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Abstract 

The COVID-19 pandemic has prompted the medical systems of many countries to develop effective treatments 
to combat the high rate of infection and death caused by the disease. Within the array of proteins found in SARS-
CoV-2, the 3 chymotrypsin-like protease  (3CLpro) holds significance as it plays a crucial role in cleaving polyprotein 
peptides into distinct functional nonstructural proteins. Meanwhile, RNA-dependent RNA polymerase (RdRp) takes 
center stage as the key enzyme tasked with replicating the viral genomic RNA within host cells. These proteins,  3CLpro 
and RdRp, are deemed optimal subjects for QSAR modeling due to their pivotal functions in the viral lifecycle. In this 
study, SMILES-based QSAR classification models were developed for a dataset of 2377 compounds that were defined 
as either active or inactive against 3CLpro and RdRp. Pharmacophore (PH4) and QSAR modeling were used for the vir-
tual screening on 60.2 million compounds including ZINC, ChEMBL, Molport, and MCULE databases to identify new 
potent inhibitors against  3CLpro and RdRp. Then, a filter was established based on typical molecular characteristics 
to identify drug-like molecules. The molecular docking was also performed to evaluate the binding affinity of 156 
AND 51 potential inhibitors to  3CLpro and RdRp, respectively. Among the 15 hits identified based on molecular dock-
ing scores, M3, N2, and N4 were identified as promising inhibitors due to their good synthetic accessibility scores 
(3.07, 3.11, and 3.29 out of 10 for M3, N2, and N4 respectively). These compounds contain amine functional groups, 
which are known for their crucial role in the binding interactions between drugs and their targets. Consequently, 
these hits have been chosen for further biological assay studies to validate their activity. They may represent novel 
 3CLpro and RdRp inhibitors possessing drug-like properties suitable for COVID-19 therapy.
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Introduction
COVID-19, caused by the SARS-CoV-2 virus, has 
affected over 768 million people worldwide and resulted 
in more than 6 million deaths [1]. The pandemic has 

highlighted the urgent need for effective therapeutics 
to combat emerging viral diseases, given its devastat-
ing impact on global health and the economy. While the 
rapid development of vaccines mitigated the severity of 
the outbreak, a continued demand persists for antivi-
ral treatments to manage infections, reduce transmis-
sion, and address new viral variants. As a result, drug 
discovery remains a central focus of ongoing research 
efforts aimed at combating both current and future viral 
outbreaks.

One promising approach in drug discovery is targeting 
specific viral proteins essential for viral replication and 
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conserved across different strains of coronaviruses [2]. 
Notable targets include the 3-chymotrypsin-like protease 
 (3CLpro) and RNA-dependent RNA polymerase (RdRp), 
both of which play crucial roles in the replication cycle 
of SARS-CoV-2 [3, 4]. The 3-chymotrypsin-like pro-
tease (3CLpro) is a crucial enzyme in the SARS-CoV-2 
life cycle, responsible for cleaving the viral polyprotein 
into functional components essential for replication. Its 
unique catalytic Cys-His dyad and conserved active site, 
capable of accommodating multiple substrates, make it 
an ideal target for antiviral drug development [5]. Simi-
larly, the RNA-dependent RNA polymerase (RdRp), 
another key viral enzyme, facilitates viral RNA synthesis 
and is highly conserved across coronaviruses, making it a 
pivotal target for therapeutics [6]. Together, 3CLpro and 
RdRp play essential roles in viral replication, positioning 
them as prime targets for developing COVID-19 treat-
ments. Targeting these proteins has shown promise in 
identifying therapeutic candidates, but conventional drug 
discovery methods face significant limitations, including 
high costs, time inefficiency, and low success rates [7, 8]. 
Consequently, more rapid and cost-effective approaches 
are needed to identify potential antiviral compounds 
while ensuring their efficacy and safety [2].

Several anti-RNA polymerase drugs currently avail-
able, such as Ribavirin [9], Galidesivir [10], Remdesivir 
[11], and Tenofovir [12], have been approved for treat-
ing various viral infections. These drugs are now being 
evaluated for their effectiveness against SARS-CoV-2 
RNA-dependent RNA polymerase (RdRp). Regarding the 
3CLpro target, numerous studies and ongoing clinical 
trials have highlighted drugs like Lopinavir [13], Daruna-
vir [14], Ritonavir [15], Ganovo [16], and Cobicistat [17]. 
Among these, the combination of Ritonavir/Lopinavir 
(LPV) is frequently tested in clinical trials for COVID-
19 treatment. While there is some evidence suggesting 
LPV’s potential efficacy, its significant side effects are a 
major concern [18, 19]. Moreover, these findings under-
score the importance of RdRp and 3CLpro as crucial 
targets for drug development against SARS-CoV-2, with 
inhibiting their activity emerging as a promising thera-
peutic strategy.

To address these challenges, quantitative structure–
activity relationship (QSAR) machine learning models 
have emerged as a promising tool for accelerating drug 
discovery. QSAR models can predict the activity of com-
pounds against specific targets based on their molecular 
properties, enabling the rapid screening of large com-
pound libraries. These models have been successfully 
applied in identifying potential therapeutics for various 
diseases, including cancer and Alzheimer’s [20–22].

In QSAR classification, machine learning algorithms 
classify compounds based on their chemical structure 

and predicted activity. The goal is to build a model that 
can accurately predict a compound’s activity against a 
target by analyzing its structural features, such as molec-
ular weight and hydrophobicity. The model is trained on 
a dataset of compounds with known activity, which is 
divided into training and test sets. The performance of 
the model is evaluated using metrics like sensitivity, spec-
ificity, and accuracy, ultimately leading to a binary classi-
fication (active or inactive) for each compound in the test 
set [23, 24].

A particularly advantageous approach is using CORAL 
(Consensus Modeling for Assessing Chemical Toxicity) 
and SMILES-based QSAR models. These models can 
handle large and diverse chemical datasets efficiently, 
thanks to their use of the Simplified Molecular Input Line 
Entry System (SMILES) notation. This molecular repre-
sentation captures key structural features while reducing 
computational costs, making these models well-suited 
for virtual screening and prioritizing compounds for 
experimental testing. The CORAL model, which inte-
grates multiple QSAR models and descriptors to gener-
ate consensus predictions, further enhances accuracy and 
robustness [25–27].

In this study, we leverage a dataset compiled by Ivanov 
et  al. [28], which includes compounds tested for activ-
ity against the viral targets  3CLpro and RdRp. By apply-
ing QSAR machine learning models, we aim to identify 
additional compounds with the potential to serve as 
therapeutics for COVID-19 and related viral infections. 
An overview of the steps of the present study is shown in 
Fig. 1.

Materials and methods
Data collection
2377 molecules were selected from an article published 
by Julian Ivanov and colleagues in 2020 to investigate 
their inhibitory potency on the COVID-19 virus pro-
teases [28]. The Simplified Molecular Input Line Entry 
System (SMILES) strings and IC50 values used for 
CORAL input were directly retrieved from the sup-
plementary files of this article. Initially, the CORAL 
software checks for duplicated chemicals, incorrect 
SMILES, and inconsistencies in activity data notation 
based on SMILES. The SMILES format of the com-
pounds was presented in Table  S1 and S2. These mol-
ecules include 1168 molecules for  3CLpro, consisting of 
468 active and 700 inactive molecules, and 1209 mole-
cules for RdRp, consisting of 464 active and 745 inactive 
molecules. Compounds with an  IC50 of ≤ 10µM were 
classified as active compounds, and compounds with an 
 IC50 of ≥ 10µM were classified as inactive compounds. 
In this study, “semi-correlation” were constructed for 
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ten distinct divisions, as opposed to traditional correla-
tions (Fig. 2)[29, 30]. The splits’ identities were also cal-
culated and are displayed in Table  1. It’s important to 
mention that there are no pairs of splits with an identity 
exceeding 35%.

CORAL method
The chemical elements in the molecular structure 
were encoded as symbols for cycles and branching 
using SMILES attributes, and CORAL software was 
utilized to build models based on this representation 
[31]. The CORAL software, which can be downloaded 
for free from http:// www. insil ico. eu/ coral, is a com-
putational tool that utilizes Monte Carlo methods to 
develop regression and classification models based 
on SMILES descriptors and their corresponding end-
points (i.e. active or inactive). To build the models, the 
compounds were randomly divided into four datasets: 
a training set (30%), an invisible training set (30%), 
a calibration set (20%), and a validation set (20%). To 
create the QSAR model, data from the training set was 
utilized [30]. The training set is the foundation for con-
structing the model or “builder”. Monte Carlo optimi-
zation is being employed to adjust correlation weights 
for molecular features derived from SMILES associated 
with this particular set. The invisible training set is the 

Fig. 1 Process of molecular modeling in the present study

Fig. 2 Visualization of the general concepts of the traditional 
correlation and semi-correlation

http://www.insilico.eu/coral
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Table 1 Percentages of identity for random splits

Set Split1 Split2 Split3 Split4 Split5 Split6 Split7 Split8 Split9 Split10

3CLpro

 Split1 T 100 29.1 29.4 31.6 30.6 29.6 27.8 29.6 30.7 27.6

IT 100 30.9 31.6 31.1 30.9 34.1 31.7 33.5 30.1 28.3

C 100 16.4 20.9 21.9 17.1 18.6 20.0 16.1 21.4 19.8

V 100 22.7 19.3 20.1 16.7 21.8 20.1 23.3 19.6 22.3

 Split2 T 100 33.3 28.5 26.6 28.9 27.4 29.8 28.2 27.5

IT 100 29.2 27.5 28.5 32.0 25.0 29.5 30.8 31.3

C 100 22.5 19.7 19.5 18.1 19.0 18.9 24.6 17.9

V 100 17.0 17.4 24.2 19.9 20.8 21.8 21.1 16.0

 Split3 T 100 32.4 29.4 35.1 30.1 27.1 29.2 29.7

IT 100 30.0 30.6 31.3 29.2 29.9 28.1 26.8

C 100 20.3 23.5 17.0 23.4 22.5 16.1 19.5

V 100 23.3 22.0 25.0 20.4 20.9 18.6 18.8

 Split4 T 100 30.3 30.5 30.5 28.5 28.1 31.5

IT 100 31.0 30.5 27.2 31.4 27.6 27.8

C 100 21.1 22.2 23.0 18.1 22.8 22.5

V 100 17.7 19.8 22.0 19.0 21.0 23.2

 Split5 T 100 30.7 30.7 31.0 27.7 29.0

IT 100 26.5 29.3 26.9 30.9 28.4

C 100 15.7 20.9 21.2 17.7 21.5

V 100 17.3 18.6 20.4 21.4 21.2

 Split6 T 100 35.6 30.6 29.1 29.5

IT 100 30.0 29.5 27.1 26.1

C 100 22.4 21.5 20.5 18.8

V 100 21.6 16.4 19.0 22.0

 Split7 T 100 27.7 31.7 30.1

IT 100 29.4 32.0 29.3

C 100 19.5 16.5 24.3

V 100 18.2 21.5 22.4

 Split8 T 100 27.1 32.7

IT 100 27.8 28.3

C 100 19.3 21.8

V 100 16.8 20.0

 Split9 T 100 31.2

IT 100 27.9

C 100 21.2

V 100 21.1

 Split10 T 100

IT 100

C 100

V 100

RdRp

 Split1 T 100 29.0 30.3 27.1 32.2 30.5 26.7 28.2 29.8 29.0

IT 100 27.1 28.2 33.6 35.1 33.1 30.5 28.0 33.9 28.2

C 100 18.4 22.8 18.1 19.9 22.6 22.9 20.4 18.7 18.1

V 100 19.9 16.1 22.2 24.7 16.2 20.2 19.4 22.6 24.7
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“inspector” of the model. Computing descriptors for 
SMILES within this set should either confirm or reject 
the model’s appropriateness for substances not directly 
engaged in the optimization procedure. The calibra-
tion set should identify the onset of overfitting. Based 
on computational experiments, it’s evident that opti-
mization enhances the correlation between descrip-
tors and an endpoint for both the training and invisible 
training sets. However, as the optimization progresses 
through more epochs, there’s a gradual decrease in the 

correlation coefficient between descriptors and the 
endpoint for the calibration set [32]. The validation set 
was used to test the predictability of the QSAR model. 
The CORAL software utilized identical algorithms to 
compute the classification models. The regression mod-
els were established on genuine correlations, while the 
classification models relied on pseudo correlations. 
The dataset for the classification models was allocated 
either a value of 1, indicating “active,” or a value of 0, 
indicating “inactive.”

T Training set, IT Invisible Training set, C Calibration set, V Validation set

Table 1 (continued)

Set Split1 Split2 Split3 Split4 Split5 Split6 Split7 Split8 Split9 Split10

 Split2 T 100 26.4 28.7 28.0 31.7 30.3 29.3 28.7 30.4

IT 100 26.8 30.8 28.3 31.5 29.4 29.2 27.2 28.1

C 100 19.2 19.1 20.0 13.4 18.1 21.8 18.4 20.1

V 100 18.9 17.2 20.2 23.5 21.8 20.4 20.4 23.7

 Split3 T 100 31.2 31.2 31.8 31.3 30.6 31.7 31.3

IT 100 32.7 29.2 28.9 30.4 24.9 28.1 27.3

C 100 21.0 20.6 20.8 16.4 18.4 24.5 26.1

V 100 22.7 18.5 21.3 23.3 22.5 19.9 20.7

 Split4 T 100 31.7 29.7 28.1 31.3 31.3 29.8

IT 100 34.8 32.0 35.4 28.6 30.4 31.1

C 100 21.1 18.8 19.0 20.3 21.9 23.2

V 100 20.8 22.1 20.3 21.4 19.8 18.9

 Split5 T 100 25.8 31.8 28.0 31.9 34.2

IT 100 28.7 33.1 26.3 32.0 30.3

C 100 16.8 19.9 21.5 21.9 25.6

V 100 19.0 17.6 18.5 24.4 22.4

 Split6 T 100 27.9 28.5 27.3 31.4

IT 100 32.2 27.8 31.4 26.9

C 100 23.3 24.4 25.9 23.8

V 100 21.8 20.8 20.9 21.3

 Split7 T 100 30.4 28.0 28.7

IT 100 25.8 30.1 30.1

C 100 22.7 21.9 25.8

V 100 21.1 20.8 24.0

 Split8 T 100 27.5 29.2

IT 100 28.4 28.3

C 100 23.8 23.6

V 100 19.1 21.2

 Split9 T 100 30.4

IT 100 31.1

C 100 26.3

V 100 23.2

 Split10 T 100

IT 100

C 100

V 100
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Optimal descriptor
Molecular descriptors, which are mathematical entities, 
encode the chemical and physical properties of mole-
cules. Choosing an appropriate set of descriptors is cru-
cial as it determines the accuracy of predictive models. 
2D representations based on molecular graphs contain 
around 70–80% of the information in QSAR models. 
Fragment-based QSAR calculates descriptors for molec-
ular fragments generated by predefined rules. 2D QSAR 
is simpler and less time-consuming than other methods. 
Useful fragments can be identified and mapped onto 
molecules to suggest improvements.

CORAL software offers three distinct descrip-
tor of correlation weights (DCW) types: graph-based, 
SMILES-based, and hybrid [33]. The graph-based and 
SMILES-based DCWs are calculated solely based on 
their respective input types, while the hybrid DCW is 
generated using both graph and SMILES inputs. To com-
pute the optimal descriptors using SMILES, the following 
formula is utilized:

Table 2 contains a detailed description of the SMILES 
attributes invariants used in Eq. (1).

In the context of SMILES fragments, the threshold is a 
parameter used to distinguish between rare and non-rare 
fragments. If the number of SMILES containing a par-
ticular fragment in the training set is less than the thresh-
old, it is considered rare; otherwise, it is classified as 
non-rare. During the Monte Carlo optimization process, 
one epoch refers to a complete cycle of modifying all cor-
relation weights. The correlation weights, which deter-
mine the maximum value of the correlation coefficient 

(1)

SMILESDCW =

N
∑

k=1
CW (Sk)+

N−1
∑

k=1
CW (SSk)+

N−2
∑

k=1
CW (SSSk)+

∑

k

CW (NOSPk)

+

∑

k

CW (HALOk)+
∑

k

CW (BONDk)+
∑

k

CW (HARDk)

between the endpoint (0,1) and DCW (Threshold, Nep-
och), are obtained numerically using the Monte Carlo 
method.

The target function of the optimization is to find the 
correlation coefficient between the optimal descriptor 
and an endpoint. This is achieved through the CORAL 
model, which establishes a linear relationship between 
a predicted endpoint Y and a descriptor of correlation 
weights (DCW). The DCW is represented by the follow-
ing mathematical equation:

Using the least squares method, we can obtain two 
regression coefficients, C0 and C1, which are used to cre-
ate an optimal DCW model based on the dataset. During 
the Monte Carlo optimization process, the parameters T* 
and N* are used, where T* represents the threshold value 
and N* represents the number of epochs. In DCW mode-
ling, T refers to the threshold number of active attributes. 
For example, if T is set to four, any attributes that appear 

in less than four molecules are considered inactive, and 
their correlation weight will be zero [34–36].

Statistical criteria
For the binary classification model where “active” is rep-
resented by 1 and “inactive” by 0, several statistical meas-
ures are used to evaluate the model’s performance. These 
measures include the Matthews correlation coefficient 
(MCC), sensitivity, specificity, and accuracy, which are 
calculated as follows:

(2)Y = C0 + C1×DCW
(

T ∗
,N ∗)

(3)Sensitivity =
TP

TP + FN

(4)Specificity =
TN

TN + FP

(5)Accuracy =
TP + TN

TP + FP + FN + TN

(6)

MCC =
TP×TN − FP×FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 2 The detailed description of SMILES attributes

ID Definitions

SMILES Sk Represent one element SMILES attributes

SSk Represent two element SMILES attributes

SSSk Represent of combinations of three SMILES attributes

NOSPk Presence of one or more of four chemical elements 
(nitrogen, oxygen, sulphur and phosphorus)

HALOk Presence of fluorine, chlorine, bromine, and iodine

BONDk Presence or absence of three categories of chemical 
bonds: double, triple and stereo specific

HARDk gather together BOND, NOSP, and HALO
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A confusion matrix is a table used to assess the perfor-
mance of a classification model. It includes the number 
of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN) predictions made by the 
model [30].

The performance measures used in evaluating a clas-
sification model are important indicators of its quality. 
One such measure is the Matthews correlation coefficient 
(MCC), which is commonly used for binary classification 
problems [37]. The MCC is similar to the traditional cor-
relation coefficient but is designed specifically for this 
case. The MCC coefficient, applied in machine learn-
ing as a balanced measure of the quality of binary clas-
sifications, proving beneficial even when the classes vary 
significantly in size. In practical terms, a model is consid-
ered good if the MCC 1, or generally, the MCC should be 
greater than 0.6 for it to be effective. Another important 
measure is sensitivity, which assesses the model’s ability 
to correctly identify positive observations, such as active 
compounds. Specificity, on the other hand, evaluates the 
model’s ability to accurately identify negative observa-
tions, such as inactive compounds. Finally, accuracy is a 
measure of the overall performance of the model, taking 
into account its ability to predict both positive and nega-
tive observations. These measures are crucial in deter-
mining the effectiveness of a classification model and 
ensuring its ability to make accurate predictions.

Applicability domain
The OECD QSAR validation principles require QSAR 
models to be used within their applicability domain (AD), 
which refers to the space or knowledge used to develop 
the model and make predictions for new compounds. 
Regarding CORAL models, the domain of applicabil-
ity is determined by analyzing the statistical defects of 
SMILES, which are calculated based on the distribution 
of available data in the training, invisible training, cali-
bration, and validation sets [38]. To define the domain 
of applicability, the defect of the SMILES attribute is 
measured as the difference between the probability of 
the attribute in the training set and its probability in the 
calibration set. The total SMILES-defect is obtained by 
summing up the defects of all attributes. If the SMILES-
defect of a particular SMILES is less than double the 
average defect of compounds in the training set, it is con-
sidered to be within the domain of applicability; other-
wise, it falls outside the domain of applicability.

(7)
DefectAk

=
|PTRN (Ak)− PCAL(Ak)|
NTRN (Ak)+ NCAL(Ak)

, if NTRN (Ak) > 0DefectAk
= 1, if NTRN (Ak) = 0

The probabilities of attribute A in the training and 
calibration sets are denoted by PTRN (Ak) and PCAL(Ak) , 
respectively. On the other hand, the frequencies of A 
in the training and calibration sets are represented by 
NTRN (Ak) and NCAL(Ak) , respectively.

In the SMILES notation, the statistical defect (D) is the 
total sum of all statistical defects of all attributes.

In CORAL, the number of active SMILES attributes in 
a compound is denoted by NA. If a compound is outside 
the domain of applicability, it is considered an outlier. 
The detection of outliers in CORAL is based on the con-
dition expressed in inequality 9.

The mean value of statistical defects calculated for the 
training dataset is referred to as DefectTRND.

Virtual screening workflow
Virtual screening is a computational technique used in 
drug discovery and development to identify potential drug 
candidates through in-silico (computer-based) screening 
of large libraries of small molecules. The process involves 
the use of computer algorithms and molecular modeling 
techniques to predict the potential binding affinity of small 
molecules with target proteins, and thus, identify mole-
cules with a high likelihood of being effective drug candi-
dates [39]. The Pharmit webserver was used to conduct in 
silico virtual screening on four databases (ChEMBL, ZINC, 
MCULE, and MolPort) in building pharmacophore (PH4) 
model and the identification of drug-like molecules stages 
[40]. Pharmit is an online interactive server that allows 
for the virtual screening of various compound databases 
using pharmacophore models and molecular shapes. The 
reference article identified several molecules with in vitro 
inhibitory effects on  3CLpro, among which 1H-Indole-
2-carboxylic acid, 5-fluoro-, 1H-benzotriazol-1-yl ester 
(A1) with an  IC50 of 0.013 was considered the most active 
compound. Similarly, 3-[Isopropyl(trans-4-methylcy-
clohexylcarbonyl)amino]-5 phenylthiophene -2 carboxylic 
acid (A2) was considered the most active compound with 
in  vitro inhibitory effect on RdRp, with an  IC50 of 0.009 
[28]. To perform the structure-based pharmacophore 
screening, we utilized these two most active compounds 
A1 and A2 in the Pharmit server. The QSAR models were 

(8)DefectMolecule =
NA
∑

k=1

DefectAk

(9)DefectMolecule > 2×DefectTRN
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selected to conduct virtual screening. Pharmit filters com-
pounds during hit screening based on drug-like properties 
including number of rotatable bonds, molecular weight, 

logP, topological polar surface area, number of HBAs, num-
ber of HBDs, and number of aromatic groups. The speci-
fied ranges for these properties are: MW ≤ 500, rotatable 

Table 3 the statistical properties of the inhibitor activity classification models of  3CLPro that were generated through the Monte Carlo 
method optimization for ten random splits

Split Set n Sensitivity Specificity Accuracy MCC

Inhibitory activity = −1.2754379(±0.0016968)+ 0.0549150(±0.0000625)×DCW(1, 25)

1 Training 339 0.9917 0.9916 0.9916 0.9813

Invisible training 368 0.9865 1 0.9948 0.9891

Calibration 230 0.9444 0.9778 0.9644 0.9258

Validation 231 0.8269 0.9701 0.9375 0.8739

Inhibitory activity = −0.7655690(±0.0011840)+ 0.0538805(±0.0000561)×DCW(1, 22)

2 Training 342 0.9835 1 0.9943 0.9874

Invisible training 358 0.9733 1 0.9893 0.9778

Calibration 233 0.9231 0.9574 0.944 0.8823

Validation 235 0.9216 0.9933 0.9643 0.9266

Inhibitory activity = −0.4847983(±0.0012123)+ 0.0509742(±0.0000518)×DCW(1, 23)

3 Training 354 0.9789 1 0.992 0.983

Invisible training 341 1 0.9907 0.9938 0.9862

Calibration 238 0.9541 0.9865 0.9728 0.9443

Validation 235 0.8962 0.9533 0.9297 0.8547

Inhibitory activity = −0.5277815(±0.0011310)+ 0.0588772(±0.0000562)×DCW(1, 25)

4 Training 338 0.9778 1 0.9915 0.982

Invisible training 339 0.9291 0.9811 0.9617 0.918

Calibration 254 0.9072 0.9554 0.937 0.8662

Validation 237 0.9029 0.9254 0.9156 0.8283

Inhibitory activity = −0.8095880(±0.0012977)+ 0.0540050(±0.0000485)×DCW(1, 22)

5 Training 341 0.9416 1 0.9765 0.9519

Invisible training 351 0.9568 0.9623 0.9601 0.9169

Calibration 239 0.9375 0.965 0.954 0.9041

Validation 237 0.9271 0.9149 0.9198 0.8358

Inhibitory activity = −0.5912367(±0.0010215)+ 0.0665357(±0.0000581)×DCW(1, 22)

6 Training 336 0.9638 0.9956 0.9835 0.9659

Invisible training 336 0.9481 0.9851 0.9702 0.9381

Calibration 232 0.8969 0.9481 0.9267 0.8491

Validation 237 0.9082 0.8849 0.8945 0.7862

Inhibitory activity = −0.8271686(±0.0011930)+ 0.0657067(±0.0000743)×DCW(1, 17)

7 Training 344 0.9593 0.991 0.9797 0.9556
Invisible training 338 0.9403 0.9804 0.9645 0.9257
Calibration 250 0.9048 0.9517 0.932 0.8601
Validation 236 0.9151 0.9692 0.9449 0.889

Inhibitory activity = −0.5998361(±0.0012035)+ 0.0646588(±0.0000541)×DCW(1, 22)

8 Training 363 0.9625 0.9951 0.9807 0.9611

Invisible training 348 0.9638 0.9905 0.9799 0.958

Calibration 242 0.8974 0.9329 0.9215 0.8224

Validation 215 0.9457 0.9431 0.9442 0.8865

nhibitory activity = −0.6242973(±0.0012742)+ 0.0663009(±0.0000696)×DCW(1, 22)

9 Training 338 0.9242 0.9854 0.9615 0.9193

Invisible training 336 0.9398 0.9901 0.9702 0.938

Calibration 246 0.9439 0.9424 0.9431 0.8846

Validation 248 0.8854 0.9211 0.9073 0.805



Page 9 of 20Bazzi‑Allahri et al. BMC Chemistry          (2024) 18:191  

bonds ≤ 10, logP ≤ 5, PSA ≤ 140 Å2, aromatic groups ≤ 5, 
2 ≤ HBA ≤ 7, and 2 ≤ HBD ≤ 7. The binding modes of inhib-
itors, along with the critical molecular interactions inside 
 3CLpro and RdRp active sites with PDB ID 6Y2F and 6NUR, 
were investigated using the Smina [41] molecular docking 
package. A purification process was performed by remov-
ing all heteroatoms and solvent molecules from the struc-
ture. Polar hydrogens were then added to the PDB files. All 
ligands for docking were sketched using Discovery Studio 
2020, and assigned gasteiger charges and energy optimiza-
tion of ligands using the steepest descent algorithm carried 
out by Open Babel [42]. The details of the molecular dock-
ing algorithm in Smina have been explained in previous 
studies [36, 43]. Visualization and interaction analyses were 
performed using the Discovery Studio 2020 viewer.

Results and discussion
QSAR models
For the  3CLpro enzyme, a collection of 1168 molecules were 
used, with 468 molecules known to be active against the 
enzyme and 700 molecules known to be inactive. These 
molecules were split into four different groups: a training 
set of 339 molecules, an invisible training set of 368 mole-
cules, a calibration set of 230 molecules, and a validation set 
of 231 molecules. Similarly, for the RdRp enzyme, a group 
of 1209 molecules were used, with 464 known to be active 
and 745 known to be inactive. These molecules were also 
divided into four groups: a training set of 358 molecules, 
an invisible training set of 386 molecules, a calibration set 
of 225 molecules, and a validation set of 240 molecules. 
To begin with, the process of parameter optimization was 
carried out in order to determine the most suitable values 
for the threshold and number of epochs  (Nepoch). This was 
done to ensure that the model would produce accurate pre-
dictions while minimizing the risk of overfitting.

To analyze the data set for proteases  3CLpro and RdRp, 
it was divided into ten separate parts referred to as “splits” 
(split 1, split 2, and so on up to split 10). The analysis was 
conducted using a  Nepoch value of 30 and threshold values 
ranging from 1 to 3. For all ten splits of both proteases, the 
Monte Carlo optimization used a preferred threshold value 
(T*) of 1 and a preferred number of epochs (N*) of 3. The 
models for each of the ten splits (splits 1 through 10) were 

obtained using this methodology. Tables  3 and 4 displays 
the statistical properties of the binary classifications for 
 3CLpro and RdRp, with the activity being determined using 
the following formula:

The majority of the models in the study achieved an 
accuracy, sensitivity, and specificity greater than 90% for 
the training, invisible training, calibration, and validation 
sets of  3CLpro and RdRp across splits 1–10, indicating 
their ability to predict the activity of the viral enzymes.

It’s important to highlight that the classification model 
relies on unique semi-correlations, making it unsuitable 
for using of some traditional criteria. For traditional cor-
relation, an  r2 value around 0.4 suggests a weak regres-
sion model. But when it comes to semi-correlation with 
a similar  r2 value (0.4), having specificity, sensitivity, 
accuracy, and MCC at that level could be seen as good 
or even outstanding. This means most items in the 
chart are accurately classified, usually with just one false 
positive and one false negative. The CORAL software 
operates under the fundamental assumption that a well-
performing model on a calibration set should also per-
form well on an external validation set. In this case, the 
statistical parameters of the models for the two proteases 
are deemed good and acceptable. Furthermore, for split 
#7  (bold  in the Table  3) of  3CLPro and split #4  (bold in 
Table 4) of RdRp, the MCC values for the validation sets 
are among the top-performing models, with 0.9478 and 
0.8890, respectively.

By running Monte Carlo optimization multiple times, 
one can obtain three groups of SMILES attributes: (i) 
attributes or promoters that only have positive correla-
tion weights, which promote the activity of compounds; 
(ii) attributes or promoters that only have negative cor-
relation weights, which promote the inactivity of com-
pounds; and (iii) attributes or promoters that have both 
positive and negative correlation weights in multiple 
Monte Carlo runs, and their role is not yet understood. 
This method allows for a mechanistic interpretation 
of the model. Tables 5 and 6 provides a list of potential 

(10)

Class =
{

Inhibitory activity ≤ 10µM, class = 1(active)
Inhibitory activity > 10µM, class = 0(inactive)

Table 3 (continued)

Split Set n Sensitivity Specificity Accuracy MCC

Inhibitory activity = −0.7964906(±0.0012467)+ 0.0613058(±0.0000611)×DCW(1, 22)

10 Training 341 0.938 0.9906 0.9707 0.9378

Invisible training 338 0.9771 0.9807 0.9793 0.9565

Calibration 235 0.8641 0.9621 0.9191 0.8368

Validation 254 0.7714 0.9597 0.8819 0.7587
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promoters that be linked to both increased and decreased 
activities for both proteases. The findings from Table  5 
revealed that certain structural features, such as aliphatic 

oxygen and double bond, nitrogen and double bond, 
aliphatic oxygen and double bond with branching, two 
successive aliphatic carbon, aliphatic carbon and double 

Table 4 The statistical properties of the inhibitor activity classification models of RdRp that were generated through the Monte Carlo 
method optimization for ten random splits

Split Set n Sensitivity Specificity Accuracy MCC

Inhibitory activity = −1.6278890(±0.0011429)+ 0.0552155(±0.0000444)×DCW(1, 25)

1 Training 358 0.9917 0.9916 0.9916 0.9813

Invisible training 386 0.9865 1 0.9948 0.9891

Calibration 225 0.9444 0.9778 0.9644 0.9258

Validation 240 0.8269 0.9701 0.9375 0.8739

Inhibitory activity = −1.6484312(±0.0011655)+ 0.0498625(±0.0000398)×DCW(1, 16)

2 Training 352 0.9835 1 0.9943 0.9874

Invisible training 373 0.9733 1 0.9893 0.9778

Calibration 232 0.9231 0.9574 0.944 0.8823

Validation 252 0.9216 0.9933 0.9643 0.9266

Inhibitory activity = −1.7380462(±0.0012938)+ 0.0418836(±0.0000323)×DCW(1, 18)

3 Training 374 0.9789 1 0.992 0.983

Invisible training 322 1 0.9907 0.9938 0.9862

Calibration 257 0.9541 0.9865 0.9728 0.9443

Validation 256 0.8962 0.9533 0.9297 0.8547

Inhibitory activity = −1.7574849(±0.0012422)+ 0.0632141(±0.0000445)×DCW(1, 18)

4 Training 351 0.9778 1 0.9915 0.982
Invisible training 393 0.9868 1 0.9949 0.9893
Calibration 228 0.95 0.9595 0.9561 0.9044
Validation 237 0.9592 0.9856 0.9747 0.9478

Inhibitory activity = −1.7539257(±0.0013973)+ 0.0536652(±0.0000380)×DCW(1, 18)

5 Training 369 0.9655 0.9955 0.9837 0.966

Invisible training 349 0.9699 0.9954 0.9857 0.9697

Calibration 228 0.9405 0.9792 0.9649 0.9244

Validation 263 0.9706 0.9689 0.9696 0.9363

Inhibitory activity = −1.5928815(±0.0014258)+ 0.0539876(±0.0000436)×DCW(1, 19)

6 Training 336 0.9728 1 0.9881 0.976

Invisible training 370 0.9856 0.9957 0.9919 0.9827

Calibration 261 0.9694 0.9816 0.977 0.951

Validation 242 0.95 0.9506 0.9504 0.89

Inhibitory activity = −1.7698491(±0.0012758)+ 0.0505012(±0.0000404)×DCW(1, 21)

7 Training 360 0.9857 0.9955 0.9917 0.9825

Invisible training 369 0.9756 0.9959 0.9892 0.9756

Calibration 255 0.9906 0.9933 0.9922 0.9839

Validation 225 0.9158 0.9846 0.9556 0.9095

Inhibitory activity = −1.7604432(±0.0013978)+ 0.0492024(±0.0000376)×DCW(1, 21)

8 Training 345 0.9867 0.9897 0.9884 0.9764

Invisible training 313 0.9752 1 0.9904 0.9799

Calibration 264 0.9684 0.9941 0.9948 0.9671

Validation 287 0.9388 0.963 0.9547 0.8996

Inhibitory activity = −1.8181568(±0.0013362)+ 0.0322936(±0.0000265)×DCW(1, 14)

9 Training 346 0.985 0.9953 0.9913 0.9817

Invisible training 369 0.9632 0.9957 0.9837 0.9651

Calibration 257 0.9574 0.9877 0.9767 0.9496

Validation 237 0.901 0.9929 0.9536 0.9068
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bond with branching, double bond, presence of at least 
three rings, carbon and double bond with branching, 
aliphatic carbon and aliphatic nitrogen with branching, 
aliphatic carbon and aliphatic oxygen with branching, 
molecule containing nitrogen and oxygen with at least 
one ring and branching, were identified as significant fac-
tors for increased inhibitory activity against  3CLPro. On 
the other hand, decreased activity against  3CLPro was 
associated with certain structural features, such as nitro-
gen and oxygen with double bond, oxygen and double 
bond, three successive aliphatic carbon, aliphatic carbon 
and double bond with at least three rings, hydrogen and 
stereo specific bonds.

Table  6 presented our findings on the influential fea-
tures that affect inhibitory activity against RdRp. We 
observed that negative charge, nitrogen and double bond, 
aliphatic carbon with branching, double bond, nitrogen 
and oxygen, double bond, aliphatic carbon and aliphatic 
nitrogen, aliphatic carbon and branching, presence of 
at least two rings, the highest number of sulfur equal to 
zero, oxygen and double bond, and aromatic carbon in 
the first ring had a positive impact on inhibitory activ-
ity. On the other hand, aliphatic carbon with branching 
and aliphatic oxygen, aliphatic oxygen and two branch-
ing, aliphatic carbon and branching, aliphatic nitrogen 
with branching and aliphatic carbon, branching with ali-
phatic carbon and stereo specific bonds, successive two 
aliphatic carbon and aliphatic nitrogen, aliphatic carbon 
and double bond, aromatic nitrogen in the second ring, 
the highest number of oxygens equal to one, two succes-
sive aliphatic carbons and ring, carbon and double bond 
with branching, and presence of three successive ali-
phatic carbon were found to decrease inhibitory activity 
against RdRp.

Virtual screening analysis
The Pharmit server was utilized to propose pharmaco-
phore characteristics by emphasizing on the key resi-
dues involved in active site interactions of  3CLPro and 
RdRp with compound A1 and A2 as the most active 
compounds, respectively (Fig.  3). Among the databases 
supported by Pharmit, we opted to screen the ZINC, 
CHEMBL32, MCULE, and MolPort databases due to 

the availability of purchasable compounds for virtual 
screening. The QSAR models were selected for predict-
ing the activity (active or inactive) of compounds. Then, 
the filter was established using typical molecular charac-
teristics for recognizing drug-like molecules. These fea-
tures comprise molecular weight, log P (a measurement 
of lipophilicity), topological polar surface area (a sign 
of the compound’s ability to penetrate cell membranes), 
the number of rotatable bonds, the number of aromatic 
groups, the number of hydrogen bond acceptors, and the 
number of hydrogen bond donors. OpenBabel is utilized 
to precompute these features. Smina was used in the 
third screening to confirm that the search for the bind-
ing site of  3CLPro and RdRp had produced all hits. The 
compounds were then sorted based on their docking 
score values, and only those with scores higher than com-
pounds A1 with  3CLPro (−  7.22 kcal/mol) and A2 with 
RdRp(− 7.84 kcal/mol) were included in the list. Figure 3 
shows the PH4 models and interaction patterns of two 
complexes: one between  3CLPro and A1, and the other 
between RdRp and A2.

The results of molecular docking indicate that the A1 
molecule forms hydrogen bonds with three different 
amino acids, namely ARG188, GLN192, and THR190. 
Additionally, this molecule exhibits hydrophobic inter-
actions with amino acids PRO168, MET165, and HIS41. 
The amino acids GLN189 and VAL186 are also found to 
be involved in van der Waals interactions with the A1 
molecule. The findings of molecular docking analysis 
between RdRp protease with molecule A2 indicated that 
GLN724 amino acid forms a hydrogen bond with the car-
bonyl group’s oxygen. Additionally, LEU708 and ARG721 
were observed to engage in hydrophobic interactions 
with the rings and branches, while THR710, GLY712, 
HIS725, and TYR732 were found to participate in van der 
Waals interactions. The results are consistent with the 
pharmacophoric models.

Figure 4 presents the hits obtained from virtual screen-
ing procedures across all four databases for each protein. 
During the final stage of screening, a certain number of 
compounds were subjected to docking simulations using 
different proteins, with 156 compounds docked into 
 3CLPro and 51 compounds into RdRp. The structures and 

Table 4 (continued)

Split Set n Sensitivity Specificity Accuracy MCC

Inhibitory activity = −1.5764651(±0.0011165)+ 0.0590559(±0.0000446)×DCW(1, 24)

10 Training 346 0.9925 0.9906 0.9913 0.9817

Invisible training 369 0.9632 1 0.9864 0.9711

Calibration 257 0.9468 0.9877 0.9728 0.9412

Validation 237 0.901 0.9706 0.9409 0.8795
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Table 5 A collection of SMILES attributes that can be interpreted as promoters of activity or inactivity of compounds against  3CLPro

SMILES attribute Interpretation

Promoter of activity increase

 O… = …… Presence of aliphatic oxygen and double bond

  +  +  +  + N–-B2 =  = Presence of nitrogen and double bond

  = …O … (… Presence of aliphatic oxygen and double bond and branching

 C…C…… Presence of two successive aliphatic carbon

 C… = … (… Presence of aliphatic carbon and double bond with branching

 BOND10000000 Presence of double bond in the structure of compound

 C…3…… Presence of at least three rings

 C … (… = … Presence of carbon and double bond and branching

 C…N … (… Presence of aliphatic carbon and aliphatic nitrogen and branching

 C…O … (… Presence of aliphatic carbon and aliphatic oxygen and branching

 C…2… = … Presence of at least two rings and double bond

 NOSP11000000 Molecule contains nitrogen and oxygen

 1… (…… Presence of at least one ring with branching

Promoter of activity decrease

  +  +  +  + N–-O =  =  = Presence of nitrogen and oxygen and double bond

  +  +  +  + O–-B2 =  = Presence of oxygen and double bond

 C…C…C… Presence of three successive aliphatic carbon

 C… = …3… Presence of aliphatic carbon and double bond and at least three rings

 H…@…… Presence of hydrogen and stereo specific bonds

Table 6 A collection of SMILES attributes that can be interpreted as promoters of activity or inactivity of compounds against RdRp

SMILES attribute Interpretation

Promoter of activity increase

 −…… Presence of negative charge

  +  +  +  + N–-B2 =  = Presence of nitrogen and double bond

 C … (… Presence of aliphatic carbon with branching

 BOND10000000 Presence of double bond

  +  +  +  + N–-O =  =  = Presence of nitrogen and oxygen and double bond

 N…C … Presence of aliphatic carbon and aliphatic nitrogen

 1…C… (… Presence of aliphatic carbon and branching

 C…2… Presence of at least two rings

 Smax.0… The highest number of sulfur equal to zero

  +  +  +  + O–-B2 =  = Presence of oxygen and double bond

 1…c… (…… Presence of aromatic carbon at first ring

Promoter of activity decrease

 C…(…O Presence of aliphatic carbon with branching and aliphatic oxygen

 O.… (…( Presence of aliphatic oxygen and two branching

 C … [… C… Presence of aliphatic carbon and branching

 N … (…C… Presence of aliphatic nitrogen whit branching and aliphatic carbon

 […C…@@… Presence of branching whit aliphatic carbon and stereo specific bonds

 N…C…C… Presence of successive two aliphatic carbon and aliphatic nitrogen

 C… = … Presence of aliphatic carbon and double bond

 n.…2… Presence of aromatic nitrogen in second ring

 Omax.1 The highest number of oxygens equal to one

 C…C…1… Presence of two successive aliphatic carbons and ring

 C… (… = … Presence of carbon and double bond with branching

 C…C…C… Presence of three successive aliphatic carbon



Page 13 of 20Bazzi‑Allahri et al. BMC Chemistry          (2024) 18:191  

molecular docking minimized affinity values of these hits 
were shown in Table 7.

Specifically, the hit structures M3 for  3CLpro, attrib-
uted to the presence of rings and oxygen with a double 
bond, were found to enhance the compound’s activity 
in the QSAR model. Additionally, N2 and N4 for RdRp, 
characterized by the presence of activity-promoting fac-
tors such as nitrogen and a ring in the chain, and the 
absence of sulfur, are highly compatible with the QSAR 
models. As a result, they were studied in greater detail. 
Upon analyzing the interaction between M3 and  3CLpro, 
it was observed that there were significant hydrogen 

bonds formed between the oxygen and nitrogen of M3 
with THR25, LEU141, GLY143, SER144, and CYS145. 
Additionally, two hydrophobic interactions occurred 
between the two rings of M3 and MET49 and CYS145 
(Fig. 5A). According to Fig. 5B, the N2 molecule bound 
to RdRp forms three hydrogen bonds from N and O 
atoms with ASN713, GLN724, and TYR732 amino 
acid residues. Furthermore, the three rings of the mol-
ecule engage in hydrophobic interactions with specific 
amino acid residues such as VAL128, HIS133, LEU207, 
LEU240, GLY712, and LEU708. The docking results 
of N5 with RdRp show that there is a hydrogen bond 

Fig. 3 The interaction patterns and superpositions of the PH4 models for  3CLPro and RdRp with PDB ID (A) 6Y2F with A1 and (B) 6NUR with A2. 
PH4 features are represented using spheres colored green for hydrophobic, orange for hydrogen bond acceptor, white for hydrogen bond donor, 
and red for negative ion features
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between N5 and TYR732. Hydrophobic interactions were 
observed between N5 and VAL128, TYR129, HIS133, 
LEU240, LEU708, and TYR728. Furthermore, ARG132 
and ASP465 were involved in attractive charge and salt 

bridges with the charged part of the molecule (Fig. 5C). 
The M3, N2, and N4 compounds contain at least an 
amine functional group, which is known to play a crucial 
role in drug-target binding interactions. Amine groups 

Fig. 4 Result diagram screening of inhibitors for (A)  3CLPro and (B) RdRp from the databases
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can pass through cell membranes when in their non-
ionized form, and when ionized, they exhibit favorable 
solubility in water. Furthermore, the fact that the three 
compounds are highly soluble in water makes them ideal 

for various drug production activities. It is worth noting 
that solubility is a critical feature that affects absorption, 
especially for discovery projects that aim for oral admin-
istration. Additionally, a drug intended for injection must 

Table 7 Hits retrieved from the virtual screening alongside their minimized affinity values

No Hit name in database Structure Minimized 
affinity (kcal/
mol)

3CLPro

 M1 CHEMBL253085471
PubChem-76327933

− 8.62

 M2 CHEMBL25609538
PubChem-46876171

− 8.09

 M3 MCULE-4083440218 − 8.37

 M4 MolPort-044–566-517
MCULE-5384906049

− 8.05
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Table 7 (continued)

No Hit name in database Structure Minimized 
affinity (kcal/
mol)

RdRp

 N1 CHEMBL25149284
PubChem-44364935

− 8.25

 N2 CHEMBL254636989
PubChem-136375410 PubChem-136375449

− 8.22

 N3 CHEMBL25289639
PubChem-10644984

− 8.22

 N4 MCULE-7755982919 CSC057656310
PubChem-120203617

− 8.13

 N5 MCULE-3802558326 − 8.12

 N6 MCULE-1230725924 CSC057726018
PubChem-137030145

− 8.1
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Table 7 (continued)

No Hit name in database Structure Minimized 
affinity (kcal/
mol)

 N7 MCULE-2082745487 − 8.07

 N8 MCULE-7352972814 − 8.03

 N9 MolPort-051-456-150 − 8.42

 N10 MolPort-051-445-187 − 8.14

 N11 ZINC000005488750 5488750 − 8.55
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have excellent water solubility to ensure that a small 
medicinal dose contains enough of the active substance. 
The three compounds possess a significant number of 
nitrogens with non-bonding electrons, which suggests 
that they exhibit hydrophilic properties. As a result, they 
are logical choices for inhibiting  3CLpro and RdRp and 
can be considered as potential candidates.

ADMET properties
ADMET stands for Absorption, Distribution, Metabo-
lism, Excretion, and Toxicity. These are critical fac-
tors that affect the pharmacokinetics (how drugs move 
through the body) and pharmacodynamics (how drugs 
interact with the body) of a drug. The SwissADME server 
[44] and the DataWarrior [45] software were used to 

compute various measures, including the bioavailability 
score, gastrointestinal absorption, logKp for skin permea-
tion, water solubility and toxicity. The Abbott bioavail-
ability score is used to assess drug-likeness, with a score 
of 0.55 indicating that the best-predicted hits from vir-
tual screening passed the rule-of-five. Skin permeability, 
logKp was also calculated and fell within the standard 
range of − 1 to − 8 for 95% of drugs [46]. The range of 
water solubility typically reported in drug discovery and 
development is −  6.5 < logS < 0.5. There are various fac-
tors that regulate bioavailability, but ultimately, gastro-
intestinal absorption is the key determinant [47]. Among 
the 15 hits identified based on molecular docking scores, 
M3, N2, and N4 were identified as promising inhibitors 
due to their good synthetic accessibility scores (3.07, 

Fig. 5 The interaction patterns models for (A) 6Y2F with M3, (B) 6NUR with N2 and (C) 6NUR with N5

Table 8 The projected ADMET characteristics for the identified hits

Name Bioavailability 
score

GI absorption log Kp (cm/s) logS Mutagenic Tumorigenic Reproductive 
effective

Irritant

M1 0.55 High − 7.84 − 4.12 None None None None

M2 0.55 Low − 7.03 − 5.87 None None None None

M3 0.55 High − 7.29 − 3.8 None None None None

M4 0.55 High − 6.92 − 4.89 None None Low None

N1 0.55 High − 6.37 − 4.7 None None None None

N2 0.55 High − 7.37 − 4.02 None None None None

N3 0.55 High − 7.94 − 3.48 None None None None

N4 0.56 High − 6.7 − 4.39 None None None None

N5 0.55 High − 7.01 − 4.1 None High High None

N6 0.55 High − 6.9 − 4.38 None None None None

N7 0.55 High − 6.06 − 5.6 None None None None

N8 0.56 High − 7.07 − 3.55 None High High None

N9 0.56 High − 6.54 − 4.46 None None None None

N10 0.55 High − 6.62 − 4.87 None None None None

N11 0.55 High − 6.48 − 4.83 None None None None
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3.11, and 3.29 out of 10 for M3, N2, and N4 respectively). 
The reported hits showed high gastrointestinal absorp-
tion, and toxicity risk was assessed for mutagenic, tumo-
rigenic, irritant, and reproductive effects. Reproductive 
toxicity may cause alterations to the male and female 
reproductive systems, while irritant toxicity can cause 
reversible damage to the skin or other organs. A majority 
of the virtual screening hits exhibited satisfactory molec-
ular properties, as shown in Table 8.

Conclusion
The COVID-19 pandemic, caused by the novel corona-
virus SARS-CoV-2, poses a significant threat to global 
health. To support the development of effective treat-
ments, we combined ligand-based and structure-based 
drug design approaches to identify potent inhibitors 
against SARS-CoV-2. SMILES-based classification 
models were used to create predictive two-dimensional 
QSAR models. Our comprehensive virtual screening 
workflow included PH4 analysis, QSAR modeling, eval-
uation of drug-like properties, molecular docking, and 
ADMET testing. The ease of using CORAL software to 
generate QSAR models proved advantageous for rap-
idly screening potential compounds, as it reduces the 
chemical space to a manageable size for further analysis 
and development. This approach identified 15 potential 
inhibitors, with M3, N2, and N4 emerging as the most 
promising candidates due to their favorable synthetic 
accessibility scores (3.07, 3.11, and 3.29, respectively) 
and the presence of amine functional groups, which are 
crucial for effective binding interactions with drug tar-
gets. These compounds have been selected for further 
biological assays to validate their efficacy. This study 
provides valuable insights into the development of 
novel inhibitors with potential therapeutic applications 
for COVID-19. To confirm our computational findings, 
experimental evaluation of the identified compounds 
against RdRp and 3CLpro activity using standard 
enzyme-based or cell-based assays is recommended.
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