for comparison of antiviral activity

Compd. Curative activity (%) Protection activity (%) Compd. Curative activity (%) Protection activity (%)

2 18.2 ± 7.3 21.5 ± 9.1 3j 28.7 ± 3.8 39.4 ± 3.1

3a 46.7 ± 5.2 50.3 ± 9.3 3k 28.0 ± 8.6 33.0 ± 7.5

3b 53.8 ± 9.0 54.1 ± 9.4 3l 33.9 ± 9.4 34.2 ± 5.4

3c 37.0 ± 9.1 58.4 ± 1.0 3m 57.1 ± 9.6 56.7 ± 8.2

3d 59.8 ± 9.2 54.3 ± 9.0 3n 48.4 ± 5.9 42.1 ± 7.1

3e 28.7 ± 8.3 35.4 ± 5.1 3o 50.8 ± 3.6 47.3 ± 2.9

3f 68.4 ± 7.4 54.4 ± 7.7 3p 34.6 ± 5.4 36.5 ± 1.6

3g 36.4 ± 3.8 38.6 ± 7.7 Myricetina 28.8 ± 6.7 34.4 ± 7.2

3 h 44.8 ± 9.4 45.2 ± 1.5 Ningnanmycina 51.8 ± 4.3 58.3 ± 2.9

3i 66.8 ± 9.8 60.8 ± 8.3

Table 4  The EC50 values of 5d, 5f, 5i and 5m against TMV

Average of three replicates
a  The commercial agricultural antiviral agent ningnanmycin was used for comparison of antiviral activity

Compd. TMV Regression equation r EC50 (µg/mL)

500 μg/mL 250 μg/mL

3d 59.8 ± 6.2 55.2 ± 4.4 y = 0.473x − 3.967 0.98 152.8 ± 3.2

3f 68.4 ± 7.4 64.2 ± 8.8 y = 0.744x − 3.512 0.99 99.7 ± 2.7

3i 66.8 ± 9.8 63.3 ± 5.8 y = 0.816x + 3.823 0.99 127.1 ± 2.6

3m 57.1 ± 9.6 52.3 ± 8.5 y = 0.361x + 4.197 0.99 167.3 ± 4.8

Ningnanmycina 51.3 + 2.6 50.3 + 3.8 y = 0.203x + 4.154 0.97 211.1 ± 3.6
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164.6, 163.5, 158.2, 157.9, 145.03, 143.4, 129.9, 113.5, 
111.2, 101.5, 98.6, 67.3, 65.5, 61.5, 61.4, 61.3; HRMS 
(HPLC) m/z: 519.0890, found 519.0883 ([M+H]+).

General synthesis procedures for title compounds 3a–3p
To a solution of 2 (1.16  mmol) in acetonitrile (30  mL), 
sodium carbonate (1.74  mmol) and CH3I (1.74  mmol) 
were added, and the reaction mixture was stirred at 40 °C 
for 5 h. After the reaction was completed and cooled to 
room temperature, a solid precipitated was filtered and 
recrystallized with methanol to obtain the title com-
pound 3a. Based on the similar method, the title com-
pounds 3b–3p were prepared.

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑((5‑(methylth
io)‑1,3,4‑thiadiazol‑2‑yl)methoxy)‑4H‑chromen‑4‑one (3a)
A white solid, m. p. 183–184  °C, yield 50.3%; IR (KBr, 
cm−1): 3006, 2957, 2839, 1645, 1616, 1580, 1474, 
1427, 1417, 1212, 1163, 1158, 993, 819, 768; 1H NMR 
(500  MHz, CDCl3) δ 7.10 (s, 2H, Ar–H), 6.47 (s, 1H, 
Ar–H), 6.34 (s, 1H, Ar–H), 5.23 (s, 2H, CH2), 3.95 (s, 3H, 
OCH3), 3.90-3.87 (m, 12H, 4 OCH3), 2.56 (s, 3H, CH3); 
13C NMR (125 MHz, CDCl3) δ 173.3, 166.6, 164.4, 163.3, 
161.1, 159.0, 154.3, 152.9, 140.1, 138.6, 125.1, 109.3, 
106.1, 96.2, 92.7, 62.3, 61.03, 56.5, 56.4, 56.9, 14.4; HRMS 
(HPLC) m/z: 555.0866, found 555.0837 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑
((5‑((4‑nitrobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3b)
A yellow solid, m. p. 124–125  °C, yield 30.1%; IR (KBr, 
cm−1): 2942, 1700, 1637,1604, 1575, 1519, 1471, 1455, 
1349, 1362, 1243, 1211, 1164, 1126, 1108, 1017, 856, 821; 
1H NMR (500  MHz, DMSO-d6) δ 8.13 (d, J =  8.7  Hz, 
2H, Ar–H), 7.62 (d, J = 8.7 Hz, 2H, Ar–H), 7.18 (s, 2H, 
Ar–H), 6.82 (d, J = 2.1 Hz, 1H, Ar–H), 6.50 (d, J = 2.1 Hz, 
1H, Ar–H), 5.21 (s, 2H, CH2), 4.48 (s, 2H, CH2), 3.87 (s, 
3H, OCH3), 3.83 (s, 3H, OCH3), 3.77 (s, 6H, 2 OCH3), 
3.70 (s, 3H, OCH3); 13C NMR (125  MHz, DMSO-d6) 
δ 172.1, 164.6, 164.5, 164.2, 160.9, 158.8, 153.2, 153.1, 
147.4, 145.1, 140.2, 138.6, 130.8, 128.5, 125.2, 124.6, 
124.1, 108.8, 106.4, 96.8, 93.8, 62.3, 60.7, 56.7, 56.6, 56.5, 
35.2; HRMS (HPLC) m/z: 676.1030, found 676.0.0985 
([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((2‑methylbenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3c)
A white solid, m. p. 155–157  °C, yield 54.3%; IR (KBr, 
cm−1): 3010, 2954, 2838, 1649, 1610, 1572, 1511, 1470, 
1452, 1424, 1356, 1211, 1194, 1181,1166, 1126, 1058, 
1019, 978,949, 827, 817; 1H NMR (500  MHz, CDCl3) 
δ 7.26 (s, 1H, Ar–H), 7.25 (s, 1H, Ar–H), 7.14 (s, 2H, 

Ar–H), 7.11 (d, J = 7.8 Hz, 2H, Ar–H), 6.49 (d, J = 2.2 Hz, 
1H, Ar–H), 6.37 (d, J = 2.2 Hz, 1H, Ar–H), 5.27 (s, 2H, 
CH2), 4.31 (s, 2H, CH2), 3.97 (s, 3H, OCH3), 3.91 (s, 3H, 
OCH3), 3.90 (s, 3H, OCH3), 3.88 (s, 6H, 2 OCH3), 2.31 
(s, 3H, CH3); 13C NMR (125 MHz, CDCl3) δ 173.3, 165.7, 
164.4, 163.3, 161.2, 159.0, 154.1, 153.0, 140.3, 138.7, 
138.1, 132.0, 129.6, 129.2, 125.1, 109.4, 106.1, 96.2, 92.7, 
62.4, 61.1, 56.6, 56.4, 56.0, 36.5, 29.8, 21.3; HRMS (HPLC) 
m/z: 645.1335, found 645.1330 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((4‑chlorobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3d)
A white solid; m. p. 127–128  °C; yield, 60.1%; IR (KBr, 
cm−1): 3003, 2947, 2838, 1652, 1633, 1613, 1578, 1492, 
1477, 1469, 1416, 1356, 1241, 1212, 1132, 1058, 1017, 
948, 839, 814; 1H NMR (500  MHz, CDCl3) δ 7.33 (t, 
J = 5.7 Hz, 2H, Ar–H), 7.27 (d, J = 1.6 Hz, 1H, Ar–H), 
7.14 (s, 2H, Ar–H), 6.50 (d, J = 2.0 Hz, 1H, Ar–H), 6.38 
(d, J  =  2.0  Hz, 1H, Ar–H), 5.27 (s, 2H, CH2), 4.30 (s, 
2H, CH2), 3.98 (s, 3H, OCH3), 3.91 (d, J =  2.7  Hz, 6H, 
2 OCH3), 3.89 (s, 6H, 2 OCH3); 13C NMR (125  MHz, 
CDCl3) δ 173.3, 165.2, 164.4, 163.5, 161.2, 159.0, 154.1, 
152.9, 140.2, 138.7, 134.1, 133.9, 130.6, 129.0, 125.1, 109.4, 
106.1, 96.2, 92.7, 62.4, 61.1, 56.6, 56.4, 56.0, 35.9; HRMS 
(HPLC) m/z: 665.0789, found 665.0746 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑((5‑(ethylthio)‑
1,3,4‑thiadiazol‑2‑yl)methoxy)‑4H‑ chromen‑4‑one (3e)
A white solid, m. p. 187–188  °C; yield 35.3%; IR (KBr, 
cm−1): 2953, 2836, 1645, 1634, 1580, 1492, 1472, 1452, 
1414, 1357, 1213, 1169, 1123, 1105, 992, 817; 1H NMR 
(500 MHz, DMSO-d6) δ 7.18 (s, 2H, Ar–H), 6.81 (s, 1H, 
Ar–H), 6.49 (s, 1H, Ar–H), 5.22 (s, 2H, CH2), 3.87 (s, 
3H, OCH3), 3.83 (s, 3H, OCH3), 3.80 (s, 6H, 2 OCH3), 
3.72 (s, 3H, OCH3), 3.07 (q, J =  6.8  Hz, 2H, CH2), 1.24 
(t, J =  4.5  Hz, 3H, CH3); 13C NMR (125  MHz, DMSO-
d6) δ 172.1, 165.3, 164.6, 163.7, 160.9, 158.8, 153.3, 153.1, 
140.2, 138.5, 125.2, 108.8, 106.3, 96.7, 93.8, 62.2, 60.7, 
56.7, 56.6, 56.5, 26.9, 15.1; HRMS (HPLC) m/z: 569.1022, 
found 569.0983 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((2‑chlorobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3f)
A white solid, m. p. 112–113  °C; yield 36.6%; IR (KBr, 
cm−1): 2997, 2942, 2838, 1636, 1603, 1578, 1572, 1505, 
1490, 1470, 1454, 1415, 1350, 1245, 1211, 1164, 1127, 
1108, 1018, 1003, 853, 820; 1H NMR (500 MHz, CDCl3) 
δ 7.52 (d, J  =  7.4  Hz, 1H, Ar–H), 7.38–7.34 (m, 1H, 
Ar–H), 7.20 (m, 2H, Ar–H), 7.15 (s, 2H, Ar–H), 6.49 (d, 
J = 2.2 Hz, 1H, Ar–H), 6.37 (d, J = 2.1 Hz, 1H, Ar–H), 
5.28 (s, 2H, CH2), 4.45 (s, 2H, CH2), 3.97 (s, 3H, OCH3), 
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3.91 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 3.87 (s, 6H, 2 
OCH3); 13C NMR (125  MHz, CDCl3) δ 173.3, 165.5, 
164.4, 163.6, 161.2, 159.0, 154.0, 153.0, 140.2, 138.7, 
134.4, 133.5, 131.6, 129.8, 129.7, 127.2, 125.1, 109.4, 
106.0, 96.2, 92.6, 62.4, 61.1, 56.8, 56.4, 56.0, 34.5; HRMS 
(HPLC) m/z: 665.0789, found 665.0747 (([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((2‑fluorobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3g)
A white solid, m. p. 124–125  °C, yield 70.4%; IR (KBr, 
cm−1): 2975, 2942, 2842, 1637, 1604, 1492, 1470, 
1455, 1415, 1350, 1244, 1212, 1167, 1167, 1126, 1106, 
1017, 1005, 855; 1H NMR (500  MHz, CDCl3) δ 7.44 (t, 
J = 7.6 Hz, 1H, Ar–H), 7.25 (d, J = 1.3 Hz, 1H, Ar–H), 
7.14 (s, 2H, Ar–H), 7.09–6.98 (m, 2H, Ar–H), 6.48 (s, 
1H, Ar–H), 6.36 (s, 1H, Ar–H), 5.28 (s, 2H, CH2), 4.37 (s, 
2H, CH2), 3.96 (s, 3H, OCH3), 3.90 (s, 6H, 2 OCH3), 3.87 
(s, 6H, 2 OCH3); 13C NMR (125  MHz, CDCl3) δ 173.3, 
165.4, 164.4, 163.5, 161.2, 160.3, 159.8, 159.0, 154.1, 
153.0, 140.3, 138.7, 131.5, 130.2, 125.1, 124.4, 122.8, 
115.8, 115.6, 109.4, 106.1, 96.2, 92.7, 62.4, 61.0, 56.5, 
56.0, 29.9; HRMS (HPLC) m/z: 649.1085, found 649.1046 
([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((4‑methoxybenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3h)
A white solid, m. p. 146–147  °C, yield 35.7%; IR (KBr, 
cm−1): 2950, 1755, 1645, 1629, 1604, 1507, 1492, 1457, 
1430, 1410, 1354, 1249, 1210, 1180, 1161, 1129, 1112, 
1064, 1016, 841, 816; 1H NMR (500 MHz, CDCl3) δ 7.27 
(d, J =  8.1  Hz, 2H, Ar–H), 7.19 (s, 1H, Ar–H), 6.83 (d, 
J =  7.5 Hz, 4H, Ar–H), 6.50 (s, 1H, Ar–H), 5.23 (s, 2H, 
CH2), 4.29 (s, 2H, CH2), 3.87 (s, 3H, OCH3), 3.83 (s, 3H, 
OCH3), 3.78 (s, 6H, 2 OCH3), 3.70 (s, 3H, OCH3), 3.69 
(s, 3H, OCH3); 13C NMR (125  MHz, CDCl3) δ 172.2, 
167.0, 164.6, 163.9, 160.9, 159.4, 158.8, 153.1, 140.2, 
138.6, 130.9, 128.4, 125.3, 114.5, 114.0, 108.8, 106.4, 96.7, 
93.8, 63.1, 62.3, 60.7, 56.6, 55.6, 35.9; HRMS (HPLC) m/z: 
639.1447, found 639.1444 ([M+H]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑((5
‑((2,4‑dichlorobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3i)
A white solid, m. p. 154–155  °C, yield 90.1%; IR (KBr, 
cm−1): 2944, 1643, 1616, 1571, 1460, 1416, 1355, 
1242, 1216, 1162, 1135, 1058, 1018, 955, 827; 1H NMR 
(500 MHz, CDCl3) δ 7.51 (d, J = 8.3 Hz, 1H, Ar–H), 7.38 
(d, J = 2.1 Hz, 1H, Ar–H), 7.17 (d, J = 8.3 Hz, 1H, Ar–H), 
7.14 (s, 2H, Ar–H), 6.50 (d, J = 2.1 Hz, 1H, Ar–H), 6.38 
(d, J = 2.1 Hz, 1H, Ar–H), 5.28 (s, 2H, CH2), 4.40 (s, 2H, 
CH2), 3.98 (s, 3H, OCH3), 3.91 (s, 6H, 2 OCH3), 3.88 (s, 

6H, 2 OCH3); 13C NMR (125 MHz, CDCl3) δ 173.3, 165.2, 
164.4, 163.7, 161.2, 159.0, 154.0, 153.0, 138.7, 135.1, 
134.9, 132.4, 132.2, 129.6, 127.5, 125.1, 109.4, 106.1, 96.2, 
92.7, 62.4, 61.1, 56.6, 56.4, 56.0, 33.8; HRMS (HPLC) m/z: 
699.0399, found 699.0365 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑
((5‑((3‑nitrobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3j)
A white solid, m. p. 180–181  °C, yield 50.5%; IR(KBr, 
cm−1): 2942, 1700, 1637, 1604, 1575, 1519, 1471, 1455, 
1349, 1362, 1243, 1211, 1164, 1126, 1108, 1017, 856, 821; 
1H NMR (500  MHz, CDCl3) δ 8.10 (d, J =  8.1  Hz, 1H, 
Ar–H), 7.75 (d, J = 7.6 Hz, 1H, Ar–H), 7.56 (t, J = 7.5 Hz, 
1H, Ar–H), 7.49–7.43 (m, 1H, Ar–H), 7.14 (s, 2H, Ar–H), 
6.50 (d, J  =  2.1  Hz, 1H, Ar–H), 6.37 (d, J  =  2.2  Hz, 
1H,Ar–H), 5.27 (s, 2H, CH2), 4.68 (s, 2H, CH2), 3.97 (s, 
3H, OCH3), 3.91 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 3.86 
(s, 6H, 2 OCH3); 13C NMR (125  MHz, CDCl3) δ 173.3, 
165.7, 164.4, 163.8, 161.2, 159.0, 154.0, 153.0, 147.6, 
140.3, 138.8, 134.1, 133.1, 132.5, 129.4, 125.7, 125.1, 109.4, 
106.1, 96.2, 92.7, 62.4, 61.0, 56.6, 56.4, 56.0, 34.2; HRMS 
(HPLC) m/z: 676.1030, found 676.1012 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((4‑bromobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3k)
A white solid, m. p. 131–132  °C; yield, 39.4%; IR (KBr, 
cm−1): 2945, 1634, 1605, 1558, 1471, 1426, 1352, 1246, 
1212, 1163, 1130, 1018, 820; 1H NMR (500 MHz, CDCl3) 
δ 7.43 (d, J = 8.3 Hz, 2H, Ar–H), 7.28 (s, 1H, Ar–H), 7.25 
(s, 1H, Ar–H), 7.13 (s, 2H, Ar–H), 6.49 (d, J =  2.2  Hz, 
1H, Ar–H), 6.38 (d, J = 2.2 Hz, 1H, Ar–H), 5.26 (s, 2H, 
CH2), 4.27 (s, 2H, CH2), 3.98 (s, 3H, OCH3), 3.91 (s, 6H, 
2 OCH3), 3.88 (s, 6H, 2 OCH3); 13C NMR (125  MHz, 
CDCl3) δ 173.3, 165.2, 164.4, 163.5, 161.2, 159.0, 154.1, 
152.9, 140.2, 138.7, 134.4, 132.0, 131.0, 125.1, 122.3, 109.4, 
106.1, 96.2, 92.7, 62.4, 61.1, 56.6, 56.4, 56.0, 35.9; HRMS 
(HPLC) m/z: 709.0293, found 709.0237 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((2‑bromobenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3l)
A white solid, m. p. 116–117  °C, yield 45.4%; IR (KBr, 
cm−1): 3004, 2943, 1633, 1603, 1560, 1545, 1492, 1467, 
1428, 1416, 1353, 1247, 1213, 1166, 1112, 1126, 1109, 
1018, 1005, 862, 815; 1H NMR (500  MHz, CDCl3) δ 
7.57–7.52 (m, 2H, Ar–H), 7.23 (t, J = 7.5 Hz, 1H, Ar–H), 
7.16–7.11 (m, 3H, Ar–H), 6.49 (d, J = 2.2 Hz, 1H, Ar–H), 
6.37 (d, J = 2.2 Hz, 1H, Ar–H), 5.28 (s, 2H, CH2), 4.46 (s, 
2H, CH2), 3.97 (s, 3H, OCH3), 3.90 (d, J =  1.0  Hz, 6H, 
2 OCH3), 3.87 (s, 6H, 2 OCH3); 13C NMR (125  MHz, 
CDCl3) δ 172.2, 164.6, 164.4, 164.2, 160.9, 158.8, 153.3, 
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153.1, 140.1, 138.6, 135.5, 133.4, 132.0, 130.7, 128.6, 
125.3, 124.5, 108.8, 106.4, 96.7, 93.8, 62.3, 60.7, 56.7, 56.6, 
56.5, 37.1; HRMS (HPLC) m/z: 709.0284, found 709.0246 
([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑((5‑(((2‑chlo‑
rothiazol‑5‑yl)methyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3m)
A white solid, m. p. 120–121  °C, yield 58.3%; IR (KBr, 
cm−1): 2996, 2945, 1645, 1634, 1606, 1572, 1506, 1484, 
1456, 1414, 1352, 1242, 1212, 1164, 1130, 1106, 1050, 
870, 821; 1H NMR (500 MHz, DMSO-d6) δ 7.56 (s, 1H, 
Ar–H), 7.19 (s, 2H, Ar–H), 6.83 (s, 1H, Ar–H), 6.50 (s, 
1H, Ar–H), 5.24 (s, 2H, CH2), 4.61 (s, 2H, CH2), 3.87 (s, 
3H, OCH3), 3.83 (s, 3H, OCH3), 3.78 (s, 6H, 2 OCH3), 
3.69 (s, 3H, OCH3); 13C NMR (125  MHz, DMSO-d6) 
δ 172.1, 164.6, 164.5, 164.4, 160.9, 158.8, 153.3, 153.1, 
151.1, 141.8, 140.1, 138.6, 137.8, 125.2, 108.8, 106.4, 96.8, 
93.8, 62.3, 60.7, 56.7, 56.6, 56.5, 28.4; HRMS (HPLC) m/z: 
672.0306, found 672.0262 ([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑((5‑(benzylthi
o)‑1,3,4‑thiadiazol‑2‑yl)methoxy)‑4H‑ chromen‑4‑one (3n)
A white solid, m. p. 160–161  °C, yield 35.7%; IR (KBr, 
cm−1): 2979, 2942, 1634, 1602, 1579, 1505, 1492, 1470, 
1454, 1416, 1351, 1246, 1211, 1163, 1128, 1108, 1000, 
823; 1H NMR (500 MHz, DMSO-d6) δ 7.34 (d, J = 6.9 Hz, 
2H, Ar–H), 7.25 (d, J = 10.3 Hz, 3H, Ar–H), 7.18 (s, 2H, 
Ar–H), 6.82 (t, J = 4.6 Hz, 1H, Ar–H), 6.49 (d, J = 2.1 Hz, 
1H, Ar–H), 5.22 (s, 2H, CH2), 4.34 (s, 2H, CH2), 3.87 (s, 
3H, OCH3), 3.83 (s, 3H, OCH3), 3.79 (d, J  =  13.8  Hz, 
6H, 2 OCH3), 3.70 (d, J = 7.8 Hz, 3H, OCH3); 13C NMR 
(125  MHz, CDCl3) δ 172.2, 164.9, 164.6, 164.0, 160.9, 
158.8, 153.3, 153.1, 140.1, 138.6, 136.6, 129.5, 129.1, 
128.4, 125.3, 108.8, 106.4, 96.7, 93.8, 62.3, 60.7, 56.7, 56.6, 
56.5, 36.1; HRMS (HPLC) m/z: 631.1179, found 631.1143 
([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑ 
((5‑((4‑methylbenzyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3o)
A white solid, m. p. 166–167  °C, yield 28.7%; IR (KBr, 
cm−1): 2933, 2838, 1649, 1610, 1578, 1511, 1470, 1410, 
1357, 1239, 1121, 1160, 1126, 1019, 938, 817; 1H NMR 
(500 MHz, DMSO-d6) δ 7.23 (s, 1H, Ar–H), 7.21 (s, 1H, 
Ar–H), 7.18 (s, 2H, Ar–H), 7.07 (d, J = 7.9 Hz, 2H, Ar–H), 
6.80 (d, J = 2.2 Hz, 1H, Ar–H), 6.48 (d, J = 2.2 Hz, 1H, 
Ar–H), 5.23 (s, 2H, CH2), 4.29 (s, 2H, CH2), 3.86 (s, 3H, 
OCH3), 3.82 (s, 3H, OCH3), 3.78 (s, 6H, 2 OCH3), 3.70 
(s, 3H, OCH3), 2.22 (s, 3H, CH3); 13C NMR (125  MHz, 
DMSO-d6) δ 172.1, 164.9, 164.5, 163.9, 160.9, 158.7, 
153.3, 153.1, 140.2, 138.6, 137.7, 133.4, 129.6, 129.4, 
125.3, 108.8, 106.4, 96.7, 93.8, 62.3, 60.7, 56.7, 56.6, 56.5, 

36.0, 21.2; HRMS (HPLC) m/z: 645.1335, found 645.1300 
([M+Na]+).

5,7‑Dimethoxy‑2‑(3,4,5‑trimethoxyphenyl)‑3‑((5
‑((pyridin‑3‑ylmethyl)thio)‑1,3,4‑thiadiazol‑2‑yl)
methoxy)‑4H‑chromen‑4‑one (3p)
A white solid, m. p. 155–156  °C, yield 60.1%; IR (KBr, 
cm−1): 2943, 2839, 1633, 1622, 1602, 1505, 1470, 1464, 
1428, 1351, 1247, 1212, 1166, 1128, 1109, 856, 817; 1H 
NMR (500  MHz, DMSO-d6) δ 8.56 (s, 1H, Ar–H), 8.43 
(d, J = 4.5 Hz, 1H, Ar–H), 7.77 (d, J = 7.5 Hz, 1H, Ar–H), 
7.35–7.24 (m, 1H, Ar–H), 7.18 (s, 2H, Ar–H), 6.82 (s, 1H, 
Ar–H), 6.50 (s, 1H, Ar–H), 5.21 (s, 2H, CH2), 4.38 (s, 2H, 
CH2), 3.87 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.77 (s, 6H, 2 
OCH3), 3.70 (s, 3H, OCH3); 13C NMR (125 MHz, DMSO-
d6) δ 172.1, 164.6, 164.6, 164.1, 160.9, 158.8, 153.3, 153.1, 
150.5, 149.4, 140.1, 138.6, 137.1, 133.0, 125.3, 124.1, 108.8, 
106.4, 96.7, 93.8, 62.3, 60.7, 56.7, 56.6, 56.5, 33.3; HRMS 
(HPLC) m/z: 632.1131, found 632.1095 ([M+Na]+).

Conclusions
Aiming to discover novel myricetin analogues with 
potent activities, a series of novel myricetin derivatives 
containing 1,3,4-thiadiazole moiety were synthesized, 
and their antibacterial activities against Xoo and Rs and 
their antiviral activity against TMV were evaluated. Bio-
assays indicated that some target compounds exhibited 
potential antibacterial and antiviral activities. Among 
them, compounds 2, 3a, 3b, 3d, 3f, 3i, 3m and 3p exhib-
ited excellent antibacterial activities against Xoo, with 
EC50 values of 42.7, 38.6, 20.8, 12.9, 22.7, 27.3, 18.3 and 
29.4 μg/mL, respectively, which were better than  that 
of thiadiazole-copper (94.9 μg/mL). Compounds 3b, 
3d, 3e, 3f, 3i and 3o showed good antibacterial activi-
ties against Rs, with EC50 values of 37.9, 72.6, 43.6, 59.6, 
60.6 and 39.6  μg/mL, respectively, which were superior 
to that of thiadiazole-copper (131.7 μg/mL). In addition, 
compounds 3d, 3f, 3i and 3m showed better curative 
activities against TMV, with EC50 values of 152.8, 99.7, 
127.1, and 167.3  μg/mL, respectively, which were bet-
ter than that of ningnanmycin (211.1 μg/mL). Given the 
above results, this kind of myricetin analogues could be 
further studied as potential alternative templates in the 
search for novel antibacterial and antiviral agents.
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