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Abstract

Background: In the present study, we show the correlation of quantum chemical structural descriptors with the
activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to
quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical
descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier
data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set
as implemented in Gaussian 09 software.

Results: Variable selection and model development were carried out by stepwise multiple linear regression
methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model
was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2

values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy
barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess
the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers.

Conclusions: A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled
an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and
dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation
barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

Keywords: Quantitative structure-activation barrier relationships, Quantum chemical structural descriptors,
HOMO LUMO Energy, Diels-Alder ligations, Multivariate linear regression and artificial neural network modelling
Background
Activation energy is the minimal energy required to start
a chemical reaction. It corresponds to the potential barrier
separating the minima of potential energy of reactants and
products. The free energy of activation is reversible work
required to bring the system from the minimum of react-
ive well to the top of the barrier. For basically all the con-
densed phase reactions the transition state is valid and in
order to calculated the rate constant it is enough to calcu-
late the activation free energy. Still locating the transition
state is not easy and therefore one has to proceed with
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reproduction in any medium, provided the or
computationally less demanding methods. The free energy
difference between initial geometry-optimized reactants
and the transition state at maximal potential energy bar-
rier is correlated with the rate constant or reactivity of the
reactant molecules. Structure-reactivity relationship is a
variant of structure–property-activity relationship studies
[1,2]. The concept of quantitative structure–property-ac-
tivity relationship (QSAR/ QSPR) was originated from the
idea of Crum-Brown and Fraser as early as 1870 when
they proposed that biological response was a function of
chemical structure. Although studies in structure–prop-
erty-activity relationships go back to antiquity since the
times of Crum-Brown and Fraser [3], it is only in the re-
cent times that one witnesses a vigorous study of it as an
interdisciplinary area of molecular design and modelling
by developing quantitative relationship between molecular
l Ltd. This is an open access article distributed under the terms of the Creative
commons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:marjana.novic@ki.si
http://creativecommons.org/licenses/by/2.0


Nandi et al. Chemistry Central Journal 2013, 7:171 Page 2 of 13
http://journal.chemistrycentral.com/content/7/1/171
activity or property (such as partition coefficient (log P),
boiling point, melting point, acid and base constant, chro-
matographic retention index, toxicity, or reactivity) and
theoretical structural properties such as constitutional,
electrostatic, geometrical, topological, or quantum chem-
ical molecular characteristics [4-8]. A significant dimen-
sion to such studies has been extended largely due to the
approach from the view point of developing quantitative
relationship between reactivity and theoretical structural
quantum chemical properties by soft computations which
increase the probability of success and reduce the time
and cost involvement in the chemical design, discovery
and modelling of potential reactions and candidates [9-11].
But there are only a few quantitative structure-activation
barrier relationship studies using quantum chemical struc-
tural parameters concerning the modelling of promising
chemical reactions [12,13].
One of the important fields of bio orthogonal chemis-

try for designing of efficient reactions is well known
Diels-Alder ligation because of its higher rate and select-
ivity in water [14-21]. The Diels–Alder reaction is an or-
ganic cycloaddition between a conjugated diene and a
substituted alkene, commonly termed the dienophile,
to form a substituted cyclohexene system. Otto Paul
Hermann Diels and Kurt Alder first documented the
novel reaction in 1928 for which they were awarded the
Nobel Prize in Chemistry in 1950 for their work on the
eponymous reaction. The Diels–Alder reaction is gener-
ally considered as one of the more useful reactions in or-
ganic chemistry since it requires very little energy to
create a cyclohexene ring, which is useful in many other
organic reactions [22-26] to gain insights into structure,
dynamics and function of bio molecules. Diels-Alder
ligation of electron-rich hexadiene and electron-deficient
maleimide has been found to be facilitated by electron
withdrawing groups (e.g., C = O and C ≡N) on the dieno-
phile and electron-donating groups (e.g., –R and –OR)
on the diene which would be effective for the bio-
conjugation of peptides [27], small molecules [28,29], and
oligonucleotides [30,31]. It has also been used for the bio-
conjugation of carbohydrate to proteins [32,33].
There have been a number of successful explanations

regarding the Diels–Alder reactions from the view point
of molecular orbital theory. Woodward, Hoffmann, and
Fukui used molecular orbital theory to explain that over-
lapping between p orbitals of the substituents on the
dienophile with p orbitals of the substituents on the
diene is favourable, helping to bring the two molecules
together [34-36]. Tang et al. [13] carried out a systematic
theoretical study based on M06-2X/6-31 + G(d)//B3LYP/
6-31G(d) level on the design of new dienophiles in order
to extend the scope of Diels–Alder ligation. A drawback
of the Diels–Alder ligation is that the widely used malei-
mide moiety as a typical Michael acceptor can readily
undergo Michael addition with nucleophiles in living sys-
tems. Thus, Tang et al. calibrated a theoretical method to
calculate the activation barriers of Diels–Alder reactions
by benchmarking the calculations against the available
experimental data for 72 non-catalysed Diels-Alder li-
gations. They have also calculated Diels-Alder barriers of
σ-electron withdrawing group substituted alkenes, cyclic
alkenes with consideration of electronic and ring strain ef-
fect and barriers of Diels-Alder and thiol addition reac-
tions of designed alkenes which are efficient reactions and
nucleophile-tolerant in living system. The method is time
consuming and due to its complexity sometimes it fails to
optimize the reactant complex at a transition state level.
Due to the above reasons, an attempt has been made

in the present investigation to find an alternative and
cheaper theoretical method to evaluate activation bar-
riers of the Diels-Alder reactions based on quantitative
structure-activation barrier relationship (QSABR) model-
ling utilizing theoretical quantum chemical descriptors cal-
culated solely from the chemical structure of the ligation
reactant molecules. The energies of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbitals (LUMO) are quantum chemical quan-
tities that can govern the chemical reactions. They are cal-
culated from the structures of reactant molecules utilizing
quantum-chemical methods, which can explain reactivity
correlated with the activation barriers of a complete mol-
ecule as well as of molecular fragments and substituents
[37,38]. Computed descriptor based QSABR model pro-
duces comparable results as those calculated by Tang et al.
at more complicated transition state theory based calcu-
lation using M06-2X/6-31 + G(d)//B3LYP/6-31G(d). The
QSABR model was validated by introducing training and
test set concept and was then applied for the prediction of
Diels-Alder barriers of alkenes substituted with σ-electron
withdrawing groups, cyclic alkenes and cyclopropene deriv-
atives. The present protocol based on computed quantum
chemical descriptors based on HOMO and LUMO energies
of reactants can successfully predict activation barriers of
σ-electron-withdrawing-group-substituted cyclopropenes,
cyclic alkenes and barriers of Diels-Alder reactions studied
by Tang et al. [13] at a more computationally demanding
and not always successful transition state level. The pro-
posed modelling methodology can be a useful tool to ob-
tain the structure-activation barrier relationships of bio
molecules and thus propose new ligations in click chemis-
try. The computational approach developed is a potential
theoretical bench mark for the design of efficient and se-
lective Diels-Alder ligation reactions.

Results and discussion
Computation of quantum chemical descriptors
We have calculated 24 quantum chemical properties
using HOMO and LUMO energetics of the dienes and
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dienophiles involved in 72 reactions considered in this
study. The activation barriers calculated using the
Eyring–Polanyi equation [2] with experimental reaction
rates obtained from literature [19,39-43] have been taken
into account to formulate quantitative structure-activation
barrier relationships modelling. Quantum chemical struc-
tural descriptors were calculated from structures of stan-
dalone reactants, different dienes and dienophiles listed in
Additional file 1: Table S1. Some of the reactions were
chosen for the test set; see labelling of ID numbers of reac-
tions, entries of the first column, and the explanation in
the footnote to Additional file 1: Table S1. Chemical struc-
tures of dienes and dienophiles along with activation bar-
rier data for all reactions are given in Additional file 1:
Table S1.
The calculated descriptors are briefly described in

Table 1. Hardness (η), softness (SOF), electronegativity (χ),
electrophilicity (ω), and dipole moment, which are calcu-
lated by Gaussian09 [44], and orbital interaction energy
difference (ΔE), are the important electronic structure
features used to describe stability, reactivity, chemical
Table 1 List of calculated quantum chemical properties used

No. Notation

1 HOMOd

2 LUMOa

3 HOMOa

4 LUMOd

5 (HOMOd - LUMOa)

6 (HOMOa - LUMOd)

7 ΔE

8 ηd

9 ηa

10 (ηd − ηa)

11 χd

12 χa

13 (χd − χa)

14 ωd

15 ωa

16 (ωd − ωa)

17 ΔHOMO

18 ΔLUMO

19 SOFd

20 SOFa

21 ΔSOF

22 DMd

23 DMa

24 ΔDM
a dienophile; ddiene.
potential and other related properties of molecules, see
Eqs. (1, 2, 3, 4 and 5). Hardness has been used to under-
stand chemical reactivity and stability of molecules.
Electronegativity was introduced by Pauling as a power
of an atom in a molecule to attract electron to itself.
Softness is a property of molecule that measures the ex-
tent of chemical reactivity and is obtained as
reciprocal value of hardness. Electrophilicity was pro-
posed as a measure of energy lowering due to maximal
electron flow between donor and acceptor. The most ob-
vious and most often used quantity to describe the polar-
ity is the dipole moment of the molecule. The total
dipole moment, however, reflects only the global polarity
of a molecule.
Inspired by the work of Maynard et al. [45], Parr and

co-workers [46] have provided a definition of electrophi-
licity (ω) as

ω ¼ μ2

2η
¼ χ2

2η
ð1Þ
in this study

Definition

Highest occupied molecular orbital energy of the diene

Lowest unoccupied molecular orbital energy of the dienophile

Highest occupied molecular orbital energy of the dienophile

Lowest unoccupied molecular orbital energy of the diene

Difference between HOMOd and LUMOa

Difference between HOMOa and LUMOd

Orbital interaction energy difference between the corresponding orbitals
of the reactants as calculated by the formula proposed by Sustmann.

Hardness of the diene

Hardness of the dienophile

Difference between Hardness of the diene and dienophile

Electronegativity of the diene

Electronegativity of the dienophile

Difference between electronegativity of the diene and dienophile

Electrophilicity of the diene

Electrophilicity of the dienophile

Difference between electrophilicity of the diene and dienophile

Difference between HOMO levels of the diene and dienophile

Difference between LUMO levels of the diene and dienophile

Softness of the diene

Softness of the dienophile

Difference between softness of the diene and dienophile

Dipole moment of the diene

Dipole moment of the dienophile

Difference between dipole moments of the diene and dienophile
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where μ is the chemical potential, a Lagrange multiplier
associated with the normalization of density, defined as

μ ¼ ∂E
∂N

� �
V rð Þ

¼ −
I þ A
2

¼ ELUMO þ EHOMO

2
ð2Þ

η is the absolute hardness given by

μ ¼ ∂2E
∂N2

� �
V rð Þ

¼ I−A
2

¼ ELUMO−EHOMO

2
ð3Þ

and softness (SOF) is given by (1/η). It should be noted
that softness, hardness and polarizability are related
quantities as molecules with high hardness/low softness
have low polarizability and vice versa. Moreover, Vela and
Gazquez [47] demonstrated a linear relationship between
polarizability and the global softness of a system.
Parr et. al. [46] define the electronegativity (χ) as the

negative of chemical potential (−μ)

χ ¼ − μ ¼ ∂E
∂N

� �
V rð Þ

¼ I þ A
2

¼ −
ELUMO þ EHOMO

2

ð4Þ
In the above definitions for an N-electron system with

total energy E and external potential V(r), I and A are
the ionization potential and the electron affinity, respect-
ively, whereas EHOMO and ELUMO are the energies of the
highest-occupied and lowest-unoccupied molecular or-
bitals, respectively. According to the Koopman’s theorem
[48], I is simply the eigenvalue of HOMO with a nega-
tive sign and A is the eigenvalue of LUMO with a nega-
tive sign.
The interaction energy difference (ΔE) between the

corresponding orbital of the dienes and dienophiles
was calculated using the following formula proposed by
Sustmann [49]:

ΔE ¼ HOMOd − LUMOað Þ þ HOMOa − LUMOdð Þ
HOMOd − LUMOað Þ � HOMOa − LUMOdð Þ

ð5Þ
where d is referring to the dienes and a indicates dieno-
philes. In this simplified form of the interaction energy,
we assume equal contributions of the atomic orbital co-
efficients at the centres where the new bonds are formed
together with the resonance integral as a measure for the
strength of the interaction of the reactants.
Quantum chemical descriptors have long been produ-

cing a crucial source of information for modelling chem-
ical reactivity [50-56] and thus have great importance in
the development of quantitative structure activation bar-
rier relationships dealing with the chemical, physical,
biochemical, and pharmacological properties of chemical
compounds. A total number of 24 quantum chemical
descriptors are calculated solely from the structures of
dienes and dienophiles, which are subjected to model
quantitative structure-reactivity and quantitative struc-
ture activation barrier relationships utilizing Stepwise-
multiple linear regression methods.

Linear QSABR model details
As it is shown in Additional file 1: Table S1, we have 72
Diels Alder reactions along with experimental activation
barriers considered from the literatures. Stepwise-MLR
method has been applied to develop quantitative struc-
ture activation barrier relationship modeling which focus
influences of quantum chemical descriptors (described
in Table 1) towards activation energy barriers that can
be predicted easily with the application of such models
avoiding complexity of the calculation at transition state
level. QSABR model developed for all Diels-Alder reac-
tions is given as

ΔGð Þ ¼ −6:4� 8:5þ 12:67� 3:4ð ÞΔSOF
þ 1846:00� 748ð Þωd − 148:00� 45ð ÞΔHOMO

þ 291:00� 73ð ÞLUMOd þ 145:00� 54ð Þωa

− 485:00� 252ð Þχd
ð6Þ

N= 72, R2 = 0.831, F = 53, QLoo
2 = 0.784, PRESS = 437.271,

SE = 2.30
In the above equation, N, R2, QLoo

2 , PRESS and SE repre-
sent number of observations, squared regression coeffi-
cient, leave-one-out (LOO) cross-validated R2, predictive
sum of square deviations and standard error of the regres-
sion, respectively. These are commonly used measures of
acceptance of QSAR models [57-59]. R2 and cross vali-
dated (LOO) Q2 of a model can be obtained from:

R2 ¼ 1−

XN

i¼1
ΔGexp−ΔGcalc
� �2

XN

i¼1
ΔGexp− �ΔG
� �2 ð7Þ

R2 is a measure of explained variance.

Q2
Loo ¼ 1−

XN

i¼1
ΔGexp−ΔGpred
� �2

XN

i¼1
ΔGexp− �ΔG
� �2 ð8Þ

where, ΔGexp, ΔGcalc, ΔGpred indicate experimental, cal-
culated and predicted activation barriers respectively
and Δ ̅G̅ indicates mean of experimental activation barrier
values.
In this set of reactions, the computed quantum chem-

ical structural descriptors represent a significant impact
on the activation energy barriers. Eq. (6) can explain
83% and predict 78% of variance of the activation bar-
riers of the studied reactions. LUMO level of the diene,
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difference between softness and difference between the
HOMO levels of the dienes and dienophiles, electrophi-
licity of the dienes and dienophiles and electronegativity
of the dienes can produce significant impact on the acti-
vation barriers.
Thus it is evident from this study that the application

of quantum chemical structural properties can generate
quantitative structure activation barrier relationship model
with good prediction accuracy of the activation barriers.
The model should be statistically validated prior to predic-
tion of new reactions using such QSABR model.

QSABR model validation and prediction of activation
barriers
Further evaluation of model's stability and prediction
ability has been performed by dividing the total data set
(72 reactions) into training and test sets at a random
basis, taking care of equal distribution of the objects
over the whole reactivity space. Therefore both sets con-
tain reactions from the available data space. Compounds
with asterisk in Additional file 1: Table S1 were selected
as test set comprising of 24% of the total reaction data.
The quality of the training model is calculated by R2 and
cross-validated QLoo

2 values for the training set and an
external validation was performed by calculating predict-
ive R2 (Rpred

2 ) for the test set reactions. Predictive R2

(Rpred
2 ) for the test set is calculated as

R2
pred ¼ 1−

∑N
i¼1 ΔG exp testð Þ−ΔGpred testð Þ

� �2
∑N
i¼1 ΔG exp testð Þ−�Δ �G exp trainð Þ

� �2 ð9Þ

where, ΔGexp(test) and ΔGpred(test) indicate experimental
and predicted activation barriers of the test set and
Δ̅G̅ exp(training) indicates mean of experimental activation
barriers of the training set. For a predictive model, the
value of Rpred

2 should be more than 0.5 [60].
The quantitative structure activation barrier relation-

ship model formulated by using stepwise-MLR method
for the training reaction set is obtained as

ΔG ¼ −121:3� 43:7 − 195:00� 49ð ÞΔLUMO

þ 1286� 333ð Þωa þ 1127:00� 326ð Þ ωd–ωað Þ
þ 493:00� 147ð ÞLUMOd − 6:10� 2:5ð ÞΔE
þ 7:10� 3:9ð ÞSOFd þ 0:21� 0:14ð ÞDMa

ð10Þ
N= 55, R2 = 0.865, F = 43, QLoo

2 = 0.800, PRESS = 300.461,
SE = 2.06, Rpred

2 = 0.880.
This QSABR equation can explain and internally pre-

dict 86.5% and 80% of variances of the activation bar-
riers of the studied training reactions and it can produce
88% of the external model predictability for the test re-
actions. Due to rather high error in coefficients shown
in parentheses in Eq. (10), the applicability domain of the
MLR model was assessed during the external validation
procedure and reported below, in the chapter “Prediction
of activation barriers for new reactions”. One can observe
that many of the descriptors selected when using the whole
data set are different from the descriptors in the model
built using the training set only. The differences may occur
because the descriptors used are correlated and the step-
wise method can use one descriptor or a set of descriptors
to replace another one while producing a model of similar
quality. Due to a large search space several local minima of
similar quality can be found, which all provide reasonably
good predictions. Also the chemical properties represented
in a selected set of descriptors and thus correlating most
with the reaction barriers can be interpreted similarly.
Electrophilicity and dipole moment of the dienophile,

electrophilicity differences between the reactants, LUMO
level and softness of the dienes have positive impact on
the activation barriers. It means that decreasing the values
of these variables may produce lower activation barriers
for the Diels-Alder reactions and may give higher rate of
reactions. Negative coefficients of ΔLUMO and ΔE indi-
cate that small increase in the difference between LUMO
energies and orbital interaction energies of dienes and
dienophiles may decrease activation barriers. This dis-
tinction is of fundamental importance from the phys-
ical chemist’s point of view and should be helpful for
designing of promising Diels-Alder reactions prior to ex-
perimental synthesis.
Eq. (10) has been used to predict activation barriers of

the training and test reactions. Predicted activation bar-
riers for all 72 observations are given in Additional file 1:
Table S1. The plot of experimental versus predicted activa-
tion barriers for training and test reactions is represented
in Figure 1. Root mean square error of prediction is
2.14 kcal/mol and linear correlation coefficient between ex-
perimental versus predicted activation barrier is R2 = 0.85
which is almost satisfying according to the linear correl-
ation coefficient (R2 = 0.93) of the same reactions calcu-
lated by Tang et al. [13].
From the Additional file 1: Table S1 it is evident that

the predicted activation barriers for all the reactions are
in good agreement with their corresponding experi-
mental results. A detailed comparison of experimental
and predicted activation barriers is evident from Figure 2,
which includes also the Artificial Neural Network model
results (ANN).

Nonlinear QSABR model details
The error back-propagation neural network model was de-
veloped with 55 training data (55 reactions, see Additional
file 1: Table S1). The ANN which was chosen as the best
model had input layer with seven neurons, five hidden
neurons and one neuron in the output layer. Optimal



Figure 1 Plot of experimental and predicted activation barrier (ΔG) for 72 reactions.
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parameters were chosen according to the lowest RMS er-
rors obtained from Leave-one-out on training data, see
Additional file 2: Figure S1, taking into account that the re-
siduals should be randomly distributed around zero. The
model was tested by 17 test objects as explained in MLR
modeling approach. The predictions for all models and cal-
culations from Tang [13] are compiled in Figure 2.
BP-ANN with 5 hidden neurons was trained during

4800 epochs with learning rate 0.6 and momentum 0.2.
Observed RMS error was 2.22 kcal/mol and 2.33 kcal/mol
for the training set objects and testing set objects, respect-
ively. Leave-one-out for the training set objects resulted in
Figure 2 Comparison between experimental and predicted ΔG values
RMS error equal to 2.74 kcal/mol. Predictive Rpred
2 for test

set was 0.83 and QLoo
2 was 0.76. The regression plot of ex-

perimental versus predicted ΔG values by the BP-ANN
model is shown in Figure 3.
There is a small difference between RMS errors for

ANN and MLR model which is slightly in favour of the
developed MLR model. This result implies that the non-
linearity in the relationship between the descriptors
(LUMOd, ΔE, ωa, (ωd − ωa), ΔLUMO, SOFd, and DMa)
and the property (activation barrier) for the studied Diels
Alder reactions is not essential and does not represent a
problem for QSABR models. When comparing RMS error
.



Figure 3 Comparison of experimental activation barriers with those predicted by ANN-model.
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of predictions (training + test set results) for Tang’s, MLR
and ANN model, we observe the values 1.76, 2.14, and
2.25 respectively. We can observe in Figure 2, that in gen-
eral ΔG values predicted by all three models match well
with the experimental ones. While Tang’s results show very
good fit for the set of reactions we have used as test set ob-
jects, their predictions for the reactions from our training
set seem for most of the cases a little below experimental
values, especially in the case of reactions 30, 37, 70, 71, and
72 (see Figure 2 and Additional file 1: Table S1 for details).
In a closer examination of the prediction errors, there
are approximately 84% of values lower than experimen-
tal ones in Tang’s calculations, and around 45% in MLR
and ANN models. The average residuals of all predic-
tions are −1.28, 0.29 and 0.14 kcal/mol in Tang’s calcula-
tion, MLR and ANN, respectively. Although the results
are acceptable, they are suggesting a moderate systematic
error in Tang’s calculations. Since we are interested in the
diene-dienophile pairs which give low activation barrier,
the values with the predictions with lowest ΔG values are
the most interesting. And as we shall see in the following
section, all three models identify the same new reactions
as the most promising ones.

Prediction of activation barriers for new reactions
The linear and nonlinear models developed were further
applied to predict Diels-Alder activation barriers of
σ-electron withdrawing group substituted alkenes, cyc-
lic alkenes with consideration of ring strain effect and
barriers of Diels-Alder reactions which are promising
and nucleophile-tolerant in the living system. These
were compared with the activation barriers calculated
by Tang et al. as shown in Additional file 3: Table S2
and Figure 4. Structural optimization and descriptor
computations were performed for cyclic alkenes (Cyc3
to Cyc8) considering ring strain effect. Prediction of ac-
tivation barriers of these cyclic alkenes in MLR model
follow the trends as obtained by Tang et al. Increasing
the angle, barriers increase in the following sequences:
cyclopropene (angle = 64.6°; +33.9 kcal/mol) < cyclobutene
(angle = 94.4°; +35.3 kcal/mol) < cyclopentene (angle =
112.1°; +36.6 kcal/mol) < Cyclohexene (angle = 123.5°; +37.6
kcal/mol). Cyclohexene produces highest barrier pre-
diction which goes to decreasing for larger homologs
such as cycloheptene (+34.2 kcal/mol) and cyclooctene
(+35.3 kcal/mol).
The above comparative results between ΔG calculated

(by Tang et al. [13]) and predicted (by our MLR and
ANN models) indicated that the current theoretical proto-
col based on the modelling of quantitative structure acti-
vation barriers relationship utilizing computed quantum
chemical descriptors. MLR model could satisfactorily pre-
dict the activation energy barriers of Diels-Alder ligation
reactions if compared to Tang’s calculations, except for
the entries 3–2, cyc3, 5–3, 5–4 and 5–6 for which devia-
tions from Tang's calculations are higher. Conversely, in
the ANN model the four mentioned predictions match
well with Tang’s calculations, while the deviations are
higher for the reactions with cyclic alkenes as dienophiles
(Cyc4 – Cyc8, see Figure 4).
Prediction of activation barrier using theoretical quan-

tum chemical descriptors based protocol is quite easy
process and less time consuming. So such model can be
applied to predict activation barrier of Diels-Alder ligation



Figure 4 Predicted activation barriers for new reactions listed in Additional file 3: Table S2
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reactions before experimental investigation to gain insight
for designing of promising Diels-Alder reactions. There
is a concern regarding the influence of the solvent in
the newly proposed approach. We have observed that
the calculated quantum chemical descriptors did not
differ significantly for the same reaction performed in
different solvents, as for example the reactions 17 and 43
(see Additional file 1: Table S1), although the experimental
reaction barriers were significantly different. Consequently,
our QSABR model cannot differentiate well these two re-
actions. On the other hand, we are proposing this fast and
efficient new methodology for identification of new click
reactions for bio systems, so they are run in water.
After the MLR model was built, its applicability do-

main was assessed for the reactions under the study.
The applicability domain was investigated using leverage
approach method as described in [61-63]. The results are
shown in Figure 5 where blue, red and green dots repre-
sent training set, test set and prediction set reactions,
respectively. Horizontal blue lines represent cut-off value
for standardized residuals and the vertical blue line
shows the warning value for leverage values obtained from
hat matrix. It can be observed that practically all reactions
in the training and test set may be considered as inside
the applicability domain, while most of the reactions in
the prediction set do not belong to the applicability
domain of the MLR model. Only for 3 reactions in the
prediction set it can be stated that the MLR model is suit-
able and reliable predictions have been made. The three
reactions are 3–1, 3–4 and 5–5 which have also been
found to be reactions with low activation barriers as pre-
dicted by the MLR model. Since no experimental values
were available for the new reactions, the predictions for
the new reactions were compared with Tang’s calculations.
Williams plot in Figure 5 shows the importance of applic-
ability domain assessment. From the figure it is visible that
approximately half of the applicability domain outliers can
be considered also as prediction outliers.

Experimental
In silico experiments have been performed for 72 non-
catalyzed Diels-Alder reactions of different dienes and
dienophiles with experimentally determined reaction
rates obtained from literature [19,39-43]. The activa-
tion barriers of 72 reactions calculated by Eyring–Polanyi
equation [2] were used as target properties in the QSABR
modelling, while the quantum chemical structural descrip-
tors were calculated from structures of standalone reac-
tants, different dienes and dienophiles listed in Additional
file 1: Table S1. The structures of all the reactant mole-
cules have been prepared in the computer readable form
by Chem3D Ultra [64]. The geometries of reactants were
fully optimized at the HF/6-31G(d) level to obtain most
stable conformation. Quantum chemical descriptors were
calculated utilizing Gaussian 09 software [44]. For all
quantum chemical calculations, the solvents specified
in the study by Tang et al. [13] have been considered.
Solvents are introduced by their dielectric constants (ε)
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under the Polarizable Continuum Model (PCM) [65]. The
solvents used for corresponding reactions were: Benzene
(ε = 2.2706); Acetonitrile (ε = 35.688); Water (ε = 78.3553);
1,4-Dioxane (ε = 2.2099).

Conclusions
Quantitative structure-activation barrier relationship
studies have been performed utilizing computed quantum
chemical descriptors solely calculated from a number of dif-
ferent dienes and dienophiles constituting 72 non-catalyzed
Diels-Alder reactions. Stepwise algorithm has been applied
for variable selection and the QSABR models have been de-
veloped by MLR method. QSABR model reveals that
quantum chemical descriptors produce significant impact
on the activation barriers for these reaction data. Quantum
chemical descriptors such as LUMO level of the diene,
difference between softness and difference between the
HOMO levels of the dienes and dienophiles, difference
between LUMO energies of the dienes and dienophiles,
electrophilicity of the dienophiles and dienes and its dif-
ferences, electronegativity of the dienes, dipole moment
of the dienophile, softness of the dienes and orbital inter-
action energy difference (ΔE) of dienes and dienophiles
(as depicted in Eqs. (6) and (10)) have crucial influences on
the activation barrier of the Diels-Alder ligations. Reliability
of the training QSABR model was confirmed by statistical
validation and thus, the developed QSABR model has been
used to predict the Diels-Alder activation barriers of a new
set of reactions between 1,3-butadiene and σ-electron
withdrawing group substituted alkenes and cyclic alkenes
designed and calculated by Tang et al. [13].
It is evident from comparative study of calculated and

predicted activation barriers (reported in Additional file 3:
Table S2) that our theoretical protocol using computed
molecular descriptors of reactants alone can provide a
good quality predictive model for the Diels-Alder ligation
considered in the present investigation. The aim of this
work was to show how the molecular orbital theory pro-
vides the descriptors of molecular structure that are suffi-
cient to find reasonable correlation with the reaction
barriers. Alternatively, the “atoms in molecules” analysis
[64] would provide useful information (descriptors) on
electronic structure of the molecules. However, regarding
its inherent theoretical framework it decouples from mo-
lecular orbital concept of bonding and can thus not sup-
plement our present approach. Nevertheless, the critical
points data [64,65] might serve as an alternative source of
the stand-alone descriptors which could potentially be suc-
cessful in predicting chemical reactivity.
With the calculation method described in our work,

which considers reactant molecules separately, no prob-
lems with convergence were observed. It is also less time
consuming than the computationally demanding approach
based on the transition state theory; yet, the reliable pre-
dictions of the activation barriers can be obtained as dem-
onstrated on a large set of Diels-Alder reactions. Since the
proposed model for prediction of activation barriers is
based on relatively simple calculations of HOMO and
LUMO energies, it can become widely used by the experi-
mentalists in organic chemistry labs as a cheap theoretical
method to design new promising Diels-Alder reactions.

Methods
Computational section
Molecular orbital theory was applied to calculate quantum-
chemical descriptors (all based on the HOMO, LUMO
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energies and dipole moments). The calculations were per-
formed on high efficient workstation having an Intel(R)
Xeon(R) CPU E5620 (12 GB RAM) with the Windows
64-bit operating system. Chem3D Ultra [66] was used
to input chemical structures; Gaussian 09 [44] was ap-
plied for geometry optimization and quantum chemical
calculations; dielectric constants of corresponding sol-
vents were considered in the Polarizable Continuum
Model (PCM) [67].

Data processing and model development by Stepwise-MLR
Multivariate linear regression (MLR) analysis, one of the
oldest data reduction methodologies, continues to be
widely used in Quantitative Structure Activity/Property/
Reactivity (QSAR, QSPR, QSRR) studies [10,68,69]. Se-
lection of variables having significant influence on the
reactivity is a key step in QSPR modelling of these reac-
tants to eliminate the problems like chance correlations
and multicollinearity. However, because of the co-linearity
problem in MLR analysis, we removed the collinear
descriptors. Utilizing every available descriptor that may
produce a predictive model with a good correlation coeffi-
cient, makes the models difficult to interpret and do not
stand up to external validation. An integral aspect of
model development is to build the model with a small but
appropriate set of descriptors with a view to interpret the
relationships. This process forms the basis of a technique
known as feature selection or variable selection. Among
several search algorithms, stepwise forward-backward
based feature selection coupled with MLR is the most
popular method for building quantitative models and can
explain the situation more effectively [60].
Statistical analyses have been carried out by using

Minitab software [70]. One has to choose the values of
the F statistic for the partial F tests that will determine if
a variable is to enter or be removed from the model; F =
0.25 has been chosen as the threshold for inclusion and
exclusion of variables.
Initially, the stepwise method searches for an inde-

pendent variable which correlates the most with the
dependent variable. This variable is used as the first
variable in the model. Next, from the remaining set of
unused independent variables a new variable is selected
so that the most of the response’s variance is explained
while keeping high values of F-test and correlation co-
efficient of the model. New variables are being added
to the model until no significant improvement of the
model can be made. In each consecutive step of add-
ing a variable, the current model is also tested if the qual-
ity of the model can be improved by removing any
previously selected variable, which is then discarded.
Leave-one-out cross-validation was used to evaluate the
stability and prediction ability of the generated models in
each step.
Nonlinear modelling by neural networks
Artificial neural network based on back propagation of
errors algorithm was applied as a nonlinear modelling
method. The same training data were used as for MLR
modelling. Back-propagation artificial neural network
model (BP-ANN model) is usually presented as a “black
box” which consists of input layer, hidden layer and out-
put layer of neurons. Here only a brief description is
given to clarify this “black box”, while a more detailed
description can be found in literature [71]. The input
layer receives input signals that consist of independent
variables presenting the inherent properties of the data
set objects. The input signals are usually read from a
text file; in this study the same descriptors were used as
for MLR modelling. The input signals are transferred
from the inactive input layer to the active hidden and
output layers, in which the signals are transformed
through the activation function. The neurons in the hid-
den and output layers are iteratively modified according
to the input signals which are loaded repeatedly to the
network until it has been sufficiently trained, which
means that the output signals for each input match with
the target values (desired properties of each object). The
trained network provides us with predictions of one
or more predefined properties that are located in the out-
put layer.
Each active neuron transforms input signals using acti-

vation function which is usually sigmoidal function. For
the first active layer of neurons (hidden layer), the neu-
ron’s output signal is calculated as given in Eq. (11),
where Net is defined by Eq. (12) as a sum of descriptors
values xi, multiplied by the corresponding weights wi, n
being the number of inputs (descriptors). Bias, usually 1,
is added to the sum thus n + 1 terms.

out ¼ 1
1þ e−Net

ð11Þ

Net ¼
Xnþ1

i¼1

wixi ð12Þ

For the neurons in the subsequent layers, the inputs (xi
values) represent the outputs (out values) of the neu-
rons from the preceding layer, while wi values refer to
the neurons of the selected layer. As mentioned above,
the network needs to be trained with known input-
target pairs of data. That means that appropriate values
for all weights in the network should be found. There-
fore a sufficiently large set of objects with known de-
scriptor and target values is needed to tune the weights
so that the outputs in the layer are reasonably close to
the target values. Using the training set objects, BP-
ANN is trained by back propagation of errors. The
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correction of the weights is usually made immediately
after each input (single object) and can be summarized
using Eq.(13).

Δwl
jk ¼ ϕδljout

l−1
k þ γΔwl previousð Þ

jk ð13Þ

Eq. (13) demonstrates how a correction of a weight is
calculated for the neuron j in the current layer l for the
input received from the neuron k in the preceding layer
l-1. The correction is made using two terms. The first
term shows that correction considers the error pro-
duced in the current neuron (δlj) and the output from
the neuron in the layer above (outk

l-1) which is multi-
plied by the learning rate (φ). The second term is used
to reduce oscillations during the learning process and
to overcome local minima. It takes the most recent cor-
rection of the weight (Δwjk

l(previous)) multiplied by a mo-
mentum (γ). When each input object has been used
once to correct all weights in ANN, the learning pro-
cedure has passed one epoch. The learning rate and
momentum are the two most important parameters,
besides the network architecture, the number of hidden
layers and the number of neurons in the hidden layers,
which must be chosen before the training. Usually the
parameters φ and γ are decreasing with time during
the learning procedure [71].
For the purpose of this study, BP-ANN had one hid-

den layer with one to five neurons, subjected further
to a standard procedure of optimization of network
parameters.

Applicability domain assessment
As proposed in the report of the European Centre for
the Validation of Alternative Methods [62], the applic-
ability domain of a QSAR model is the response and
chemical structure space in which the model makes pre-
dictions with a given reliability. Or in other words, as
written by Eriksson et al. [63], applicability domain of
QSAR model is the range within which it tolerates a
new molecule. Thus, if new molecules, or as in our case
Diels-Alder reactions, represented by chemical descrip-
tors fall outside applicability domain of the model, the
predictions of the model become unreliable.
The applicability domain of the MLR model was as-

sessed using leverage approach method, where the lever-
age of object i can be calculated as hi = xi

T(XTX)-1 where
xi is a vector describing object i and X is a matrix com-
posed of the objects used in the training. The warning
leverage, h*, is defined as 3(nd + 1)/no, where nd and no
are number of descriptors and number of objects used
in the training set [62]. If the object’s leverage exceeds
the warning level value, the prediction for that objects is
considered as unreliable, i.e. the object is outside the
model’s applicability domain.
Additional files

Additional file 1: Table S1. Structures of diene and dienophiles along
with activation barrier (ΔG) data.

Additional file 2: Figure S1. RMS errors and correlation coefficients of
different models and distribution of residuals for the selected model.
According to low RMS error obtained with Leave-one-out validation
method (a), good correlation coefficient (b) and acceptable distribution of
residuals in normal probability plot (c) model 30 was chosen as optimal.

Additional file 3: Table S2. Predicted activation barriers for new reactions.
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