
Springer and Sokolnicki Chemistry Central Journal 2013, 7:167
http://journal.chemistrycentral.com/content/7/1/167
RESEARCH ARTICLE Open Access
A fingerprint pair analysis of hERG inhibition data
Clayton Springer* and Katherine L Sokolnicki
Abstract

Background: Drugs that bind to the human Ether-a-go-go Related Gene (hERG) potassium channel and block its
ion conduction can lead to Torsade de Pointes (TdP), a fatal ventricular arrhythmia. Thus, compounds are screened
for hERG inhibition in the drug development process; those found to be active face a difficult road to approval.
Knowing which structural transformations reduce hERG binding would be helpful in the lead optimization phase
of drug discovery.

Results: To identify such transformations, we carried out a comprehensive analysis of all approximately 33,000
compound pairs in the Novartis internal database which have IC50 values in the dofetilide displacement assay. Most
molecular transformations have only a single example in the data set; however, a few dozen transformations have
sufficient numbers for statistical analysis.

Conclusions: We observe that transformations which increased polarity (for example adding an oxygen, or an
sp2 nitrogen), decreased lipophilicity (removing carbons), or decreased positive charge consistently reduced hERG
inhibition between 3- and 10-fold. The largest observed reduction in hERG was from a transformation from
imidazole to methyl tetrazole. We also observe that some changes in aromatic ring substituents (for example
hydrogen to methoxy) can also reduce hERG binding in vitro.

Keywords: Fingerprint pairs, hERG, Molecular pair, Hydroxyl, Molecular matched pairs, Cliff pairs, Extended
connectivity fingerprints (ECFP)
Background
Inhibition of the human Ether-a-go-go Related Gene
(hERG) channel can be a limiting toxicity for drug
candidates. The hERG channel regulates transmembrane
movement of potassium ions and is a major contributor
to the repolarization phase of the cardiomyocyte action
potential in the heart [1]. Inhibition of the hERG channel
causes lengthening of the cardic QT interval, which can
lead to Torsade de Pointes (TdP) [2]. It was this toxicity
that in 1997 led to the withdrawal of terfenadine (Seldane)
[3]. Although the Redfern criteria is that the IC50 (half
maximal inhibitory concentration in vitro) be more
than 30 fold greater than the Cmax (the maximum
plasma concentration in vivo), typically during lead
optimization the Cmax (or dose) is not known [2]. However,
project teams can estimate toxicity from in vitro IC50s.
For drugs with submicromolar Cmax, an in vitro hERG
inhibition IC50 of greater than 30 micromolar (μM) in
the radio-ligand binding assay [4] is generally considered
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desirable; having an IC50 of less 10 μM is cause for
concern and must be improved. The frequency and severity
of hERG inhibition drives drug discovery teams to make
considerable efforts in measuring, analyzing, and mitigating
hERG inhibition [4].
QSAR (Quantitative structure–activity relationship)

models using machine learning algorithms [5,6] are
established tools for analyzing biological activity data,
either with linear (linear discriminate analysis (LDA),
partial least squares (PLS) [7]) or non-linear (multi-layer
perceptrons [8] support vector machines (SVM), random
forest, multivariate adaptive regression splines (MARS)
methods. These models find several important descriptors
of hERG inhibition, including AlogP or ClogP (measures
of lipophilicity), the presence of two lipophilic atoms
separated by 10 bonds, fluorine atom count, carbon-carbon
double bonds, the presence of a hydroxyl, and partial
negative surface area [7,8]. Regardless of the method
chosen, the resulting mathematical model is smoother
than the sharpest changes in the data [9]. This contrasts
with the needs of lead optimization, in which one wants
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to find the smallest chemical change that makes the
best similar compound. To find the sharpest changes in
the data, it is molecular pair analysis rather than global
QSAR models that is most applicable approach [10,11].
Matched molecular pairs analysis defines a transform-

ation as a change at an attachment point (this may be
generalized to multiple attachment points). Literature
reports of analysis of pairs started in the mid-2000s
[9,12,13]. Leach et al. aggregated their aqueous solubility,
plasma protein binding and oral exposure data with
pre-specified transformations [14]. In a very compre-
hensive analysis of GlaxoSmithKlines’s internal data,
Papadatos et al. analyzed the effects that many matched
pairs transformations had on hERG inhibition [15]. The
authors analyzed those pairs for context and found several
that were statistically different from the overall matched
pair average and for hERG they gave details for 3 such
examples.
The SALI (Structure-Activity Landscape Index) approach

to pairs analysis uses similarity distance (typically fin-
gerprint based) to identify pairs [10]. While SALI may
be useful for inspection of individual (also called cliff )
pairs, these singleton examples lack statistical significance.
To identify transformations that have a Wilcoxon
consistent effect on hERG inhibition, we introduce
fingerprint pairs, which are an extension of the SALI
approach. Aggregating the pairs allows us to make
observations about which transformations have an effect
on hERG binding (see Figure 1 and Methods section).
In contrast with matched pairs approaches, which
aggregate the pairs by breaking at a single bond, in
our approach the fingerprint pairs implicitly aggregate
based on contextual information.
Figure 1 A schematic of a transformation and its ECFP representation
and their EFCP fingerprint representation. The last line shows the EFCP rep
fingerprints disappear from the initial molecule and which appear in the fin
Results and discussion
With a list of individual fingerprint pairs, we then collect
the individual pairs into aggregates. We then make ob-
servations about the whole collection of transformations.
We move onto the discussion of particular transformations
where we have enough supporting examples. We conclude
with some observed trends across these pairs.
Aggregate size distribution vs. mean effect of hERG
inhibition
After computing all the transformations in the data, we
group the pairs such that those making the same chemical
transformation are aggregated together. Each aggregate is
summarized by its mean hERG inhibition and the number
of pairs in the aggregate (Figure 2). The x-axis shows the
number of examples it has and the y-axis its average
change in log (hERG) inhibition. The graph’s top and
bottom halves are symmetrical about the y-axis because
each transformation also appears in reverse. In the reverse
transformation, the initial molecule, final molecule, the
sign of the difference vector, and the sign of the log (fold
change) are all reversed.
To determine which aggregates have sufficient statistical

power, we use the Wilcoxon distribution, since we do
not assume the data are normally distributed. Most
transformations probably have at least a small effect
on hERG inhibition; however, for aggregates with 4
or fewer examples (that is almost all aggregates), the
Wilcoxon confidence interval includes zero or no
change. We discard these aggregates and proceed only
with those aggregates containing five or more examples
(see Methods for details).
. At the top of the schematic, we show the initial and final molecules,
resentation of the transformation is characterized by which EFCP
al molecule.



Figure 2 Aggregate size vs. its mean change in log potency. Each point is an aggregate of the same kind of transformation. The x-axis shows
the numbers of examples the aggregate has and the y-axis shows the geometric average of fold change in each aggregate. See text for discussion.
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In our data set of ~33 K aggregates, there are 112
aggregates with five or more examples; that is, 56
transformations and their reverse transformations.
Each is considered individually. While the observed
changes in these transformations may be explainable
by various models based on SlogP, predicted ionization,
and/or aromatic atom counts, such quantitative analysis
is beyond the scope of this paper. However, we do note
the ΔSlogP in each aggregate.

Size distribution of aggregates follows a power law
distribution
Figure 3 shows the size of aggregates versus the frequency
of their occurrence in the data set. These are the examples
from the top half of Figure 2 (that is, one direction of
the transformation). The distribution of sizes of col-
lected aggregates roughly follows a power law: a few
Figure 3 A histogram of aggregate size. The x-axis is aggregate size and
that size. Aggregate sizes follows a power law distribution. See text for disc
transformations occur commonly, very many occur in-
frequently, and most transformations are only seen
once. The power law distribution is also observed when
3the transformations are aggregated as matched molecular
pairs. In this data set, 32,802 of the transformations are
singletons (that is, they are size 1); just two aggregates
have 28 examples.

Sets of transformations
As discussed above, only 56 aggregates had sufficient
examples to allow for conclusions to be drawn about
the chemical transformation. Of these 56, only 17 made
a significant reduction in hERG inhibition. Figure 4
through 7 enumerate these transformations. In many of
the transformations hERG inhibition follows the expected
qualitative trends: decreasing lipophilicity, decreasing
basicity, and increasing acidity all decrease the potency of
the y-axis is the numbers of aggregates at that size in log scale at
ussion.
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Figure 4 Transformations that add oxygen and reduce hERG inhibition. For each transformation we show the fold reduction in hERG
inhibition, the number of examples that increase the IC50, the number that decrease the IC50, and change that this transformation makes in the
SlogP model of logP.
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hERG blockers. While our observations reflect consistent
behavior seen in the database, we cannot claim that they
are completely general because of the narrowness of the
molecular context. Due to their proprietary nature, we
cannot disclose the full structures, but the molecules in
the transformations are similar to each other. Given the
range of changes in hERG inhibition IC50s observed in our
data set, improvements by 2- and 3-fold are notable.

Adding aliphatic oxygen frequently reduces hERG inhibition
We observe that transformations that introduce a hydroxyl
near an amine and changing a 7 member ring into a 6
membered ring and a methyl group reduce hERG
inhibition by 2 to 6 fold (Figure 4, Rows 3 and 5).
There are no transformations in which introducing a
hydroxyl near an amine increases hERG binding (see
Figure 4). Changing a molecule with two amines into a
system with one amine and a hydroxyl group reduces
hERG inhibition by 4 to 6 fold (Figure 4, Rows 1, 2
and 4), and increases SlogP/estimated lipophilicity.

Aromatic substitutions reduce hERG inhibition
Basic nitrogen atoms are the key to potent hERG blockers;
however, introducing sp2 nitrogens reduces inhibition
in many transformations. Our largest observed reduction
in hERG inhibition lowers hERG inhibition by 15 fold
by adding sp2 nitrogens to the slightly basic imidazole
to obtain the somewhat less lipophilic methyl tetrazole
(Figure 5, row 1). Changing a pyridyl nitrile to a -CF3
group reduces inhibition by 4.7 fold (Figure 5, row 2).
We speculate that these reductions in hERG inhibition
come from reducing lipophilicity and/or altering the
energetics of pi-stacking of the inhibitor’s aromatic
groups with aromatic groups in the hERG channel.
However, exploring this question is beyond the scope
of this paper [16].

Changing the environment of the amine nitrogen can
reduce hERG inhibition
Transformations in Figure 6 show that removing carbons
and/or changing the electronic environment around the
basic nitrogen can result in a modest reduction in hERG
binding. The transformation in Figure 6, Row 1 shows
us that removing carbon atoms and adding a hydroxyl
has a consistent and substantial effect on hERG inhibition.
Row 2 shows us that adding a cyclopropyl adjacent to
nitrogen reduces the hERG inhibition. It is the reduction
in basicity [17] that is likely responsible for this change.
Three transformations show that removing carbon atoms
reduces hERG inhibition (Figure 6, rows 3, 4 and 5).
The last row (Figure 6, row 6) shows that the effect is not
simply reducing lipophilicity, but is also from changing the
chemical environment around the nitrogen, in particular
the removal of the beta carbon.
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Fold 
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Figure 5 Transformations that alter an aromatic system. For both transformations we show the fold reduction in hERG inhibition, the
number of examples that increase the IC50, the number that decrease the IC50, and change that this transformation makes in the SlogP model
of logP.
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Miscellaneous transformations that reduce lipophilicity
In this Figure the transformations that reduce hERG
inhibition generally reduce lipophilicity. The transform-
ation in Figure 7, row 1 which removes 2 carbons and
changes the primary nitrogen into a secondary nitrogen
Table 
Row

Transformation
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3/6
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H
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Figure 6 Transformations which remove carbons or change the N env
hERG inhibition, the number of examples that increase the IC50, the numbe
the SlogP model of logP.
improves hERG by 3 fold. Going from pyridyl, gem
dimethyl hydroxyl to pyridyl nitrile (Figure 7, row 2)
improves hERG by 2.5 fold and reduces inhibition in 7
out of 8 examples. Going from ethyl piperazine to methyl
piperazine (Figure 7, row 3) results a 2.2 fold reduction in
Fold 
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# In-
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ing
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SlogP
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4.03 6 0 0.53
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2.80 12 1 -0.14
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ironment. For these transformations we show the fold reduction in
r that decrease the IC50, and change that this transformation makes in



Figure 8 This plot shows the ΔSlogP versus Fold Change
(log scale) for the transformations. Each point is labeled by the
Figure and Row in which it appears. See text for discussion.
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hERG inhibition. This change may result from lipophilicity
and/or pKa effects on the nitrogen. A transformation
from methyl to methoxy (Figure 7, row 4) has a small
effect (~1.7 fold), reducing hERG binding in 17 out of
21 examples.

A comment on transformations not observed
The direct addition of a carboxylic acid or the removal
of an amine group does not occur in any aggregate
with 5 or more examples. While we would expect these
transformations to make a difference in hERG inhibition,
our approach also looks at context, and none of these
transformations appear with enough examples to pass
our statistical threshold. Other techniques are needed
to observe this effect (and others) in the data.

ΔSlogP versus Δlog (hERG) for the transformations
Although we expect SlogP to make a difference in hERG
inhibition, Figure 8 shows that its effect is not determina-
tive. It is likely confounded by ionization and as well as
other factors. We observe a number of transformations
that reduce hERG inhibition even while increasing the
SlogP. The points in Figure 8 are labeled with the Figure
and Row in which they appear.

Conclusions
An attractive aspect of our approach, which does not use
a preselected list of transformations, is that the resulting
pair list is comprehensive in the data set used; that is,
every transformation in the dataset is considered in the
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Figure 7 Miscellaneous lipophilicity reducing transformations. For the
number of examples that increase the IC50, the number that decrease the IC5
analysis. However because of the stringent statistical
approach we applied most transformations are not used.
One approach to extracting additional information from
this dataset is to build a QSAR model on the vector finger-
print change of the transformations. Another attractive
aspect of pair analysis for informing lead optimization
is that the analysis is directly in the form of a change in
chemical structure. Specific structural changes are revealed
to reduce hERG binding, rather than indirect through
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descriptors like SlogP [18], PSA [19], Chi-Square [20] or
BCUT [21]. In broad terms, the transformations’ effects
are straightforward; for example, the removal of the basic
nitrogen or the manipulation of the pKa of the basic
nitrogen environment by addition or removal of nearby
alkyl groups. This approach found some subtle transfor-
mations that reduce hERG binding, including adding
hydroxyls, adding sp2 nitrogens, or putting amide sub-
stitutions on aromatic rings. We expect that just as
cheminformatics tools are currently applied to molecular
representations to cluster, search and model molecules,
these approaches can be applied to cluster, search and
model transformations.
We observe that most transformations have no more

than a modest change in hERG inhibition. This reinforces
our impression from medicinal chemistry that hERG
inhibition has a rather flat structure activity relationship:
we rarely observe subtle changes in structure that
result in dramatic changes in activity. Contrast this
with biochemical potency, where subtle structural
changes can often result in abolishing activity. Biochemical
potency depends on receptors that have been designed
by evolution to be sensitive to subtle changes in chemical
structure (for example estrogen vs. testosterone, or epi-
nephrine vs. norepinephrine) whereas the hERG channel
has been designed to transport potassium and has had
little or no evolutionary pressure to be selective against
micromolar concentrations of aromatic amines.
Methods
Dofetilide displacement measurement data [22] were
extracted from the Novartis corporate database. We
computed the pairwise difference in the log of measured
IC50 for each compound pair. Pairs were excluded if
both measurements were off scale in the same direction.
Otherwise, off-scale measurements were treated numeric-
ally as being at the extreme end of the scale; i.e., every
value >30 μM was treated as 30 μM. We characterized
the chemical structure with Pipeline Pilot’s extended
connectivity fingerprints (ECFP) [23]. We use the ECFP
family of fingerprints because of their utility in chem-
informatics applications [12,24]. The transformation
between molecules was represented by the “difference
fingerprint”. In the difference fingerprint we record
those ECFPs that disappear from the initial molecule
and that appear in the final molecule (see Figure 1). The
fingerprint approach is both much faster than maximum
common substructure (MCS) methods and implicitly
includes some molecular context. However, advances in
MCS methods have reduced the computational effort
needed to calculate MCS based matched pairs [25].
We define the aggregates by the change in fingerprint:

pairs are put together in the same transformation if and
only if they have the same change in fingerprint. In
ECFP-N fingerprints, the molecules are characterized
by substructures around each atom, and the ‘N’ denotes
the maximum diameter of the substructures used. Thus,
in ECFP0 fingerprints these substructures are just a count
of the different atoms and the fingerprint has equivalent
information to the molecular formula. We did not choose
N = 0 because all transformations with the same change in
molecular formula would have been aggregated together,
and an aggregate would contain molecular pairs that are
making different chemical transformations. Using ECFP2
has similar drawbacks. We initially tried N = 4, but not
all the pairs it grouped together were similar enough.
After tightening our criteria one step further to N = 6, the
aggregates represent the same chemical transformation.
However this came at the cost of spreading the available
data over more aggregates, which reduced the number
of aggregates with enough examples to make statistically
definitive statements.
To assess the statistical power of a particular trans-

formation, we consider the probability that a particular
distribution of either increases or decreases IC50 would
be observed by chance alone. Our null hypothesis is that
the transformation on average has no systematic effect.
From the Wilcoxon, we estimate the likelihood of observing
a particular distribution IC50s occurring by chance. In the
null hypothesis, a sample size of 5 pairs which all either
increase or decrease occurs 6.25% of the time. This gives
us our threshold of 5 examples. For a sample size of 8
pairs, samples that have 7 increases and 1 decrease or 1
decrease and 7 increases occur (that is, has a p-value of)
5.46% of the time (see Additional file 1: Figure S1 on the
paired Wilcoxon distribution).
Many biochemical assays have substantial correlation

between measured IC50 and logP (a measure of lipophi-
licity). Because we lack logP measurements for many of
our molecules we use a Crippen’s model of logP. In
particular, we use MOE’s [26] (Chemical Computing
Group, Montreal QC, Canada) implementation of that
model which it calls SlogP [18]. SlogP is based on atom
types, so each molecular pair in a particular aggregated
transformation has the same change in SlogP.

Additional file

Additional file 1: Figure S1. Shows the Wilcoxon statistical significance
for the different aggregiates observed in our data set. Each symbol in the
graph represents an aggregate. The x-axis shows the number of examples
that increase the hERG inhibition. The y-axis shows the number of examples
that decrease hERG inhibition. The aggregate is colored by its Wilicoxon
p-value (all the aggregates with the same number of increasing and
deceasing examples have the sample Wilcoxon p-value). The total number
of paired values is given by the sum of these two thus there is no 0,0 point.
For example an aggregate with 0 increases, 5 decreases (that is 5 total) has
significance value of <0.05 (~0.03). For an aggregate of 8 pairs, 1 increase
and 7 decreases has statistical significance.

http://www.biomedcentral.com/content/supplementary/1752-153X-7-167-S1.png
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Abbreviations
Cmax: Maximum in vivo plasma concentration; SALI: Structure-activity
landscape index; logP: Measurement of a compound’s equilibrium
partitioning between octanol and water; SlogP: LogP calculator found in
MOE21; hERG: Human ether-a-go-go related gene; IC50: Half maximal
inhibitory concentration; MOE: Molecular operating environment, a software
product of the Chemical Computing Group; MCS: Maximum common
substructure; ECFP: Extended connectivity fingerprint; μM: Micromolar;
nM: Nanomolar.
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