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Abstract

Introduction: Both main types of carcinogenesis, genotoxic and epigenetic, were examined in the context of non-
congenericity and similarity, respectively, for the structure of ligand molecules, emphasizing the role of quantitative
structure-activity relationship ((Q)SAR) studies in accordance with OECD (Organization for Economic and
Cooperation Development) regulations. The main purpose of this report involves electrophilic theory and the need
for meaningful physicochemical parameters to describe genotoxicity by a general mechanism.

Residual-QSAR Method: The double or looping multiple linear correlation was examined by comparing the direct
and residual structural information against the observed activity. A self-consistent equation of observed-computed
activity was assumed to give maximum correlation efficiency for those situations in which the direct correlations
gave non-significant statistical information. Alternatively, it was also suited to describe slow and apparently non-
noticeable cancer phenomenology, with special application to non-congeneric molecules involved in genotoxic
carcinogenesis.

Application and Discussions: The QSAR principles were systematically applied to a given pool of molecules with
genotoxic activity in rats to elucidate their carcinogenic mechanisms. Once defined, the endpoint associated with
ligand-DNA interaction was used to select variables that retained the main Hansch physicochemical parameters of
hydrophobicity, polarizability and stericity, computed by the custom PM3 semiempirical quantum method. The trial
and test sets of working molecules were established by implementing the normal Gaussian principle of activities
that applies when the applicability domain is not restrained to the congeneric compounds, as in the present study.
The application of the residual, self-consistent QSAR method and the factor (or average) method yielded results
characterized by extremely high and low correlations, respectively, with the latter resembling the direct activity to
parameter QSARs. Nevertheless, such contrasted correlations were further incorporated into the advanced statistical
minimum paths principle, which selects the minimum hierarchy from Euclidean distances between all considered
QSAR models for all combinations and considered molecular sets (i.e., school and validation). This ultimately led to
a mechanistic picture based on the identified alpha, beta and gamma paths connecting structural indicators (i.e.,
the causes) to the global endpoint, with all included causes. The molecular mechanism preserved the self-
consistent feature of the residual QSAR, with each descriptor appearing twice in the course of one cycle of ligand-
DNA interaction through inter-and intra-cellular stages.

Conclusions: Both basal features of the residual-QSAR principle of self-consistency and suitability for non-
congeneric molecules make it appropriate for conceptually assessing the mechanistic description of genotoxic
carcinogenesis. Additionally, it could be extended to enriched physicochemical structural indices by considering
the molecular fragments or structural alerts (or other molecular residues), providing more detailed maps of
chemical-biological interactions and pathways.
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Introduction
It is widely recognized that cancer and carcinogenesis
are the main challenges facing 21st Century medicinal
chemistry [1,2], particularly in the area of preventative
toxicology [3-6] as it assumes an idealized toxicity
against organisms and acts through a subtle, undiscov-
ered molecular mechanism. The basic mechanism in
cancer cell proliferation is through a variety of com-
pounds, making it difficult to assess specific ligand-
receptor interaction patterns [7,8].
There is a reasonable basis for cancer apoptosis in the

electrophilic theory of Miller and Miller [9,10], which
assumes a positively charged or polarized nature of the
ligand (carcinogenic alkylating agents, originally). Cur-
rently, there is a more integrated and general view of
genotoxic carcinogenicity [11] that is closely related to
mutagenic phenomena through a covalent binding to
DNA, followed by direct damage by means of a unified
(or by reactive intermediates) electrophilic mechanism
of action. In contrast, epigenetic carcinogenesis [12] acti-
vates through a variety of specific and different mechan-
isms that do not involve covalent binding to DNA but
to more congeneric (or similar) molecules, with a speci-
fic (or local) mechanism of action for each particular set
of compounds.
Even though epigenetic carcinogenesis has typically

been treated with the structure-activity relationship
(QSAR) principle of congenericity [13], the present
report will focus on genotoxic carcinogenesis because of
its chemical bonding at the DNA level. In addition, the
statistical physicochemical combination analysis for a
variety of toxicants produces a molecular mechanistic
model of action with a comprehensive physicochemical
interpretation.
With the ever-increasing costs of traditional animal

testing and the large number of industrial chemicals
that need toxicological evaluation, international pro-
grams like Europe’s REACH (Registration, Evaluation
and Authorization of Chemicals) expressly endorse in
silico (computational) ecotoxicological studies as alter-
native approaches to reduce experimental hazard, espe-
cially when “testing does not appear necessary” [14].
This strategy is particularly useful in the first phases of
validation for a new compound, before entering the
industrial mainstream. This process primarily consists of
preliminary screening based on models of literature and
their extrapolations (Phase I), followed by the read-
across, grouping and construction of new models
employing the available commercial or non-commercial
models, such as OncoLogic [15], HazardExpert [16],
Derek [17], ToxTree [18], Multicase [19], and CAESAR
[20,21] (Phase II), and eventually concluding with in
vitro or in vivo assays (Phase III).

Phases I and II are theoretical-computational and,
when approached through statistical or multivariate
methods, the OECD (Organization for Economic Coop-
eration and Development) principles for a QSAR study
must include the following information [22,23]: “(i) a
defined endpoint, (ii) an unambiguous algorithm, (iii) a
defined domain of applicability, (iv) appropriate mea-
sures of goodness-of-fit, robustness and predictivity, and
(v) a mechanistic interpretation.”
In this context, the goal of the present work was to

advance a general QSAR modeling approach employing
the residues of direct correlation with definite physico-
chemical descriptors to a second (or looping) correlation
with the residual QSAR method. This was then applied
to a non-congeneric series of rat toxicants to discover a
general mechanism for genotoxic carcinogenesis in
accordance with OECD-QSAR principles.

Residual-QSAR Method
Assuming there is a structure-activity multi-linear corre-
lation problem with the parameters and observed end-
point set as

({Xi}i=1,M,A
)
, the standard QSAR

corresponds to the ordinary regression equation produ-
cing the following computed activity [24]:

f 0
({Xi}i=1,M

)
= Y0 = a0 +

M∑
i=1

b0iXi (1)

However, in carcinogenic modeling, it is difficult to
find a proper set of structural parameters with signifi-
cant correlation to the observed activity, especially
when considering compounds having highly diverse
molecular structures (i.e., being non-congeners) yet
producing similar carcinogenic endpoints. Even by
applying the available commercial or academic soft-
ware to compute thousands of structural parameters
and their non-linear combinations [25], the obtained
significant correlation relies on structural parameters
or combinations thereof with little physical or chemical
meaning. This makes QSAR analysis an artifact outside
of reality [26]. Such studies may not include the hydro-
phobic feature (LogP) within the correlation equation
(Tarko L, Putz MV: On Quantitative Structure-Toxi-
city Relationships (QSTR) using High Chemical Diver-
sity Molecules Group, submitted), which has less
physico-chemical meaning, especially with respect to
cellular toxicity.
In such circumstances, it is preferable to test the

induced influence of a given set of structural parameters
with established significance over the cancer genotoxi-
city correlation (Eq. (1)). Hypothetically, this shows the
direct, scarce correlation with the observed activity. The
residual correlation follows (Eq. (2)):
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f 1
(
A − Y0) = Y1 = a1 + b1

(
A − Y0) (2)

From this point forward, one may use the various resi-
dual-QSAR (res-QSAR) models to obtain the correlation
equation of the computed activity in terms of the origi-
nal structural parameters.

Self-Consistent res-QSAR Model
One may insert equation (1) into equation (2), while
preserving the observed activity by the rule of computed
activity:

YSC = a1 − b1a0 + b1A − b1
M∑
i=1

b0iXi (3)

This model has the conceptual advantage of contain-
ing looping or self-consistent QSAR information that is
in line with the recursive evolution of cancer at the cel-
lular level. It has also an apparent weakness in that it
requires prior knowledge of the observed activity, even
for the untested compounds or those that are designed
in silico. However, such a drawback may now be
avoided with the advent of unified databases with the
aid of software to presumptively assess the “observed”
activity of any common molecular-species couples [27].

Asymptotic res-QSAR Model
The obtained residual-QSAR matches were assumed
with the observed activity,

A = Y1 (4)

yielding the following asymptotic residual-model from
Equations (1) and (2):

YA =
1

1 − b1

[
a1 − b1a0 − b1

M∑
i=1

b0iXi

]
(5)

This model illustrates the residual QSAR method to
amplify asymptotically the computed toxicity towards
the observed carcinogenicity (Figure 1). This considers
the limitation of no use when considering the case of b1
® 1, which produces the asymptotic (infinite) expressed

activity YA® ∞ with residual correlation. This difficult
computation can be removed by reconsidering the resi-
dual equation (2) within different computational activity
frameworks that are suited to assess the carcinogenic
molecular mechanisms.

Factor res-QSAR Model
If the observed, computational activity is proportionality
confirmed by the following residual correlation factor,

R1Y
1 = A (6)

then equation (5) can be modified to the following
workable model (Eq. 7).

YF1 =
1

1 − R1b1

[
a1 − b1a0 − b1

M∑
i=1

b0iXi

]
(7)

This model will eventually “diverge” when the residual
correlation factor approaches unity (R1® 1), along with
the asymptotic condition, b1® 1, noting the same
asymptotic feature of this model as its ancestor, Eq. (5).
This model is still identical to that obtained from repla-
cing the residual factor with its complement, R1® 1-R1,
because of the scale multiplication operation with the
same correlation efficiency.

Averaged res-QSAR Model
When the presence of the observed activity dependency
is replaced by its average within the self-consistent
equation (Eq. (3)) over the entire N-molecular series,
the averaged residual-QSAR model is changed to the
following:

YAV = a1 − b1a0 + b1 〈A〉 − b1
M∑
i=1

b0iXi (8)

where the average activity may be computed either as
a simple statistical mean,

〈A〉 → Ā = N−1
∑N

i=1
Ai (9)

or as the interpolation function, A = fA(N), which is
averaged as the integral,

〈A〉 → Ã = N−1
∫ N

1
fA(N)dN (10)

Conceptually, the residual QSAR features correlation
performances complementary to the direct QSAR analy-
sis. This is effective in assessing the molecular phenom-
enology of cancer genotoxicity, as the direct structural
parameters show little correlation. In addition, they
apparently have no direct influence on observed activity,

Figure 1 Representation of the residual-QSAR algorithm from a
given computed activity (Y0) to the observed one (A) through
the “diffracting” process of the residual A-Y0 activity.
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and slow-acting carcinogenesis does not have a signifi-
cant, direct influence on physicochemical, structural
parameters. However, for congeneric molecular species,
significant direct correlation is expected, with low resi-
dual-QSAR influence as its statistical-information com-
plement. Therefore, the present residual-QSAR
approach is best suited for non-congeneric compounds,
such as those involved in genotoxic carcinogenesis. The
present study will provide concrete illustration of the
direct and residual QSAR models and their interpreta-
tion towards assessing a molecular mechanism for the
observed genotoxic carcinogenesis, in accordance with
OECD principles.

Application and Discussion
This application and analysis will parallel the OECD-
QSAR principles discussed in the introduction. How-
ever, the OECD principles of QSAR modeling are not
regarded as separate, but they are linked as much as the
practical-computational context is unfolded.
(i) The actual defined endpoint is defined as the exces-

sive apoptosis with the TD50 rate (in mg/kg body wt/
day) of carcinogenic potency in rats derived from the
Carcinogenic Potency Database [28]. This refers to the
(half) probability that tumor cells develop through
ingestion in each positive experiment with the species.
Therefore, the present residual-QSAR study provides a
mechanistic interpretation of how the extrinsic inducers
(i.e., the toxins in the molecular trial or testing-predict-
ing series, see Tables 1 and 2[29], respectively) cross the
cellular plasma membrane and/or transduce/induce a
positive signal trigger of DNA binding and subsequent
genotoxic carcinogenesis.
(ii) The unambiguous algorithm is addressed by four

stages:

• The first is the hypothesis-driven selection of vari-
ables, as suggested by Hansch [30], with clear physi-
cochemical interpretation. Because genotoxicity
implies that the electrophilic effects of compound-
DNA binding, the basic influences of hydrophobicity
(LogP, modeling the traversing of the host cellular
membrane) and polarizability (POL, modeling the
charge deformation of the molecule while approach-
ing and binding, as electrophilic theory prescribes)
along the optimal total energy (Etot, modeling the
stereochemistry and optimal 3D molecular confor-
mation approaching DNA biding) are separately
explored and combined to assess the synergetic
translation-, vibration-and rotation-based mechan-
isms, respectively. Clear physical and chemical
meaning is maintained with this approach by offset,
and this has also recently been confirmed by several
ecotoxicological studies [31-34].

• The selection of a trial (school) and test (for predic-
tion) set of molecules from a pool of available mole-
cules does not necessarily set the domain of
applicability, but once such a domain is available or
defined, certain molecules are assessed in the trial
and test series. In this respect, this part of the
OECD Second QSAR Principle includes the Third
QSAR Principle. Although many statistically-or logi-
cally-based screening methods are available [35,36],
we chose other principles that are included in the
normal ordering of observed activities, despite the
degree of similarity of the molecules in the available
domain of selection. The method used was quite
general. If the domain contained congeneric mole-
cules, then the best-fitting activity with a Gaussian
curve was selected first, leaving the rest for the test
set (i.e., in an ideal case, this should represent
another Gaussian set of molecular activities). If the
available molecules were not congeneric and the
similarity rule did not apply (i.e., the present study),
then we applied a natural principle to the trial and
test molecules. The application of this principle of
normal activities (presumed to be more general than
the principle of congenericity in the selection of a
QSAR school and predicting molecules) is shown in
Figure 2, with reference to the trial and test mole-
cules of Tables 1 and 2, respectively.
• The computational stage of variables assigns num-
bers to all structural descriptors considered for each
molecule in the trial and test sets and yields quan-
tum accuracy values for selected physicochemical
variables. In the present study, the particular values
of the LogP, POL, and Etot indices are given in
Tables 1 and 2, reported using the semiempirical
PM3 method for each molecule considered in the
trial and test series, respectively. At this point, worth
noting that the so called “equal stericity” (and
energy) degree of freedom was considered for mole-
cules 8 and 10 of Table 1, permitted for about 10%
of the total pool of molecules, for those compounds
closely laying on the Gaussian graph of Figure 2 as
well as having identical carcinogenic characteristics
as damage factor, disease-specific part of the effect
factor, or the same uncertainty factor of the com-
bined damage and effect factor [37]; such conditions
allow similar information in a series with high
diverse molecules in order to make the analysis a
step closer to the traditional QSAR dogma of “con-
generic molecules” [13].
• The analytical stage of the QSAR model yielded the
regression equations and their correlation factors
and allied statistical descriptors. Table 3 gives the
direct and residual QSAR models for all descriptor
combinations considered for the trial molecules of
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Table 1 according to Equations (1) and (2), respec-
tively. As anticipated, while the direct QSAR pro-
vided very low correlations, the residual-QSAR was
characterized by the limiting case of unity factors of
residuals, which raised the residual correlation factor
as much as the complementary direct QSAR was
lowered. The direct and residual QSAR complemen-
tary nature was, in this way, advanced. In particular,
the lowest direct correlation, the LogP mechanism,
corresponded to the highest residual QSAR. At the
same time, when LogP was further synergistically
combined with other structural influences like POL
and Etot, the direct potency increased by a factor of
one hundred, whereas the residual QSAR

correlations decreased by only a few units. This
proves the utility of the direct QSAR principle in
assessing a statistical model that could be supple-
mented with further considerations, as with residual
QSAR and other validity measures, to provide the
best understanding of the analyzed phenomenon.
Table 4 compares the detailed self-consistent princi-
ple with the factor and averaged versions of the resi-
dual QSAR modeling of Equation (3). If Equation (3)
is amended with the residual correlation factor or its
complement to yield the observed-to-QSAR activity
proportionality or if the averaged activity in Equa-
tion (8) is replaced with expressions of Equations (9)
( Ā = 5.285636) and (10) ( Ã = 5.20711), then the

Table 1 The molecules listed with their effect on rat TD50 activity [28] and the semi-empirical PM3 (Hyperchem [29])
computed structural parameters of hydrophobicity (LogP), polarizability (POL, in Å3) and total optimized energy (Etot,
in kcal/mol) belonging to the Gaussian training set illustrated in Figure 2

No. Chemical Compound Formula CASRN TD50_Rat
(a) A(b) logP POL Etot

1 3,3’-Dimethoxy-4,4’-biphenylene diisocyanate C16H12N2O4 91-93-0 1630 2.79 2.07 30.03 -82478.58594

2 Chrysazin (Danthron) C14H8O4 117-10-2 245 3.61 1.87 24.44 -68162.28125

3 Acetaldehyde C2H4O 75-07-0 153 3.82 -0.58 4.53 -13662.00781

4 Allyl isothiocyanate C4H5NS 57-06-7 96 4.02 1.17 11.74 -20700.27344

5 Isobutyl nitrite C4H9NO2 542-56-3 54.1 4.27 1.63 9.96 -31363

6 Urethane C3H7NO2 51-79-6 41.3 4.38 -0.06 8.35 -27989.58203

7 Ethylene oxide C2H4O 75-21-8 21.3 4.67 -0.16 4.31 -13626.54297

8 Hexa(hydroxymethyl)melamine C9H18N6O6 531-18-0 10.2 4.99 1.96 27.19 -108827.0859

9 1,2-Dichloroethane C2H4Cl2 107-06-2 8.04 5.09 1.59 8.3 -21506.41406

10 Tris(2,3-dibromopropyl) phosphate C9H15Br6O4P 126-72-7 3.83 5.42 5.37 35.91 -108827.0859

11 Beta-Propiolactone C3H4O2 57-57-8 1.46 5.84 -0.25 6.23 -23148.73047

12 Chlorambucil C14H19Cl2NO2 305-03-3 0.896 6.048 4.14 31.04 -76933.42969

13 Azaserine C5H7N3O4 115-02-6 0.793 6.10 -1.03 14.25 -54439.625

14 Dacarbazine C6H10N6O 4342-03-4 0.71 6.15 -0.92 17.95 -49126.58594

15 Thiotepa (Tris(aziridinyl)-phosphine sulfide) C6H12N3PS 52-24-4 0.164 6.789 0.54 17.63 -38905.46484

16 Aflatoxin-B1 C17H12O6 1162-65-8 0.0032 8.49 0.99 29.86 -91307.82331

17 2,3,7,8-Tetrachlorodibenzo-p-dioxin C12H4 Cl4 O2 1746-01-6 0.0000457 10.34 4.93 28.31 -76933.75

18 Aflatoxicol C17H14O6 29611-03-8 0.00247 8.61 0.46 30.41 -91979.58594

19 1-(2-Hydroxyethyl)-1-nitrosourea C3H7N3O3 13743-07-2 0.244 6.61 -0.95 10.92 -42184.19141

20 N’-Nitrosonornicotine-1-N-oxide C9H11N3O2 78246-24-9 0.876 6.06 0.25 19.48 -53174.95313

21 Benzo(a)pyrene C20H12 50-32-8 0.956 6.02 5.37 36.04 -58881.02734

22 2-Acetylaminofluorene C15H13NO 53-96-3 1.22 5.91 2.61 26.26 -56110.60547

23 1,2-Dibromoethane C2H4Br2 106-93-4 1.52 5.82 1.71 9.7 -28203.0625

24 Hydrazobenzene C12H12N2 122-66-7 5.59 5.25 3.8 19.85 -67801.28125

25 Ethylene thiourea (ETU) C3H6N2S 96-45-7 8.13 5.09 0.33 11.45 -22095.42578

26 Thioacetamide C2H5NS 62-55-5 11.5 4.94 -0.21 9.04 -15263.96289

27 o-Nitroanisole C7H7NO3 91-23-6 15.6 4.81 -0.18 14.75 -45613.03906

28 2-Aminodipyrido[1,2-a:3’,2’-d]imidazole C10H8N4 67730-10-3 42.3 4.37 2.35 20.73 -45103.06641

29 Dichlorodiphenyltrichloroethane (DDT) C14H9Cl5 50-29-3 84.7 4.07 6.39 33.4 -77956.60156

30 p-Cresidine C8H11NO 120-71-8 98 4.01 1.48 16.09 -36280.75391

31 Ethyl 2-(4-chlorophenoxy)-2-methylpropionate C12H15ClO3 637-07-0 169 3.77 2.97 24.73 -65740.6875

32 Vinyl acetate C4H6O2 108-05-4 341 3.47 -0.01 8.65 -26598.12305

33 Salicylazosulfapyridine C18H14N4O5S 599-79-1 1590 2.799 4.54 36.79 -107222.1719
(a) in [mg/kg body wt/day]; (b) computed as Log[1/TD50]
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results are systematically the same or very close to
those reported in Table 3. In other words, whenever
the model resembles the direct molecular variables’
dependency, the direct QSAR statistical efficiency
will be systematically reached.

(iii) The defined domain of applicability, although
conceptually included in one of the above stages of the
unambiguous algorithm framework, is customarily speci-
fied separately for clarity. However, because the present
application focused on modeling genotoxic carcinogen-
esis, this principle is redundant because of its implicit
non-congeneric approach features. As such, the mole-
cules in Tables 1 and 2 span many organic classes and

derivatives, including amides, amines, aromatic systems,
lactones, nitrites, quinines, cyanides, urethanes, ketones,
and cycloalkanes. The QSAR analysis and mechanistic
model was, therefore, expected to have non-local char-
acter (i.e., not depending on the series of toxicants
involved) susceptible of general behavior.
(iv) The validity and predictivity principle is consid-

ered to be one of the most important stages of QSAR
analysis. Although internal and external validation statis-
tical procedures exist, the former is often overestimated.
This has been confirmed in situations when the external
validation sets were well predicted, even with poor
cross-validated performance [38]. As a general rule,
external validation tests are considered the true standard

Table 2 The molecules belonging to the quasi-Gaussian test set, as illustrated in Figure 2, with the same type of
activity and structural parameters as those reported in Table 1

No. Chemical Compound Formula CASRN TD50_Rat
(a) A(b) logP POL Etot

34 Phenacetin C10H13NO2 62-44-2 1250 2.90 0.99 19.85 -49230.08203

35 Dimethylvinyl chloride (DMVC) C4H7Cl 513-37-1 31.8 4.498 1.51 9.85 -20725.60325

36 Sulfallate C8H14ClNS2 95-06-7 26.1 4.58 2.73 24.79 -46435.69922

37 beta-Butyrolactone C4H6O2 3068-88-0 13.8 4.86 0.17 8.06 -26599.55273

38 Vinyl Chloride C2H3Cl 75-01-4 6.11 5.21 1.01 6.18 -13820.70898

39 Acrylamide C3H5NO 79-06-1 3.75 5.43 -0.28 7.52 -20478.92578

40 Mirex C10Cl12 2385-85-5 1.77 5.75 6.41 38.39 -114919.4688

41 Dimethylnitramine C2H6N2O2 4164-28-7 0.547 6.26 0.97 7.64 -28551.91406

42 N-Nitrosodimethylamine C2H6N2O 62-75-9 0.0959 7.02 0.01 7.01 -21802.08203

43 N-Methyl-N’-nitro-N-nitrosoguanidine C2H5N5O3 70-25-7 0.803 6.1 1.5 11.13 -46112.81641

44 1-Phenyl-3,3-dimethyltriazene C8H11N3 7227-91-0 2.31 5.64 2.53 17.51 -36944.65625

45 Michler’s ketone C17H20N2O 90-94-8 5.64 5.25 3.4 22.8 -44481.07422

46 1’-Acetoxysafrole C12H12 O4 34627-78-6 25 4.6 -0.11 22.47 -64108.48047

47 o-Nitrosotoluene C7H7NO 611-23-4 50.7 4.29 2.29 13.48 -32074.53516

48 p-Nitrosodiphenylamine C12H10 N2O 156-10-5 201 3.7 3.07 22.66 -50526.36328

49 1,4-Dichlorobenzene (p-dichlorobenzene) C6H4Cl2 106-46-7 644 3.19 3.08 14.29 -32415.54297
(a) in [mg/kg body wt/day]; (b) computed as Log[1/TD50]

Figure 2 Graphical representation of the working activities for the molecules in Tables 1 and 2, classified to build up the “Gaussian”
and “quasi-Gaussian” series that are specific to the training and testing QSAR purposes, respectively. The interpolating function, A = fA
(N), to be used in Equation (10) is also shown as the contour of the Gaussian set of trial molecules.
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to assess prediction in QSAR modeling. Focusing on the
special case of genotoxicity, one must consider all resi-
dual QSAR models obtained within previous QSAR
principles (i.e., the self-consistent and factor/averaged
residual QSAR models of Table 4, in particular) while
remembering that the last ones resemble the direct
QSAR statistical performances. The external validation
set is presented in Table 2 and was identified through
the quasi-Gaussian shape of the Figure 2 inset. The test-
ing set and associated statistical performances are
reported in the last column of Table 4. These need to
be interpreted in light of the searched mechanistic

model, or the predictive power lies only in the range of
the residual QSARs, with no real information contained
therein. This will be realized by applying the final prin-
ciple of the OECD-QSAR framework.
(v) The possibility of advancing a mechanistic interpre-

tation may be achieved by applying the statistical infor-
mation from all trial and test sets and residual-QSAR
modeling levels. If uniform criteria are implemented,
one may specialize this principle by the minimum (sta-
tistical) path principle. Like all natural optimum princi-
ples, it assumes the shortest statistical path selected
among all possible paths connecting the QSAR models.

Table 3 The parameters and statistical correlation coefficients for the residual-QSAR algorithm of Equations (1) and
(2), as applied to the molecules of Table 1 in all possible combinations of variables

STRUCTURAL
VARIABLES

a0 bi0 R0 a1 b1 R1

LogP 5.297587 -0.007280 0.0091 5.285636 1 0.9999

POL 4.712835 0.029613 0.1832 5.285636 1 0.9831

Etot 4.676954 -0.000011 0.2033 5.285636 1 0.9791

LogP, POL 4.339331 -0.279746 0.072662 0.2925 5.285636 1 0.9563

LogP, Etot 4.578059 -0.162902 -0.000018 0.2608 5.285636 1 0.9654

POL, Etot 4.679442 -0.000978 -0.000012 0.2033 5.285636 1 0.9791

LogP, POL, Etot 4.341697 -0.273668 0.06646 -0.000002 0.2929 5.285636 1 0.9562

Table 4 Residual-QSAR self-consistent (SC), factor (F1), averaged (AV, with Ā = 5.285636) models of Equations (3), (7),
and (8) for the Hansch parameters of Table 3, with the modeling and predictive powers for the “Gaussian” and
“Quasi-Gaussian” molecules of Tables 1 and 2 represented by their associated correlation factors, respectively

Structural
Variables

Activity Model

Type Equation RGauss RQ-Gauss

Ia: LogP SC A-0.011951 + 0.00728[LogP] 0.99996 0.99994

F1 -119.51 + 72.8[LogP] 0.0091 0.1240

AV Ā − 0.011951 + 0.00728
[
LogP

]
0.0091 0.1240

Ib: POL SC A + 0.572801-0.029613[POL] 0.98307 0.97713

F1 33.8936-1.75225[POL] 0.1832 0.23179

AV Ā + 0.572801 − 0.029613 [POL] 0.1832 0.23179

Ic: Etot SC A + 0.608682 + 1.1 × 10-5[Etot] 0.98362 0.97238

F1 29.1235 + 5.26316 × 10-4[Etot] 0.2033 0.04250

AV Ā + 0.608682 + 1.1 × 10−5 [Etot] 0.2033 0.04250

IIa: LogP, POL SC A + 0.946305 + 0.279746[LogP]-0.072662[POL] 0.95626 0.94916

F1 21.6546 + 6.40151[LogP]-1.66275[POL] 0.2925 0.21906

AV Ā + 0.946305 + 0.279746
[
LogP

] − 0.072662 [POL] 0.2925 0.21906

IIb: LogP, Etot SC A + 0.707577 + 0.162902[LogP] + 1.8 × 10-5[Etot] 0.96686 0.96164

F1 20.4502 + 4.70815[LogP] + 5.20231 × 10-4 [Etot] 0.2608 0.0524

AV Ā + 0.707577 + 0.162902
[
LogP

]
+ 1.8 × 10−5 [Etot] 0.2608 0.0524

IIc: POL, Etot SC A + 0.606194 + 0.000978[POL] + 1.2 × 10-5 [Etot] 0.97838 0.97017

F1 29.0045 + 0.046793[POL] + 5.74163 × 10-4 [Etot] 0.2033 0.03654

AV Ā + 0.606194 + 0.000978 [POL] + 1.2 × 10−5 [Etot] 0.2033 0.03654

III: LogP, POL, Etot SC A + 0.943939 + 0.273668[LogP]-0.06646[POL] + 2. × 10-6[Etot] 0.95628 0.94927

F1 21.5511 + 6.24813[LogP]-1.51735[POL] + 4.56621 × 10-5[Etot] 0.2929 0.19871

AV Ā + 0.943939 + 0.273668
[
LogP

] − 0.06646 [POL] + 2. × 10−6 [Etot] 0.2929 0.19871
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In all trial and test cases, it synergistically includes the
primary path of action in terms of the physicochemical
descriptors. Consequently, this principle also provides
the second and third paths and the entire hierarchy of
structural causes successively triggering the investigated
endpoint effect with the observed actions. The mini-
mum path principle ultimately reveals the structural
causes and corresponding mechanistic picture, linking
them to the observed action and providing the described
biological effect. Depending on the QSAR model and
statistical information to be processed, the statistical
paths can be computed in various forms. For example,
with the aid of Euclidean measure, similar studies
recently presented the Spectral-SAR algebraic version of
the consecrated QSAR applied to various ecotoxicologi-
cal scenarios [31,34,39]. Accordingly, the correlation fac-
tors of Table 4 were combined through all statistical
path combinations [40]:

K =
∏M

k=1
Ck
M (11)

with

Ck
M =

M!
k!(M − k)!

(12)

The numbers of paths built from connected, distinct
models were indexed with k orders (dimension of corre-
lation space or the number of structural variables
included in a given model) from k = 1 to k = M. Each
path was then computed by the Euclidean formula,

[
l, l′

]
=

√
(Rl − Rl′)

2,∀( l, l′) ∈ {C} (13)

with

C =
∑M

k=1
Ck
M (14)

being the number of combinations of structural indi-
cators potentially considered. Then the minimum prin-
ciple can be written as

δ
[
l1, ...lk..., lM

]
= 0 (15)

with l1,...,lk,...,lMrepresenting the endpoint residual-
QSAR regression models computed with 1, 2,..., M
structural parameters, respectively.
The results are collected in Table 5, where the first

(alpha), second (beta), and third (gamma) statistical
paths are indicated. They were computed by the
described optimal procedure with the amendment that,
in the case of equal correlation paths, the minimum
path was considered to cover the QSAR model with the
highest correlation factor. Once a path was selected, the

next hierarchical path was chosen as the minimum
among the remaining ones, such that all considered
endpoints were involved only once (except for all vari-
ables containing endpoint-the model III-that is a com-
mon horizon to all other combinations). With this
method, the correlation information was combined and
employed in the most general and natural manner, pro-
viding suitable structural paths to cause the observed
activity. This also assured unity/specificity along the
ergodicity of the paths’ maps. Similar rules apply in
deciding the overall models of Table 5, which is most
representative to the alpha, beta and gamma paths. The
path that is reached the most times throughout all the
residual-QSARs was considered adjudicated for a given
path type. In particular, the procedure started with the
alpha path, which corresponds to the following chain of
models (Table 5):

α : Ic → IIc(POL,Etot) → III (16a)

It is then followed by the beta path identified by the
models’ sequence

β : Ib → IIb(LogP,Etot) → III (16b)

and, finally, by the gamma path’s progression

γ : Ia → IIa(LogP,POL) → III (16c)

All these paths were selected more than once from all
of the computed residual-QSARs in Table 5. In addition,
part of the alpha path is identified first, and the rest
should fulfill the ergodicity rule invoked above at this
level (i.e., characterizing the models’ sequence not pre-
viously consumed).
By analyzing the results of Equations (16a-c) to under-

stand the molecular mechanics from inter-to intracellu-
lar space, we can see that the intermediate residual-
QSARs that approximate the interaction of structures
with the environment can be retained. This method was

Table 5 Synopsis of the statistical paths connecting the
correlation factors for the models of Table 4.

Statistical Path Self-Consistent res-
QSARs

Factor and Averaged res-
QSARs

Gauss Q-Gauss Gauss Q-Gauss

Ia-IIa-III 0.04372g 0.05089g 0.2838g 0.11541

Ia-IIb-III 0.04368 0.05067 0.2838 0.21791

Ia-IIc-III 0.04368 0.05067 0.2838 0.24963g

Ib-IIa-III 0.02683 0.02808 0.1097 0.03308a

Ib-IIb-III 0.02679 0.02786b 0.1097b 0.3257

Ib-IIc-III 0.02679a 0.02786 0.1097 0.35742

Ic-IIa-III 0.02738 0.02333 0.0896 0.19691

Ic-IIb-III 0.02734b 0.02311 0.0896 0.15621b

Ic-IIc-III 0.02734 0.02311a 0.0896a 0.16813
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inspired by the Husserl phenomenology method [41],
which puts the core of the event in parenthesis and
excludes the very incipient moments (i.e., the initial,
transient stage does not decisively count in evolution)
and those of the very final recordings (i.e., when all
causes are mixed) to understand properly the evolution-
ary causes of some event. As a result, the molecular
mechanism of genotoxic carcinogenesis may be a result
of the succession of several linked structural causes,

(POL → Etot)︸ ︷︷ ︸
α

⇒ (
LogP → Etot

)︸ ︷︷ ︸
β

⇒ (
LogP → POL

)︸ ︷︷ ︸
γ

(17)

beginning with the associated scenario (Figure 3[42]).
A molecule is first polarized (POL) upon entering inter-
cellular space due to the plasmatic environment’s sol-
vent effects. It then rotates to the optimal steric position
(Etot) to realize cellular membrane transduction by acti-
vating its hydrophobicity (LogP). It may travel this way
though the cellular space while binding to DNA ele-
ments via further steric interactions (Etot) and while
remaining polarized. It may eventually break some parts
of DNA residues and carry them in the extra-cellular
space (LogP), where the enriched molecule will suffer
further polarization (POL) from solvent interactions
with the new molecular structure. The mechanism then
enters a new ligand-DNA cycle, while the remaining
DNA will enter mutagenesis. Remarkably, each consid-
ered structural (causal) indicator acted twice at the level
of one interaction cycle in the obtained mechanism (17)
in accordance with the self-consistent nature of the pre-
sent residual-QSAR analysis (Eq. (3)).
More detailed mechanisms of action may describe

genotoxic carcinogenesis if additional physicochemical

information is considered, but the steps of analysis
would be the same. Additional, detailed intermediate
steps would need to be added, while preserving the
mechanisms’ self-consistency and cyclic character
through the statistical paths. The electrophilic influence
(through polarization) should also be included as a nat-
ural generalization of Millers’ theory.

Conclusions
Cancer is often called “the disease of the 21st Century,”
and its phenomenology still resists conceptual clarifica-
tions, despite continuous laboratory and clinical efforts
through trial-and-error attempts to design suitable
drugs and vaccines against its various forms of action
[43,44]. The quantitative structure-activity relationship
(QSAR) is recognized for the modeling and prediction
of complex ligand-receptor interactions at bio-, eco-, or
pharmacological levels, and can further our understand-
ing of mutagenesis and carcinogenesis. In this context,
the present work advanced a complementary form of
QSAR under its residual version. It specifically applies
to the modeling of genotoxic interactions, where toxi-
cants covalently bind to DNA by a mechanism that
involves an electrophilic stage (i.e., polarization). Resi-
dual QSAR methods have the following features:

• Self-consistency (i.e., looping or cyclicity) of the
computed activity that respects the observed one,
with both contained in the same multilinear
equation;
• They are suited for non-congeneric series that dis-
play low-direct-correlation-models to almost all
common physicochemical descriptors. Complemen-
tary high-correlation factors cause the residual
QSAR to induce remaining effects that slowly grow
over many cycles, producing cancer cells as an exa-
cerbated apoptosis.

The presented application clearly illustrates these basic
residual-QSAR properties, implemented in close agree-
ment with the regulatory OECD principles on multi-
regression models. It also advances the principle of nor-
mal activities in the screening stage of selecting the trial
from the test sets of compounds. This is presumed to
have more power than the consecrated QSAR dogma of
congenericity, which is not applicable for genotoxic
effects. The principle of minimum paths across the
computed endpoints was reloaded at the statistical level
of only correlation factors, leading to a complete ergo-
dic-hierarchical framework that permits the identifica-
tion of the structural dynamics triggering
carcinogenesis. The structural causes entered a single
cycle of inter-and intracellular interactions twice overall,
resembling the self-consistency or looping specificity of

Figure 3 Illustration of the molecular mechanism for genotoxic
carcinogenesis according to the present residual-QSAR
correlation-path hierarchy superimposed over an
immunohistochemcial analysis of paraffin-embedded sections
of rat intestinal cancer using the Caspase-2 antibody [42].
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the employed residual QSAR modeling. The present
analysis may be naturally extended to include more
structural descriptors to enrich the detailed interaction
scheme of the toxicant-DNA binding and growing can-
cer cells. It may also consider the influence of molecular
fragments, especially through structural alerts [45]. Such
studies are currently in progress and will be the subject
of forthcoming communications targeting a conceptual
understanding of genotoxic carcinogenesis by means of
QSAR modeling and its associated principles.
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