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Abstract 

In this study, synthesis and assessment of the corrosion inhibition of four new binary heterocyclic pyrimidinones 
on CS in 1.0 M hydrochloric acid solutions at various temperatures (30–50 °C) were investigated. The synthe‑
sized molecules were designed and synthesized through Suzuki coupling reaction, the products were identified 
as 5‑((5‑(3,4,5‑trimethoxyphenyl)furan‑2‑yl)methylene)pyrimidine‑2,4,6(1H,3H,5H)‑trione (HM-1221), 2‑thioxo‑5‑((5‑
(3,4,5‑trimethoxyphenyl)furan‑2‑yl)methylene)dihydropyrimidine‑4,6(1H,5H)‑dione (HM-1222), 1,3‑diethyl‑2‑thioxo‑
5‑((5‑(3,4,5‑trimethoxyphenyl)furan‑2‑yl)methylene)dihydropyrimidine‑4,6(1H,5H)‑dione (HM-1223) and 1,3‑dimethyl‑
5‑((5‑(3,4,5‑trimethoxyphenyl)furan‑2‑yl)methylene)pyrimidine‑2,4,6(1H,3H,5H)‑trione (HM-1224). The experiments 
include weight loss measurements (WL), electrochemical impedance spectroscopy (EIS) and potentiodynamic polari‑
zation (PDP). From the measurements, it can be shown that the inhibition efficiency (η) of these organic derivatives 
increases with increasing the doses of inhibitors. The highest η recorded from EIS technique were 89.3%, 90.0%, 92.9% 
and 89.7% at a concentration of 11 ×  10−6 M and 298 K for HM-1221, HM-1222, HM-1223, and HM-1224, respec‑
tively. The adsorption of the considered derivatives fit to the Langmuir adsorption isotherm. Since the ΔGo

ads values 
were found to be between − 20.1 and − 26.1 kJ  mol−1, the analyzed isotherm plots demonstrated that the adsorption 
process for these derivatives on CS surface is a mixed‑type inhibitors. Scanning electron microscopy (SEM), energy dis‑
persive X‑ray spectroscopy (EDX), atomic force microscope (AFM) and Fourier‑ transform infrared spectroscopy (FTIR) 
were utilized to study the surface morphology, whereby, quantum chemical analysis can support the mechanism 
of inhibition. DFT data and experimental findings were found in consistent agreement.
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Graphical Abstract

Introduction
Corrosion is a natural phenomenon [1–3] in which met-
als and alloys transform into more stable forms such 
as oxides and sulfides by reacting directly with the sur-
rounding environment [4, 5]. However, some metallic 
components exposed to corrosive aqueous media, espe-
cially in acidic conditions, may suffer severe degradation 
of their properties and durability, leading to the disinte-
gration of CS and failures [6]. Corrosion has significant 
implications for human safety [7] and various industries 
due to its negative impact, notably the gas and oil sector, 
making it a critical area of research [8]. Carbon steel (CS) 
is a vital component in construction and industrial field 
[9–12] due to its high mechanical properties, low tem-
perature toughness, hydrogen-induced crack and fracture 
resistances, weldability  [13] and remarkable economy, 
besides the possibilities for its environmental, techni-
cal and economic recycling in the concrete production 

industry [14–16]. However, one of the major drawbacks 
of using CS is its high susceptibility to corrosion in corro-
sive conditions, such as during the pickling process using 
HCl [17–19], which is widely employed in industries 
such as chemical cleaning [20], pickling iron, boiler des-
caling, scrubbing, [21, 22] and oil well acidification [23, 
24]. Nevertheless, carbon steel corrosion is an inevitable 
but controllable phenomenon [22]. Among the available 
methods for corrosion control in acidic solutions, the 
use of inhibitors is considered an effective approach for 
protecting metals from corrosion [25]. Organic inhibi-
tors containing π conjugated electrons, aromatic rings 
and heteroatoms are commonly used to prevent metal 
corrosion [26–29]. Organic scaffolds containing active 
sites such as oxygen, nitrogen and sulfur in their struc-
tures show higher inhibitory efficiency than other mole-
cules having only a single heteroatom [30] through either 
chemical, physical or both adsorption mechanisms on 
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the metal surface [31–33]. The aforementioned inhibi-
tors block the active sites on the CS surface by forming 
protective coating layers [34] and reducing the corrosive 
effects [35]. The adsorption process can be influenced by 
the inhibitor structure [36], the nature of the metal sur-
face, and the type of corrosive conditions [37]. Motivated 
by the above-mentioned aspects, the synthesis and inves-
tigation of new eco-friendly corrosion inhibitors is highly 
desirable, as the application of green chemistry is essen-
tial to the field of corrosion research. The percentages of 
inhibition efficiency (η) of some reported analogues of 
pyrimidine derivatives are shown in Table 1.

The aim of the present work was to design and inves-
tigate new synthesized trimethoxyphenylfuran pyrimi-
dinone derivatives as potential CS corrosion inhibitors 
at low concentrations in an acidic medium. This study 
involved electrochemical measurements, weight loss 
analysis, and surface examination of CS using AFM, 
SEM, FTIR and EDX methods. Moreover, the thermo-
dynamic and kinetic parameters were calculated and 

discussed. The adsorption of four furan pyrimidinone 
scaffolds on the CS was also investigated at different 
soaking times to understand the interactions between 
the furylidene-pyrimidinone scaffolds and the CS 
surface. Furthermore, the proposed mechanism for 
corrosion inhibition was elucidated by quantum chem-
istry calculations for the four furylidene-pyrimidinone 
derivatives. Ultimately, we aimed to use these inhibitors 
to prevent pipeline corrosion and rusting in various 
industrial processes.

Experimental
Materials
Table  2 illustrates the molecular structures, formu-
las, molecular weights, yield, shape and melting point 
(m.p.) of four novel furylidene-pyrimidinone deriva-
tives, HM-1221, HM-1222, HM-1223, and HM-1224. 
The synthesis and characterization in details are shown 
in the experimental section. (For IR, NMR, and Mass 

Table 1 Literature reviews on the corrosion inhibition behavior of similar pyrimidine derivatives studied before

Inhibitor Corrosive medium Conc. Of inhibitor IE Sample Refs.

PDP EIS

(E)‑2‑(Hexadecylthio)‑8‑(4‑ methoxybenzylidene)‑5‑(4‑
methoxyphenyl)‑1,2,3,6,7,8‑hexahydro‑4H‑cyclopenta[5, 6] 
pyrido[2,3‑d] pyrimidin 4 ‑one (Compound I)

5% Sulfamic acid 1 ×  10–4 82.1 84.4 X52 CS  [38]

(E)‑8‑(4‑Methoxybenzylidene)‑5‑(4‑methoxyphenyl) 
‑2‑thioxo1,2,3,6,7,8‑hexahydro‑4H‑cyclopenta [5, 6] pyrido [2,3‑d] 
pyrimidin‑4‑one (Compound II)

88.4 91.2

5‑(3,4 Dimethoxybenzylidene)‑1,3‑dimethylpyrimidine‑
2,4,6(1H,3H,5H)‑trione (I)

1.0 M HCl 21 ×  10–6 90.6 87.0 CS [39]

5‑(3,4 Dimethoxybenzylidene)‑1,3‑diethyl‑2‑thioxodihydropy‑
rimidine‑4,6(1H,5H)‑dione (II)

92.4 91.3

5‑[4‑(Dimethylamino) benzylidene]‑1,3‑dimethylbarbituric acid 1.0 M HCl 21 ×  10–6 86.9 85.9 CS [40]

4‑(2‑Fluorophenyl)‑5‑(ethoxycarbonyl)‑6‑methyl‑3,4‑dihydropy‑
rimidin‑2(1H)‑one (2‑FDHPM)

0.5 M  H2SO4 1×10–3 86.246 79.7896 XC48 CS [41]

4‑(4‑Fluorophenyl)‑5‑(ethoxycarbonyl)‑6‑methyl‑3,4‑dihydropy‑
rimidin‑2(1H)‑one (4‑FDHPM)

94.31 91.0208

5‑((4’‑(Dimethylamino)‑[1,1’‑biphenyl]‑4‑yl)methylene)‑1,3‑die‑
thyl‑2‑thioxodihydropyrimidine‑4,6(1H,5H)‑dione (HM‑1228)

Oilfield produced water 0.5 mM 94.8 93.8 CS [10]

5‑((4’‑(Dimethylamino)‑[1,1’‑biphenyl]‑4‑yl)methylene)‑2‑thioxo‑
dihydropyrimidine‑4,6(1H,5H)‑dione (HM‑1227)

92.4 91.5

5‑((4’‑(Dimethylamino)‑[1,1’‑biphenyl]‑4‑yl)methylene)pyrimi‑
dine‑2,4,6(1H,3H,5H)‑trione (HM‑1226)

89.7 90.6

5‑((5‑(3,4,5‑Trimethoxyphenyl)furan‑2‑yl)methylene)pyrimidine‑
2,4,6(1H,3H,5H)‑trione (HM‑1221)

1.0 M HCl 11 ×  10−6 87.8 89.3 CS Our work

2‑Thioxo‑5‑((5‑(3,4,5‑trimethoxyphenyl)furan‑2‑yl)methylene)
dihydropyrimidine‑4,6(1H,5H)‑dione (HM‑1222)

90.3 90.0

1,3‑Diethyl‑2‑thioxo‑5‑((5‑(3,4,5‑trimethoxyphenyl)furan‑2‑yl)
methylene)dihydropyrimidine‑4,6(1H,5H)‑dione (HM‑1223)

91.6 92.9

1,3‑Dimethyl‑5‑((5‑(3,4,5‑trimethoxyphenyl)furan‑2‑yl)methyl‑
ene)pyrimidine‑2,4,6(1H,3H,5H)‑trione (HM‑1224)

89.8 89.7
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spectra of the investigated inhibitors see the supple-
mentary material).

Methodology for synthesizing of the investigated inhibitors
Synthesis of  furylidene‑ pyrimidinone derivatives 
5a‑d 5-(3,4,5-Trimethoxyphenyl) furan-2-carbaldehyde 
(3, HM-1220):

A mixture of 5-bromo-1,2,3-trimethoxybenzene 1 (2.50 
g, 10 mmol), and Pd  (PPh3)4 (250 mg) was dissolved in 
20 mL toluene, then adding  Na2CO3 (10  mL, 2M), and 
methanolic solution of (5-formylfuran-2-yl) boronic acid 
2 (1.68g, 12 mmol). The mixture was allowed to heat at 
80°C with stirring for ~ 12 h, after that extraction with 
ethyl acetate (250 mL, 3x). The resultant product was 
recrystallized from EtOH to yield 5-(3,4,5-trimethoxy-
phenyl) furan-2-carbaldehyde 3 as an anticipated prod-
uct. Compound 3 was attained in 59% yield as a yellow 
solid, m.p. = 117–118°C, Lit [42] m.p. = 118 ℃. IR (KBr) 
ν\/cm−1: 3102  (sp2 C–H), 2932  (sp3 CH), 2844, 2805 
(C–H of CHO), 1725, 1688, 1590 (C=O and C=C). MS 
(EI) m/e (rel.int.) for  C14H14O5 (262.26); 262.97  (M+, 
91.01%), 159.01 (100%).

General procedure for the synthesis of furylidene‑pyrimi‑
dinone derivatives 5a‑d Condensation reaction of 
a mixture of furan-2-carbaldehyde 3 (200 mg, 0.76 
mmol), active methylene groups (1.52 mmol), namely, 
barbituric, thiobarbituric, 1,3-diethyl-2-thiobarbitu-
ric, 1,3-dimethylbarbituric acid in a mixture of 30 mL 
MeOH/AcOH (2:1) was refluxed for 12 h. While hot, the 
aforementioned products 5a-d were obtained by filter-
ing the precipitate, washing it with MeOH, and recrys-
tallizing it from the suitable solvent.

5-((5-(3,4,5-Trimethoxyphenyl)furan-2-yl)methylene)
pyrimidine-2,4,6(1H,3H,5H)-trione (5a, HM‑1221)

IR (KBr) ν\/cm−1: 3388 (NH), 3189, 3120, 3053  (sp2 
C–H), 2985, 2961, 2933  (sp3 C–H), 1751, 1661 (C=O), 
1591, 1538, 1481 (C=C) (Figure S1). 1H-NMR (DMSO-
d6); δ ppm 3.70 (s, 3H, p-methoxy-H’s), 3.87 (s, 6H, 
m-dimethoxy-H’s), 7.25 (s, 2  Harom), 7.48 (d, J = 3.5 Hz, 
1H, furan-H), 8.13 (s, 1H, =CH), 8.58 (d, J = 3.5 Hz, 1H, 
furan-H), 11.23 (s, 1H exchangeable with  D2O, NH), 
11.32 (s, 1H exchangeable with  D2O, NH) (Figure S2). 
13C-NMR; δ ppm 56.18 (2C), 60.24, 102.84 (2C), 111.41, 
111.69, 123.84, 129.79, 136.11, 139.33, 149.86, 150.31, 

Table 2 The chemical and physical properties of investigated inhibitors

Inhibitor code Molecular structures Chemical properties

HM-1221

5a

NH

H
NO

O

O

O
MeO

MeO

MeO

 

F.wt. =  C18H16N2O7

M.wt = 372.33

Yield = 69%

Shape: Red powder

M.P. = 296–298

HM-1222

5b

NH

H
NO

O

S

O

MeO

MeO

MeO

 

F.wt. =  C18H16N2O6S

M.wt = 388.39

Yield = 78%

Shape: Dark Red powder

M.P. = 280–282

HM-1223

N

NO

O

S
MeO

MeO

MeO
O
5c

 

F.wt. =  C22H24N2O6S

M.wt = 444.50

Yield = 73%

Shape: Reddish brown powder

M.P. = 178–179

HM-1224

5d
N

NO

O

O

O

MeO

MeO

MeO
Me

Me

 

F.wt. =  C20H20N2O7

M.wt = 400.39

Yield = 71%

Shape: Orange powder

M.P. = 240–242
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153.51 (2C), 160.45, 162.30, 163.57 (Figure S2). MS 
(EI) m/e (rel.int.) for  C18H16N2O7 (372.33); 372.14  (M+, 
29.18%), 226.98 (100%) (Figure S3).

2-Thioxo-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)
methylene)dihydropyrimidine-4,6(1H,5H)-dione (5b, 
HM‑1222)

IR (KBr) ν\/cm−1: 3424 (N–H), 2925  (sp3 C–H), 1651 
(C=O), 1541 (C = C), 1379 (C=S) (Figure S1). 1H-NMR 
(DMSO-d6);δ  ppm 3.71 (s, 3H, p-methoxy-H’s), 3.88 (s, 
6H, m-dimethoxy-H’s), 7.28 (s,  2Harom), 7.55 (d, J = 4.0 
Hz, 1H, furan-H), 8.14 (s, 1H, =CH), 8.66 (d, J = 4.0 Hz, 
1H, furan-H), 12.36 (s, 1H, NH), 12.41 (s, 1H, NH) (Fig-
ure S2). MS (EI) m/e (rel.int.) for  C18H16N2O6S (388.39); 
388.94  (M+, 100%) (Figure S3).

1,3-Diethyl-2-thioxo-5-((5-(3,4,5-trimethoxyphenyl)
furan-2-yl)methylene)dihydropyrimidine-4,6(1H,5H)-
dione (5c, HM‑1223):

IR (KBr) ν\/cm−1: 3167, 3113  (sp2 C–H), 2977, 2932, 
2833  (sp3 C–H), 1691, 1659 (C=O), 1566, 1477 (C=C), 
1387 (C=S) (Figure S1). 1H-NMR (DMSO-d6); δ  ppm 
1.18–1.24 (m, 6H, CH3 of diethyl groups-H’s), 3.72 (s, 3H, 
p-methoxy-H’s), 3.89 (s, 6H, m-dimethoxy-H’s), 4.40–
4.47 (m, 4H,  CH2 of diethyl groups-H’s), 7.32 (s,  2Harom), 
7.60 (d, J = 4.0 Hz, 1H, furan-H), 8.27 (s, 1H, =CH), 8.73 
(d, J = 4.0 Hz, 1H, furan-H) (Figure S2). 13C-NMR; δ 
12.16, 12.20, 42.77, 43.37, 56.20 (2C), 60.25, 103.26 (2C), 
110.87, 112.61, 123.49, 131.84, 138.32, 139.83, 150.40, 
153.53, 158.55 (2C), 160.47, 162.01, 178.47 ppm (Fig-
ure S2). MS (EI) m/e (rel.int.) for  C22H24N2O6S (444.50); 
444.99  (M+, 93.25%), 334.24 (100%) (Figure S3).

1,3-Dimethyl-5-((5-(3,4,5-trimethoxyphenyl)furan-
2-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (5d, 
HM-1224)

IR (KBr) ν\/cm−1: 3170, 3128  (sp2 C–H), 2942, 2839 
 (sp3 C–H), 1724, 1663 (C=O), 1576, 1476 (C=C) (Figure 
S1). 1H-NMR (DMSO-d6); δ ppm 3.24 (s, 6H,  2CH3), 3.72 
(s, 3H, p-methoxy-H’s), 3.89 (s, 6H, m-dimethoxy-H’s), 
7.29 (s, 2  Harom), 7.53 (d, J = 4.0 Hz, 1H, furan-H), 8.24 (s, 
1H, =CH), 8.65 (d, J = 4.0 Hz, 1H, furan-H) (Figure S2). 
MS (EI) m/e (rel.int.) for  C20H20N2O7 (400.39); 400.34 
 (M+, 65.08%), 274.96 (100%) (Figure S3).

Materials
Corrosion inhibition experiments have been carried 
out on CS with the following chemical composition (wt. 
%): (C: 0.07, Si: 0.05, Ti: 0.001, Mn: 0.3, Al: 0.03, S: 0.01, 
P: 0.022, and Fe balance). The materials were cut into 
coupons of size 2 cm × 2 cm × 0.2 cm for the WL tests. 
The working electrode used in surface morphology and 
electrochemical studies has an exposed area of 1  cm2. 
All the chemicals and reagents were purchased from 

Sigma-Aldrich Chemicals, all were of analytical grade, 
and solutions were prepared using double distilled water.

Solutions
One molar HCl (37%) stock solution was made by dilu-
tion with double-distilled water. The synthesized com-
pounds were dispersed in a combination of 5 mL DMSO 
and 25 mL EtOH to generate a stock solution of dosage 
inhibitors with a concentration of 1 ×  10−3 M. Further-
more, the concentration varieties of the studied com-
pounds were (1 ×  10–6 -11 ×  10–6 M) and were prepared 
by dilution.

Weight loss (WL) method
We measured WL using CS specimens at (30–50  °C) 
temperatures. Prior to being submerged in the test solu-
tion, the CS surface was polished using sandpaper grades 
(320–2000), cleaned with distilled water, allowed to dry 
at ambient temperature, and weighed. CS specimens 
were weighed before and after immersion in 100  mL of 
1.0 M HCl without and with varied inhibitor dosages 
every 30 min for 3 h. The following equations were used 
to determine CR, θ, and η [43–46]:

whereas, W and A represent specimen WL (mg) and area 
 (cm2), CR and CR(i) represent CS corrosion rate (mg  cm−2 
 h−1) without and with inhibitors, and t represents expo-
sure duration (h), θ degree of surface coverage.

Electrochemical measurements
In order to record and retain data, electrochemical pro-
cedures were done utilizing Potentiostat/Galvanostat 
(Gamry PCI300 ̸4) that include DC 105 software for PDP 
and EIS 300 programs for EIS measurements, is linked to 
a computer for data recording and storage. Electrochemi-
cal methods using EIS and PDP in 1.0 M HCl without and 
with varying inhibitor dosages at ambient temperature 
were used to study CS corrosion. The standard electro-
chemical cell has three glass vessels with a platinum wire 
(auxiliary electrode), a saturated calomel electrode, SCE, 
(reference electrode), and CS (working electrode). The 
exposed surface area of the working electrode was  1cm2. 
It was weld from one side to Cu-wire which used for 

(1)CR =
W

At

(2)θ =
CR − CR(i)

CR

(3)ηWL = θ × 100
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electric connection. The samples were embedded in glass 
tube of just larger diameter than the samples then epoxy 
resin was used to stick the sample to glass tube. While, 
the chemical composition of the working electrode uti-
lized in electrochemical methods was the same for the 
CS in weight loss. For 30 min, the CS electrode was sub-
merged in the test solution to achieve a constant open 
circuit potential (OCP). Polarization studies were con-
ducted in the potential range from − 250 mV to 250 mV 
vs. OCP above OCP at a scan rate of 0.5 mV  s−1 scan rate. 
Corrosion current density (icorr) and corrosion potential 
(Ecorr) were assessed from the interplay of the correlation 
anodic and cathodic sections of Tafel plots in the pres-
ence and absence of altered inhibitor concentrations. 
EIS measurements were performed after immersing the 
electrode for 30 min, the EIS spectra were collected at the 
open circuit potential (OCP), the peak-to-peak voltage 
of the AC signal was 10 mV, and the resonant frequency 
evaluated was 0.01–105  Hz. The important variables 
derived from the analysis of the Nyquist diagram are the 
resistance of charge transfer (Rct) and the capacity of the 
double layer (Cdl).

Surface analysis
SEM analysis
CS surface morphology and elemental composition were 
studied by scanning electron microscopy (SEM) Model 
(Quanta 250 FEG, originated in FEI Company in the 
Netherlands) with and without organic inhibitors.

AFM analysis
The micrographs and surface roughness of CS with and 
without the optimum concentration of organic inhibi-
tors were investigated on the nanosurf C300 software of 
version 3.5.0.31 by employing AFM in contact FlexAFM3 
mode with a nonconductive silicon probe.

Quantum chemical calculations and Monte Carlo 
simulation studies:
Using the Material Studio D-MOL3 program, quan-
tum chemical calculations were used to investigate 
the effectiveness of the trimethoxyphenylfurylidene-
pyrimidinone derivatives’ ability to suppress corrosion. 
Density Functional Theory (DFT) was utilized for the 
calculations, with the basis set DNP (4.4) function GGA. 
The COSMO solvation model was also employed. By 
using DFT, the quantum chemical parameters EHOMO, 
ELUMO, and ∆E were derived and examined. In order to 
identify the adsorption configurations of four investi-
gated inhibitors on the interface of Fe (110), MC simu-
lation was employed. Whereas, all computations were 
employed using the force field COMPASS (Condensed-
Phase Optimized Molecular Potential for Atomistic Sim-
ulation Study).

Results and discussion
Synthesis and characterization of inhibitors
The innovative trimethoxyphenylfurylidene-pyrimi-
dinones 5a-d were prepared starting with a Suzuki 

Fig. 1 Synthesis of the new trimethoxyphenylfurylidene‑pyrimidinones 5a-d 
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coupling reaction of bromo-trimethoxybenzene 1 with 
formylfuran-2-yl boronic acid 2 with the addition of 
Pd(0),  Na2CO3 (2M) and heating at 80°C in a mixture of 
toluene and MeOH to afford furylcarbaldehyde 3, after 
that compound 3 was condensed with barbituric acid 
(4a), 2-thiobarbituric acid (4b), 1,3-diethyl-2-thiobarbi-
turic acid (4c), and 1,3-dimethyl barbituric acid (4d) to 
yield furylidene constitutions 5a-d in acceptable yields 
(69–78%) as shown in Fig. 1.

Novel trimethoxyphenylfurylidene-pyrimidinones 5a-
d were synthesized and elucidated by spectral data. IR 
spectrum of compounds 5a-d in the range of 1651 to 
1751  cm−1, indicated the presence of carbonyl groups, 
while, compounds 5a and 5b showed bands at 3388  cm−1 
(5a), 3424  cm−1 (5b) for NH, whereas thione groups were 
showed at 1379  cm−1 (5b), and 1387  cm−1 (5c). Whereas, 
1H-NMR of hybrid 5a displayed three singlet signals of 

3,4,5-trimethoxyphenyl moiety at δ 3.70 (para-methoxy 
group, 3H), δ 3.87 (meta-dimethoxy groups, 6H), δ 7.25 
(2H) corresponding to aromatic hydrogens, in addition 
to two doublet signals at δ 7.48 (1H) and 8.58 (1H) with 
coupling constant J = 3.5 Hz referring to 2,5-disubsti-
tuted furan moiety, one methylidene singlet signal at δ 
8.13 (1H), plus two singlet signals of NH in pyrimidinone 
moiety exchangeable with  D2O at δ 11.23 and 11.32 ppm. 
Whereby, 13C-NMR spectrum of compound 5a displayed 
15 carbon-signals of its carbon network with charac-
teristic carbons at δ 56.18 (carbons of meta-dimethoxy 
groups), δ 60.24 (carbon of para-methoxy group), and δ 
160.45, 162.30, and 163.57 (carbons of carbonyl groups). 
Mass spectrometry of compound 5a gave a molecular 
ion peak (m/e) at 372.14  (M+, 29.18%). The structure of 
skeleton 5c was confirmed via its 1HNMR spectrum dis-
playing two multiplet signals at δ 1.18–1.24 integrated 
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Fig. 2 WL‑time curve for CS in 1.0 M HCl with as well as without different concentrations of inhibitors a-d at 303 K
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for six hydrogens  (2CH3 of 1,3-diethyl groups) and four 
aliphatic hydrogens corresponding to two methylene 
groups of 1,3-diethyl groups at δ 4.40–4.47 ppm, in addi-
tion to two singlet signals related to para-methoxy group 
and meta-dimethoxy groups at δ 3.72, and δ 3.89 ppm, 
respectively, as well as singlet signal of two aromatic 
protons of 3,4,5-trimethoxyphenyl ring at δ 7.32, along 
with two doublet signals at δ 7.60 (1H) and 8.73 (1H) 
with coupling constant J = 4 Hz referring to 2,5-disubsti-
tuted furan ring and one singlet signal at δ 8.27 (meth-
ylidene, 1H). Whereas, 13C-NMR of scaffold 5c showed 
19 carbon-signals with the most characteristic carbons 
resonating at δ 12.16, 12.20, 42.77, 43.37 ppm related to 
four carbons of diethyl groups, δ 56.20 corresponding to 
two carbons of meta-dimethoxy groups, δ 60.25 referring 
to para-methoxy carbon, additionally, two carbonyl car-
bons at δ 160.47, 162.01 ppm, and one thione carbon at 
δ 178.47  ppm. The mass spectrometry of compound 5c 
exhibited a molecular ion peak (m/e) at 444.99 corre-
sponding to  C22H24N2O6S.

Corrosion measurements
WL method
The WL method investigates the impact of dosage on 
the rate of corrosion of CS in 1.0 M HCl at different tem-
peratures and well as lack diverse inhibitor doses (Fig. 2). 
The examination of the data in Table 3 displays that the 
CR of CS declines meaningfully and the η increases sig-
nificantly with increasing the concentration dosages of 
inhibitors from 1 ×  10−6 M to 11 ×  10−6 M, this is due to 
the formation of a protective coating on the CS surface 
[47–49]. The inclusion of hetero nucleus atoms (N, O and 
S) in these tested molecules may be responsible for the 
efficacy of the inhibition process; as these atoms enhance 
the adsorption on CS via free electrons, which is crucial 
for the inhibition process [50].

Effect of temperature
During a three-hour immersion, the WL method was 
used to examine the impact of temperature on the 
percentage η at various temperatures ranging from 

Table 3 WL corrosion parameters of CS in 1.0 M HCl at various temperatures 303–323 K and with as well as lack various doses of 
inhibitors

Inhibitor Conc., M
 ×  10–6

303 K 308 K 313 K 318 K 323 K

WL CR η WL CR η WL CR η WL CR η WL CR η

– Blank 15.336 0.1278 – 16.032 0.1326 – 17.316 0.1443 – 18.156 0.1513 – 20.148 0.1679 –

HM-1223 1 1.733 0.0144 88.7 2.485 0.0207 84.5 3.532 0.0294 79.6 6.427 0.0536 64.6 7.294 0.0608 63.8

3 1.641 0.0137 89.3 2.277 0.0190 85.8 3.255 0.0271 81.2 4.811 0.0401 73.5 6.286 0.0524 68.8

5 1.518 0.0127 90.1 2.036 0.0170 87.3 2.805 0.0234 83.8 3.395 0.0283 81.3 5.682 0.0473 71.8

7 1.304 0.0109 91.5 1.731 0.0144 89.2 2.320 0.0193 86.6 3.304 0.0275 81.8 4.674 0.0390 76.8

9 1.242 0.0104 91.9 1.395 0.0116 91.3 1.766 0.0147 89.8 3.032 0.0253 83.3 4.070 0.0339 79.8

11 0.843 0.0070 94.5 1.283 0.0107 92.0 1.489 0.0124 91.4 2.033 0.0169 88.8 3.083 0.0257 84.7

HM-1222 1 2.668 0.0222 82.6 3.222 0.0269 79.9 3.723 0.0310 78.5 6.627 0.0552 63.5 7.455 0.0621 63.0

3 2.040 0.0170 86.7 2.677 0.0223 83.3 3.377 0.0281 80.5 4.975 0.0415 72.6 6.407 0.0534 68.2

5 1.457 0.0121 90.5 2.196 0.0183 86.3 2.788 0.0232 83.9 3.450 0.0287 81.0 5.742 0.0479 71.5

7 1.212 0.0101 92.1 1.780 0.0148 88.9 2.372 0.0198 86.3 3.341 0.0278 81.6 4.836 0.0403 76.0

9 1.258 0.0105 91.8 1.475 0.0123 90.8 1.853 0.0154 89.3 3.195 0.0266 82.4 4.110 0.0343 79.6

11 1.012 0.0084 93.4 1.347 0.0112 91.6 1.645 0.0137 90.5 2.124 0.0177 88.3 3.365 0.0280 83.3

HM-1224 1 5.828 0.0486 62.0 5.980 0.0498 62.7 6.372 0.0531 63.2 6.809 0.0567 62.5 8.099 0.0675 59.8

3 4.723 0.0394 69.2 4.922 0.0410 69.3 5.576 0.0465 67.8 6.082 0.0507 66.5 7.938 0.0662 60.6

5 2.929 0.0244 80.9 4.345 0.0362 72.9 3.775 0.0315 78.2 4.811 0.0401 73.5 7.314 0.0609 63.7

7 2.515 0.0210 83.6 3.703 0.0309 76.9 3.515 0.0293 79.7 4.485 0.0374 75.3 6.044 0.0504 70.0

9 2.500 0.0208 83.7 2.677 0.0223 83.3 2.909 0.0242 83.2 3.032 0.0253 83.3 5.420 0.0452 73.1

11 1.978 0.0165 87.1 2.116 0.0176 86.8 2.805 0.0234 83.8 2.996 0.0250 83.5 4.493 0.0374 77.7

HM-1221 1 8.803 0.0734 42.6 9.587 0.0799 40.2 10.563 0.0880 39.0 11.329 0.0944 37.6 13.016 0.1085 35.4

3 8.450 0.0704 44.9 8.914 0.0743 44.4 9.766 0.0814 43.6 10.422 0.0868 42.6 11.726 0.0977 41.8

5 5.736 0.0478 62.6 8.000 0.0667 50.1 8.797 0.0733 49.2 9.296 0.0775 48.8 10.396 0.0866 48.4

7 5.122 0.0427 66.6 6.926 0.0577 56.8 7.532 0.0628 56.5 8.679 0.0723 52.2 9.913 0.0826 50.8

9 2.316 0.0193 84.9 5.852 0.0488 63.5 7.394 0.0616 57.3 8.443 0.0704 53.5 9.550 0.0796 52.6

11 2.178 0.0181 85.8 4.104 0.0342 74.4 5.749 0.0479 66.8 6.191 0.0516 65.9 8.059 0.0672 60.0
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303 to 323  K, both with and without different dos-
ages of organic inhibitors. While, Table  3 illustrates 
the decreasing values of the inhibition efficacy and 
increasing of the corrosion rate along with increasing 
temperature. This occurs as a result of the dissociation 
between  inhibitor molecules and the metal surface. 
Apparently, the obtained results confirmed the inhibi-
tor molecules blocking active sites by adsorption on the 
CS surface. Activation thermodynamic parameters were 
evaluated using the Arrhenius and transition state Eqs. 
[51–54]:

where kcorr represents the corrosion rate resulted from 
WL measurements, R denotes the gas constant, T rep-
resents the absolute temperature, Ea

* signifies the appar-
ent activation energy and A indicates the Arrhenius 
frequency factor, N refers to Avogadro’s number, ∆H* 

(4)log kcorr =

(

−E∗
a

2.303RT

)

+ log A

(5)kcorr =

(

RT

Nh

)

exp

(

�S∗

R

)

exp

(

−�H∗

RT

)
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Fig. 3 Arrhenius plots for CS corrosion in the 1.0 M HCl without as well as after using various concentrations of a–d 
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and ∆S* embodies the enthalpy and entropy of activation, 
whereby h represents Planck’s constant. While, the rela-
tion between Arrhenius plots of (log kcorr) vs. (1000/T) 
for corrosion of metal in acidic medium of different doses 
of the inhibitors at diverse temperatures (30 − 50 °C) was 
represented in Fig.  3, and the straight lines were gotten 
with the slope (− Ea

*/2.303R) as well as intercept of log A. 
In the same context, the higher values of Ea

* in the pres-
ence of inhibitors is attributed to that the physisorption 
mechanism [54] as shown in Table 4. Studying graphs of 
the transition state of (log kcorr /T) vs. (1000/T) for the 
inhibitors are presented in Fig. 4. The straight lines with 
a slope =  − ΔH*/R were achieved using ΔH* and ΔS* val-
ues. Whereas, a positive value for ΔH* suggests that the 
manufacturing of an activated complex is endothermic 
[55, 56] as shown in Table 4, whereas a negative value for 
ΔS* refers to the order is determined by the transforma-
tion of reactants into an activated complex [57, 58]. It is 
evident that for the inhibited solution the ΔS* values are 
less negative compared to the uninhibited, as the rational 

probability attributed to desorption of  H2O from the CS 
surface.

Study the adsorption isotherm
On the basis of mechanism of  corrosion’, it is essential 
to understand how the inhibitors adsorb on the CS sur-
face. The adsorption process could be explained as a sub-
stitution process between the organic molecules in the 
aqueous phase  (Org(sol)) and  H2O molecules previously 
adsorbed on the metal surface  (H2O(ads)), the adsorption 
mechanism is accomplished according to the following 
equation.

It  is essential to understand how the inhibitors adsorb 
on the CS surface. As the reaction between organic 
hybrids in the aqueous phase  (Orgaq) and the  H2O mol-
ecules underwent a similar manner to this adsorption 
according to following equation [59]:

where x refers to the quantity of  H2O molecules that 
the inhibitory molecules have displaced. Adsorption 
isotherms are helpful for investigating the interaction 
between the inhibitor molecules and the metal surface. 
Different isotherms, involving Langmuir, Frumkin, Tem-
kin, Florry-Huggins and Freundlich were performed to 
determine the adsorption type that corresponded to the 
tested inhibitors. It is an evident that the correlation of 
the Langmuir isotherm is almost equal to unity (Fig.  5) 
shows that the Langmuir adsorption isotherm is obeyed 
when inhibitors are adsorbed on metal surfaces. Addi-
tional adsorption isotherms are discussed in Table 5 and 
showed in Fig. 6. The following Eq. was used to obtain the 
Langmuir adsorption isotherm [60, 61]:

whereas, the defined symbols in Eq.  7 are adsorption 
equilibrium constant (Kads), and the corrosion inhibi-
tor dose in the solution (Cinh). This equation was used to 
calculate the value of standard free energy of adsorption 
(∆G°ads) associated with Kads for understanding of the 
inhibitors’ adsorption process and their types [59, 60]:

whereas, T is the thermodynamic temperature (K), R is 
the universal gas constant, the molar concentration of 
water is 55.5. In addition, Kads values are moderately high, 
indicating a strong inhibitors adsorption on CS [62] as 
illustrated in Table  6. Also, the highly negative value of 

(6)Org(sol) + x H2O(ads) → Org(ads) + x H2O(sol)

(7)
Cinh

θ
=

1

Kads
+ Cinh

(8)Kads =

(

1

55.5

)

exp

(

−�G
◦

ads

RT

)

Table 4 Activation parameters gained from WL approach

Inhibitor Conc. 
 X10−6

M

-Ea
* ∆H*  − ∆S*

kJ  mol−1 kJ  mol−1 J  mol−1  K−1

1.0 M HCl 13.4 ± 0.2028 10.85 ± 0.1732 228.4 ± 0.2214

HM-
1223

1 33.6 ± 0.2211 31.05 ± 0.1232 215.6 ± 0.2001

3 38.4 ± 0.2403 35.85 ± 0.1121 211.9 ± 0.2021

5 38.2 ± 0.223 35.65 ± 0.1214 195.4 ± 0.2214

7 39.3 ± 0.2021 36.75 ± 0.1120 191.3 ± 0.2021

9 41.1 ± 0.1975 38.55 ± 0.1201 180.2 ± 0.1745

11 44 ± 0.1754 41.45 ± 0.1214 157.8 ± 0.2141

HM-
1222

1 23.4 ± 0.1245 20.85 ± 0.1724 214.4 ± 0.1245

3 25.8 ± 0.1123 23.25 ± 0.1654 207.9 ± 0.2021

5 29.5 ± 0.1745 26.95 ± 0.1714 194.6 ± 0.2144

7 34.2 ± 0.2021 31.65 ± 0.1454 187.5 ± 0.1754

9 39 ± 0.2214 36.45 ± 0.1987 177.2 ± 0.2144

11 49.1 ± 0.1245 46.55 ± 0.1541 153.1 ± 0.2214

HM-
1224

1 26 ± 0.1745 23.45 ± 0.1232 197.9 ± 0.2214

3 27.2 ± 0.1245 24.65 ± 0.2145 195.7 ± 0.2211

5 29.9 ± 0.1232 27.35 ± 0.2104 176.4 ± 0.1745

7 34.1 ± 0.2541 31.55 ± 0.2001 172 ± 0.1245

9 38.3 ± 0.1457 35.75 ± 0.1245 167.4 ± 0.1452

11 39.8 ± 0.1245 37.25 ± 0.1932 146.4 ± 0.1745

HM-
1221

1 26.2 ± 0.1952 23.65 ± 0.1564 183.9 ± 0.1657

3 26.3 ± 0.1245 23.75 ± 0.1717 183.8 ± 0.2241

5 26.5 ± 0.1423 23.95 ± 0.1254 173.9 ± 0.1245

7 28.6 ± 0.1245 26.05 ± 0.1844 180 ± 0.1475

9 36.3 ± 0.1751 33.75 ± 0.1932 164.1 ± 0.1745

11 38.4 ± 0.1654 35.85 ± 0.1547 138.6 ± 0.1245
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∆G°ads demonstrates the adsorption occurs spontaneously 
[63]. According to the literature, if ΔG°ads values at around 
(− 20  kJ   mol−1) or lower negative, the adsorption of an 
inhibitor is a physisorption. In contrast, if the values of 
ΔG°ads are (− 40 kJ  mol−1) or higher negative is defined as 
chemisorption [64, 65]. From Table 6, the ∆G°ads values of 
the synthesized scaffolds are round − 26 to − 20 kJ  mol−1, 
indicating clearly that the mechanism is physisorption 
forming strong bonds. The Van’t Hoff equation is used to 
calculate the heat of adsorption (ΔH°ads) (Eq. 9) [66]:    

Figure 7 revealed the plots of Log (Kads) vs. 1000/T for 
inhibitors. Whereas, straight lines were attained with a 
slope =  − ∆H°ads/2.303R in which enthalpy were com-
puted from and intercept =  − ∆S°ads/2.303R − log (55.5). 
Gibbs–Helmholtz equation is used to determine the 
standard adsorption entropy (ΔS°ads) at diverse tempera-
tures [66]:

(9)log K ads =
−�H

◦

ads
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Fig. 4 Kinetic transition state plots for CS dissolution in 1.0 M HCl without as well as after utilizing various doses of inhibitors a–d 
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Table  6 lists the values of Kads, △G°ads, enthalpy of 
adsorption (∆H°ads), and the standard entropy (ΔS°ads). 
Whereas, the ΔH°ads values are negative proving that the 
adsorption process is exothermic reaction [67], and the 
negative values of ΔS°ads result from substitution process 
can be assigned to rising of entropy at the metal/solu-
tion interface due to replacing of the water molecules by 
inhibitor molecules in the solution [68].

(10)�S
◦

ads =
�H

◦

ads −�G
◦

ads

T

Electrochemical technique
Measurements of OCP
Figure 8 displays the relation of the OCP vs. time curves 
for CS in 1.0 M HCl in the absence besides utilizing var-
ied concentrations of investigated compounds, (a) HM-
1223 (b) HM-1222 (c) HM-1224 (d) HM-1221, at 298 K. 
As the deterioration of the CS with corrosive layers on its 
surface was developed due to the fact of dissolution of the 
oxide film on the metal surface. From the OCP curves, it 
is noted that the potentials of inhibited solutions moved 
to more positive values contrasted to the uninhibited.

Fig. 5 The plots of Langmuir isotherm for CS in 1.0 M HCl with altered doses of inhibitors a-d at diverse temperatures
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PDP technique
Polarization measurements were performed for investi-
gation the kinetics of cathodic and anodic reactions. As 
indicated in Fig. 9, it is clear that the presence of inhibi-
tors causes a marked decrease in the corrosion rate. 
The inhibitors have a significant effect on the rate of the 
hydrogen evolution and anodic dissolution reactions i.e. 
the investigated inhibitors act as mixed type inhibitors. 
the extrapolation of the polarization curves yields the 
electrochemical corrosion parameters like (icorr, Ecorr, βa, 
βc and η) which are reported in Table 7. Also, icorr values 
are utilized to calculate η (Eq. 11) [69]:

Where as, icorr and icorr (inh.) refer to the corrosion current 
densities in acidic solution in the absence in addition to 
existence of organic molecules, respectively, while (βa), 
(βc) and Ecorr represent anodic, cathodic Tafel and the 
corrosion potential. Table  7  demonstrates  that the cor-
rosion current density dropped when the inhibitors were 
added and ηPDP increases with increasing inhibitor con-
centrations. This was because the inhibitors are adsorbed 

(11)ηPDP =

(

icorr − icorr (inh)

icorr

)

× 100

onto the CS surface, reducing the rate of dissolution reac-
tion by blocking active sites on the surface [70]. From the 
measurements, it was found that the corrosion potential 
gap is lower than 85  mV for all concentrations, and the 
anodic and cathodic partial currents are also decreased. 
The change in the Ecorr value is (23  mV), these find-
ings reveal the mixed character of the inhibitors under 
research [71, 72] and they also suggest that the inhibi-
tors utilized diminish the anodic dissolving rates of CS 
and the reduction of  H+. Both cathodic (βc) and anodic 
(βa) Tafel slopes do not change remarkably, which indi-
cates that the mechanism of corrosion reaction does not 
change and the corrosion reaction is inhibited by block-
age of active sites by the investigated inhibitors by simple 
adsorption mode [73]. % ηPDP of these derivatives follows 
the sequence: HM-1223 > HM-1222 > HM-1224 > HM-
1221. The results acquired from the PDP measurements 
are closely matched with the outcomes of WL approach. 

EIS technique
EIS is used to investigate the kinetics and the surface 
characteristics of the electrode processes. To better 
mimic the non-ideal capacitive behavior of the double 
layer, double layer capacitance (Cdl) is replaced with 
a constant phase element (CPE) in the circuit, which 
is made up of solution resistance (Rs) in series with the 
parallel combination of charge transfer resistance (Rct) 
Fig.  10. According to a previous study [74], the imped-
ance of CPE is as follows:

where i denotes the complex number, ω the angular fre-
quency, ξ  the proportionality factor and n  the exponent 
of the CPE. Nyquist and Bode graphs for the corrosive 
dissolution of CS in HCl solution with and without vary-
ing doses of inhibitors as depicted in Figs. 11, 12, respec-
tively. The Nyquist graphs demonstrated that with an 
increase in inhibitor dose, the semicircular capacitance 
diameter is expanded due to the charge transfer phenom-
ena in the solution [75]. EIS variables including charge 
transfer resistance (Rct), capacitance of the double layer 
(Cdl) and η (Table 8) showing that the Cdl values decrease 
with increasing inhibitor dose, this is due to the adsorp-
tion of inhibitors on CS surface leading to formation of a 
film from the acidic solution [76]. It is clear that Rct values 
rise as the concentration of the inhibiters increase, this 
due to the increase in the thickness of the double layer 
as a result of an expansion of the double layer’s thick-
ness [77] led to a decrease in dielectric constant [78] and 
this indicates that ηEIS% increase. The value of Cdl can be 
determined from Eq. 13 [79]:

(12)ZCPE = ξ
/

(iω)n

Table 5 Different adsorption isotherms of the tested inhibitors 
for the corrosion of CS in 1.0 M HCl at 303K

Adsorption 
isotherms

Inhibitors Adsorption parameters

Regression 
coefficient 
(R2)

Slope Intercept

Langmuir HM-1223 0.99921 1.05666 1.80026E‑7

HM-1222 0.99975 1.05629 2.25186E‑7

HM-1224 0.99766 1.09323 7.5455E‑7

HM-1221 0.98697 1.43206 1.83385E‑6

Freundlich HM-1223 0.74772 0.02257 0.07928

HM-1222 0.97525 0.05206 0.22904

HM-1224 0.9549 0.1481 0.67703

HM-1221 0.89234 0.18098 0.6904

Temkin HM-1223 0.74011 0.04734 1.16237

HM-1222 0.97434 0.10525 1.45618

HM-1224 0.95025 0.25099 2.1154

HM-1221 0.87266 0.21648 1.69195

Florry‑Huggins HM-1223 0.63907 2.63443 8.07479

HM-1222 0.95093 2.25218 7.54432

HM-1224 0.91132 1.72566 6.40104

HM-1221 0.79081 3.34389 6.20012

Frumkin HM-1223 0.85691 21.46338 ‑23.84599

HM-1222 0.98763 13.57088 ‑16.52273

HM-1224 0.98067 6.19138 ‑9.57126

HM-1221 0.93442 5.79804 ‑8.38211
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Fig. 6 Various adsorption isotherms of the tested inhibitors for the corrosion of CS in 1.0 M HCl at 303 K
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where ωmax related to the frequency at which the 
imaginary impedance in the Nyquist plot is maximum; 
 Yo is CPE and n is CPE exponent. Based on n, CPE 
can represent (n = 0,  Yo = R), capacitor (n = 1,  Yo = C), 
inductance (n = −  1,  Yo = L) or Warburg impedance 
(n = 0, Yo = W).

Equation  14 is utilized to calculate the inhibition effi-
ciency based on the polarization resistance [80, 81]:

where Rct and Rct(inh) refer to the charge transfer 
resistance without and with the addition of inhibi-
tors, respectively. The results from EIS are compat-
ible with those acquired from the PDP analysis. The 
standard evaluation criteria for determining which of 
these compounds agreed the best with the data used: 
low chi-square errors (χ2 about  10–4) and low 5% for 
allowable elemental errors in fitting mode. There-
fore, in this case, the circuit in use is acceptable. The 
ηEIS % of these compounds follows the following order : 
HM-1223 > HM-1222 > HM-1224 > HM-1221.

(13)Cdl = Y0(ωmax)
n−1

= Y0
(

2π fZim−max

)n−1

(14)ηEIS =
Rct(inh) − Rct

Rct(inh)
× 100

Surface analysis study
Scanning electron microscope (SEM) analysis
The morphology of the CS surface was evaluated using 
SEM to determine whether the inhibition was caused 
by the growth of an organic coating. The SEM images 
for CS surface immersed HCl and with inhibited solu-
tions are illustrated in Fig. 13a–f. The CS sample’s sur-
face was smoother before immersion (Fig.  13a), but 
due to the acidic solution’s powerful attack (Fig.  13b), 
the surface became very coarse with significant corro-
sion and cracks distributed throughout after immer-
sion in HCl (Fig.  13b). But in the presence of organic 
inhibitors, which have a softer and smoother surface 
(Fig. 13c, f ), the damage has been reduced. The devel-
opment of a protective organic suppressive coating on 
the metal’s surface is indicated by this smoother surface 
morphology [82, 83].

EDX studies
Figure 14 depicts the EDX spectra that demonstrate the 
specific peaks of certain elements constituting the CS 
afterward 24  h in the unprotected and protected 1.0  M 
HCl. EDX spectra in the existence of the maximum dose 
of the chemicals display extra lines of carbon, nitrogen, 

Table 6 The results of adsorption thermodynamic of organic scaffolds on CS in 1.0 M HCl at 303‑ 323 K

Inhibitors Temp
K

Kads  M
−1  − ΔG°ads kJ  mole−1 -ΔH°ads kJ  mole−1 -ΔS°ads J  mole−1  k−1

HM-1223 303 5.55E + 02 26.1 ± 0.1854 67.3 ± 0.2142 136.149 ± 0.1214

308 4.10E + 02 25.6 ± 0.1565 135.061 ± 0.1254

313 2.41E + 02 24.7 ± 0.1254 135.99 ± 0.1412

318 1.48E + 02 23.8 ± 0.2124 136.664 ± 0.1214

323 1.17E + 02 23.5 ± 0.2144 135.342 ± 0.1754

HM-1222 303 4.44E + 02 25.5 ± 0.1524 54.9 ± 0.1624 97.126 ± 0.1214

308 3.04E + 02 24.9 ± 0.1247 97.3341 ± 0.1234

313 2.48E + 02 24.8 ± 0.1124 96.1793 ± 0.1425

318 1.45E + 02 23.7 ± 0.1124 97.884 ± 0.1652

323 1.19E + 02 23.6 ± 0.1414 96.8543 ± 0.1722

HM-1224 303 1.33E + 02 22.4 ± 0.1474 30.1 ± 0.1244 25.4227 ± 0.1241

308 1.08E + 02 22.2 ± 0.1452 25.5391 ± 0.1785

313 8.79E + 01 22.1 ± 0.1147 25.688 ± 0.1652

318 7.54E + 01 22.0 ± 0.1457 25.4493 ± 0.1254

323 6.31E + 01 21.9 ± 0.1425 25.4628 ± 0.1325

HM-1221 303 7.78E + 01 21.1 ± 0.1752 27.3 ± 0.1412 20.3729 ± 0.1574

308 5.99E + 01 20.8 ± 0.1365 21.0864 ± 0.1475

313 4.86E + 01 20.5 ± 0.1245 21.4108 ± 0.1547

318 4.17E + 01 20.4 ± 0.1514 21.3145 ± 0.1874

323 3.19E + 01  ± 0.1321 22.2151 ± 0.1958
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sulfur and oxygen owing to the layer of the adsorbed 
chemicals on CS. From Table 9, it was found that [84]:

1-Intensities of C, O, S and N signal are enhanced 
and this due to N, C, S and O atoms present in the 
chemical composition of the inhibitors, indicating 
adsorption of the chemicals molecules on the surface 
of CS.
2-Fe peaks are suppressed in the existence of the 
inhibitors which is because of overlying inhibitor film 
[85].

AFM analysis
AFM is an effective method for examining topography of 
the surface which confirms the adsorption of inhibitors 
on the surface of the corroding metal. Figure 15a–f dis-
plays three-dimensional AFM images of the CS surface 
before and after the immersion of inhibitors. The rough-
ness of the CS surface related to uninhibited solution 
in HCl only is 879.3  mm as average (Fig.  15b), and the 
surface with polishing roughness is 22.3  mm (Fig.  15a). 
Nevertheless, in the existence of inhibited scaffolds 
(Fig. 15c–f) at the highest chosen dose (11 ×  10−6 M), the 
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average roughness declines to 101.3 mm for (HM-1223), 
133.2 mm for (HM-1222), 187.1 mm for (HM-1224) and 
196.7 mm for (HM-1221). These evidences show that the 
CS surface is smoother in the presence of inhibitors com-
pared the absence of inhibitors due to the establishing a 
defensive coating adsorbed from the molecules of inhibi-
tors that protects CS surface [86]. 

FTIR technique
FT-IR is a crucial analytical tool to understanding effi-
cacious groups and characterizing bonding with metal. 
Certain peaks of the IR spectra are corresponding to 

the function groups of the substances under investiga-
tion. The characteristic peaks of active function groups 
for free organic compounds before (pure inhibitors) and 
the other peaks in the presence of these compounds 
after immersing CS for 24 h in 1.0 M HCl + 11 ×  10−6 M 
at 298  K were attained and compared to each other 
(Fig. 16). The data of FT-IR showed that: the peaks of the 
function groups of the adsorbed chemicals show a tightly 
shifting, this confirmed the complex formation between 
Fe metal and inhibitors [68] and consequently, these sub-
stances have the potential to operate as corrosion inhibi-
tors [87, 88].
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Quantum chemical calculations
To anticipate the configuration and electron dispersion 
of trimethoxyphenylfurylidene-pyrimidinone deriva-
tives, quantum chemical computations are employed. 
The evaluation of molecular reactivity is commonly 
performed using density functional theory (DFT). Fig-
ure  17 shows the optimized structures of the inhibitors 
studied. Whereby, EHOMO and ELUMO (FMOs) are cru-
cial descriptors in chemistry for studying the chemi-
cal reactivity in various reactions, the donor–acceptor 
interaction between adsorbed molecules and FMOs of 

adsorbent atoms can give valuable insights in exploring 
most chemical interactions, particularly those involv-
ing compound adsorption such as corrosion inhibition 
properties. An increase in  EHOMO values often indicates a 
molecule’s greater ability to donate electrons to an accep-
tor molecule with vacant molecular orbitals. Conversely, 
a lower ELUMO value often associates with a higher capac-
ity accept electrons by the reacting species. As a result, a 
lower ELUMO is anticipated that a molecule has a greater 
tendency to gain electrons in specific interactions. In 
this sense, EHOMO can measure ionization potential and 
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Fig. 9 PDP curves for the CS corrosion in 1.0 M HCl at 298 K without and after adding diverse concentrations of inhibitors a–d 
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a species’ tendency to undergo electrophilic attack, while 
ELUMO is indicative of its susceptibility to nucleophilic 
attack. Therefore, an increase in  EHOMO and decrease 
in ELUMO are expected to be typical of high corrosion 
inhibition properties of compounds by promoting their 
adsorption on metallic surfaces through chemisorbed 
film formation. The difference between ELUMO and 
EHOMO (ΔE) is a crucial stability index that is associated 
with corrosion inhibition capabilities in corrosive and tri-
bological systems [89, 90].

A small energy gap between HOMO and LUMO 
orbitals suggests a soft nature, while a large gap indi-
cates a hard nature. Whereby, η values is enhanced 
this is commitment to increase the value of EHOMO 
and reduction in both ELUMO and ΔE. Table 10 lists the 
results of quantum calculations, such as both  EHOMO, 
 ELUMO and energy gap (ΔE), while other quantum 
chemical parameters [90, 91]. Based on the values on 

Table 10, the trend in the quantum chemical parameters 
shows that the increasing order of inhibition follows: 
HM-1223 > HM-1222 > HM-1224 > HM-1221.

The effect of corrosion inhibition effects of the four 
inhibitors were found to be consistent with the decreas-
ing order of energy gap and E. In contrast to HM-1222 
molecule, which has two N–H hydrophilic groups, HM-
1223 compound, which has a furan ring and two ethyl 
groups, has stronger electron donating capacity and 
lipophilic qualities. Additionally, introducing (S) atom 
enhances capacity of molecules to give electrons by shar-
ing their lone pair. While HM-1224 and HM-1221 has 
lower electron donating ability than HM-1223 and HM-
1222 due to the weaker impact of their (O) atom in to 
donate electrons compared to S atom.

Monte carlo simulation studies
MC simulation was used to visualize the interaction 
between the four inhibitor molecules with the CS sur-
face and the adsorption mechanism. Figure  18 shows 
the most possible adsorption configurations of pyrimi-
dinone molecules on the CS. This could be achieved via 
the adsorption locator module, which exhibits smooth 
disposition and provides an improvement in adsorption 
with the greatest surface coverage. The data that were 
ascertained via MC simulations are listed in Table  11. 
The unrelaxed and relaxed adsorption energies of four 

Table 7 PDP corrosion parameters of CS utilizing 1.0 M HCl without and with besides utilizing diverse doses of the organic 
constitutions a-d at 298 K

Inhibitor Conc., M − Ecorr (mVvs.SCE), βa, mV decˉ1 − βc, mV decˉ1 icorr, μA mˉ2 θ ηPDP

HM-1223 1.0 mol Lˉ1 HCl 278 ± 0.2011 88.5 176 990 ± 0.1754 – –

5 × 10ˉ6 289 ± 0.2144 80 227 137 ± 0.1711 0.862 86.2

7 × 10ˉ6 291 ± 0.2214 72 179 128 ± 0.1952 0.871 87.1

9 × 10ˉ6 289 ± 0.1952 54 251 95 ± 0.2145 0.904 90.4

11 × 10ˉ6 292 ± 0.1722 54 260 83 ± 0.2111 0.916 91.6

HM-1222 5 × 10ˉ6 275 ± 0.1625 66 225 161 ± 0.2145 0.837 83.7

7 × 10ˉ6 280 ± 0.1754 58 267 144 ± 0.1234 0.855 85.5

9 × 10ˉ6 274 ± 0.1952 51 153 110 ± 0.2156 0.889 88.9

11 × 10ˉ6 275 ± 0.1854 64 132 96 ± 0.2011 0.903 90.3

HM-1224 5 × 10ˉ6 273 ± 0.1625 66 139 188 ± 0.2014 0.810 81.0

7 × 10ˉ6 277 ± 0.1524 65 202 157 ± 0.1245 0.841 84.1

9 × 10ˉ6 277 ± 0.1754 66 135 125 ± 0.1857 0.874 87.4

11 × 10ˉ6 275 ± 0.1874 63 142 101 ± 0.1574 0.898 89.8

HM-1221 5 × 10ˉ6 272 ± 0.1957 70 146 195 ± 0.1541 0.803 80.3

7 × 10ˉ6 287 ± 0.1875 66 152 177 ± 0.1475 0.821 82.1

9 × 10ˉ6 270 ± 0.1789 71 136 138 ± 0.1524 0.861 86.1

11 × 10ˉ6 269 ± 0.1321 74 129 121 ± 0.1325 0.878 87.8

Fig. 10 A simple circuit used to suit the EIS results
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inhibitors were summarized in Table  11 before and 
after the geometry optimization procedure. It is found 
that HM-1223 has a higher negative value of adsorp-
tion energy equal to (− 3.288385e + 003 kcal  mol−1), fol-
lowed by HM-1222 (− 3.205497e + 003 kcal  mol−1), then 
HM-1224 (−  3.199657e + 003), while HM-1221 has the 
lowest value equals to (-3.130904e + 003 kcal  mol−1). Fur-
thermore, HM-1223 has implying robust adsorption on 
the CS surface and form a fixed adsorbed film. The  dEads/

dNi values illustrate the metal-adsorbate configuration’s 
energy if one of the adsorbates is eliminated. HM-1223 
inhibitor has superior adsorption than other inhibitors, 
as evidenced by the fact that its  dEads/dNi value is higher 
(-259.44618281  kcal   mol−1) than HM-1222, HM-1224, 
and HM-1221. Furthermore, the  dEads/dNi value for 
water is low when compared to the studied inhibitors val-
ues, indicating that the studied inhibitors were adsorbed 
more strongly than water molecules on the CS surface, 
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Fig. 11 Nyquist plot for CS in 1.0 M HCl and with several doses of the inhibitors a-d at 298 K
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supporting the replacement of water molecules with 
pyrimidinone inhibitors. Furthermore, it can be sum-
marized that these MC results correspond well with the 
quantum chemical calculations as well as the experimen-
tal data [10, 51]. 

Mechanism of inhibition
The adsorption process is influenced by the inhibi-
tors’ chemical composition, surface charge, and inter-
nal charge distribution. Generally, chemisorption and 
physisorption-two different ways whereby inhibitor 

compounds can adsorb on the surface of CS are consid-
ered. Organic molecules can be adsorbed through phys-
isorption. The electronegative donor atoms N, O, S, and 
π-electrons of the aromatic ring in the compounds under 
investigation effectively facilitate the adsorption of inhib-
itors onto the surface of CS. Consequently, by hydra-
tion chloride ions adsorbed on the metal surface which 
led to allocate the negative charges, on the other hands, 
acidic medium acts as positively hydrogen donating 
atoms. Besides, electrostatic interaction (physisorption) 
was occurred between positively protonated organic 
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Fig. 12 Bode plot for corrosion of CS in 1.0 M HCl and in the existence of various doses of organic constitutions a-d at 298 K
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molecules and negatively chloride anions adsorbed on 
the surface of CS [92]. This surface adsorption results in 
a protective coating that repels water from the metal’s 
surface and shields it from corrosion. The development 
of organic derivatives’ adsorption was confirmed by AFM 
and SEM results. The inhibitors tested in previous exper-
iments can be ranked in terms of inhibition efficiency as 

HM-1223 > HM-1222 > HM-1224 > HM-1221. Due to 
the two ethyl groups in HM-1223, which enhance the 
molecular size of the compound and act as atom donors, 
it is thought that HM-1223 is more complex than HM-
1222. Due to its higher molecular size, HM-1224 is 
superior to HM-1221 (Fig. 19).

Fig. 13 SEM images for CS smooth surface (a), then after 24 h immersion in 1.0 M HCl (b) and in the existence of 11 ×  10−6 M of inhibitors (c-f)
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Fig. 14 EDX spectra of CS (a) after 24 h immersion in 1.0 M HCl (b) and in the existence of 11 ×  10−6 M of inhibitors (b–e)
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Fig. 15 a Represent smoother image CS surface taken by AFM, whereas, image b indicates what happened after immersion in HCl only, while, 
images from (c to f) refer to the presence of 11 ×  10−6 M of inhibitors
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Fig. 16 FT‑IR spectra of a HM-1223, b HM-1222, c HM-1224, and d HM-1221 
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Inh Optimized structure HOMO LUMO

HM-1223 

HM-1222 

HM-1224 

HM-1221 

Fig. 17 HOMO and LUMO electron density maps for the studied inhibitors

Table 10 List of quantum chemical parameters on the investigated inhibitor compounds

Inhibitor HM-1223 HM-1222 HM-1224 HM-1221

EHOMO (ev) − 3.765 − 5.477 − 5.366 − 5.425

ELUMO (ev) − 2.342 − 3.809 − 3.662 − 3.680

ΔE = E LUMO‑ E HOMO 1.423 1.668 1.705 1.745

ƞ = ΔE /2 0.711 0.834 0.852 0.872

σ(S) = 1/ ƞ 1.406 1.199 1.173 1.146

π = (EHOMO + E LUMO)/2 − 3.053 − 4.643 − 4.514 − 4.552

X = − π 3.053 4.643 4.514 4.552

∆N max 2.146 2.783 2.648 2.609

∆N (FET) 1.242 0.106 0.180 0.153

ω 6.553 12.922 11.952 11.877

ε 0.153 0.077 0.084 0.084

ΔE Back‑donation − 0.178 − 0.209 − 0.213 − 0.218
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HM-1223 HM-1222 HM-1221 HM-1224

Fig. 18 The most suitable adsorption configuration of four inhibitors on Fe (1 1 0) using adsorption locator module

Table 11 The calculated data utilizing MC simulations for the adsorption inhibitors on Fe (1 1 0)

Structures Adsorption energy/
Kcal  mol−1

Rigid adsorption 
energy/kcal  mol−1

Deformation 
energy/kcal  mol−1

dEads/dNi: Inhibitor  mol−1 dEads/dNi: Water  mol−1

Fe (1 1 0)
1223
Water

−3.288385e + 003 − 3.452641e + 003 164.25625140 − 259.44618281 − 7.04265953

Fe (1 1 0)
1222
Water

− 3.205497e + 003 − 3.368687e + 003 163.19066031 − 248.85991961 − 7.92810123

Fe (1 1 0)
1224
Water

− 3.199657e + 003 − 3.362333e + 003 162.67538061 − 236.86523223 − 7.92725663

Fe (1 1 0)
1221
Water

− 3.130904e + 003 − 3.293055e + 003 162.15187138 − 148.83457928 − 8.85918095

Fig. 19 Mechanism of inhibition of compound (HM-1223, 5c)
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Conclusion
The newly synthesized derivatives act as efficient inhibi-
tors for CS in 1.0 M HCl between 303 and 323 K. The η 
improved with an increase in derivative concentrations 
and decreased with an increase in temperature by 5.0% 
with increasing temperature. The polarization curves indi-
cate that the investigated inhibitors acted as mixed-type 
inhibitors, impacting both anodic and cathodic processes 
without changing the corrosion mechanism. These mol-
ecules are adsorbed spontaneously on CS surface based 
on impedance tests and according to Langmuir adsorption 
isotherm. The adsorption of these derivatives is of mixed 
type (Physical and Chemical) but mainly physical. The 
presented theoretical result is in full agreement with the 
experimental ones. η % of these investigated compounds 
are in the following order: HM-1223 > HM-1222 > HM-
1224 > HM-1221. A corrosion mechanism based on mixed 
type of these derivatives onto CS surface is proposed.
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