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Abstract 

Humin-sulfuric acid (Humin-SO3H) as a novel efficient biobased sulfonic acid was easily prepared by adding chlorosul-
furic acid  (ClSO3H) to Humin and characterized by potentiometric titration and FT-IR spectrum. Humin-SO3H is an eco-
friendly, heterogeneous biobased, and efficient catalyst for Paal-Knorr and Clauson-Kaas pyrrole synthesis. The 
catalyst is easily recovered by simple filtration and has excellent turnover efficiency even after 4 cycles. Besides, due 
to the clearance of the biocatalyst away from the reaction media, the desired highly pure products can be achieved 
in high to excellent yields. Due to high water dispersibility, Humin-SO3H can be utilized as a highly efficient green 
catalyst for pyrrole synthesis.
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Introduction
Pyrrole is a five-membered heterocycle with one nitro-
gen atom most commonly found in biologically active 
molecules, natural products, and drugs. Several of its 
derivatives/natural products show antibacterial, anti-
viral, anti-inflammatory, anti-tumoral, and antioxidant 
activities [1]. Owing to their importance, a plethora of 
methods/reactions is available in the literature for the 
synthesis of pyrroles, including the more popular reac-
tions such as Paal–Knorr [2], Clauson-Kaas [3], Hantzsch 
process [4], and several other methods such as conjugate 
addition reactions [5], transition metal-mediated reac-
tions [6], reductive couplings [7], Aza-Wittig [8], as well 
as multicomponent reactions [9]. Amongst these, Clau-
son-Kaas and Paal–Knorr are the most commonly used 
reactions for synthesizing pyrroles as they use simple 
and readily available precursors. These reactions were 
reported with several catalysts such as Ionic liquid [10], 
β-cyclodextrin sulfuric acid (β-CD-SO3H) [11, 12], silica 
sulfuric acid  (SiO2–OSO3H) [13], phosphorus pentoxide 

 (P2O5) [14], copper(II) chloride  (CuCl2) [15], ferric chlo-
ride pentahydrate  (FeCl3⋅7H2O) [16], montmorillonite 
K-10  (Al2H2O12SiO4) [17], cerium(III) chloride  (CeCl3) 
[18], bismuth(III) nitrate pentahydrate (Bi(NO3)3⋅5H2O) 
[19], nano sulfated titania (Nano-sulfate  TiO2) [20], zinc 
trifluoromethane sulfonate (Zn(OTf)2) [21], magne-
sium iodide etherate  (MgI2⋅(Et2O)n) [22], iodine  (I2) [23], 
scandium(III) trifluoromethane sulfonate (Sc(OTf)3) [24], 
ultrasound irradiation [25], nano-organocatalyst [26], 
sulfonic acid‐functionalized magnetite‐coated magh-
emite  (Fe3O4@γ–Fe2O3–SO3H) [27], and polyethylene 
glycol sulfuric acid (PEG-SO3H) [28].

Despite the advances, many of them suffer from cer-
tain drawbacks such as harsh reaction conditions, use 
of expensive reagents, toxic solvents, strongly acidic 
conditions, costly catalysts, longer reaction times, non-
recyclability, tedious workup procedures, and use of 
extra energy sources such as microwaves or ultrasounds. 
Therefore, in this context, developing an efficient, simple, 
economical, and environmentally friendly protocol using 
a recyclable catalyst and a green solvent for synthesizing 
pyrrole derivatives is highly desirable.
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Organic synthesis in aqueous media has gained wide-
spread attention on account of several advantages as 
water is more environmentally friendly, affordable, and 
benign [29].

Biocatalysis for organic transformations has become 
a common tool in organic synthesis, which is also fre-
quently applied in industry. The generally high activity 
and outstanding stereo-, regio-, and chemoselectivity 
observed in many biotransformations result from precise 
control of the reaction in the active site of the biocatalyst 
[30].

Functionalization of different materials by sulfuric acid 
improves their property as a catalyst for a variety of appli-
cations, such as sulfonic acid functionalized ionic liquid 
for the protection of aldehydes, phenol, and alcohols with 
acetic anhydride under neat conditions [17], Phospho-
sulfonic acid (PSA) as a highly effective and environ-
mentally benign catalyst for the production of biodiesel 
through the esterification of long-chain fatty acids at 
room temperature [31] and an environmentally safe and 
efficient solid acid catalyst, for the synthesis of several 
2-disubstituted benzimidazoles, 2-substituted benzo-
xazoles, and 2-substituted quinoxalines in ethanol as a 
green solvent at ambient temperature [32], thiocyanation 
of electron-rich arenes in the presence of sulfonic acid 
functionalized imidazolium thiocyanate solid acid cata-
lyst ((Imidazole-SO3H)/SCN) in water [33] and isoquino-
linium-N-sulfonic acid thiocyanate (Isoquinoline-SO3H)
SCN as efficient reagent for thiocyanation of  N-bearing 
(hetero)aromatic compounds [34].

Considering the high abundance and accessibility of 
Humin, a renewable source of carbon material, which has 
a lot of functional groups on its surface including phe-
nolic, carboxylic, hydroxylic, and amid groups causing 
high efficiency in organic synthesis, here in this study, we 
reported a novel preparation and application of Humin-
SO3H in pyrrole synthesis. We successfully presented it 
as a highly efficient recoverable biocatalyst, a non-toxic 
natural substance, in mild, with an eco-friendly method 
readily accessible to catalyze pyrrole synthesis under mild 
conditions efficiently. The organic part of Humin affects 
the solubility of the substrates in water and the acidic 
part activates the substrate molecules simultaneously to 
conduct pyrrole synthesis in water efficiently.

Experimental section
Materials
Raw materials were purchased from Merck and Fluka 
and were used without any further purification. The 
reaction progress was followed by using TLC. The reac-
tion product was conformed from IR, 1H NMR, and 13C 
NMR analysis. The whole process was performed with 
TLC-Card Silica Gel-G/UV 254  nm; analytical balance 

Miller/Colleg 150; OVEN/Model: U30/W:800-Shimaz 
CO; FTIR: Spectrometer-Spectrum RX 1 Perkin–Elmer 
AVE (4000–400  cm_1); 1H NMR and 13C NMR: Bruker 
Avance 400 MHz spectrometer; pH meter: Horiba model: 
f-IIE.

Preparation of Humin‑SO3H
The solution of  ClSO3H (5.0  mmol, 0.58  g) in dichlo-
romethane (6 mL) was added to dispersed Humin (1 g) in 
dichloromethane (10 mL) and stirred for 12 h. The mix-
ture was filtered off, washed with  CH2Cl2 (20  mL), and 
dried at 60 ℃ in a vacuum oven to produce Brown pow-
der of Humin-SO3H.

Synthesis of N‑aryl‑2, 5‑dimethyl pyrrole catalyzed 
by Humin‑SO3H
Humin-SO3H (0.01  g) was added to the mixture of 2, 
5-hexadione (1.2 mmol, 0.14 mL) and amine (1 mmol) in 
water (4 mL) and was stirred at room temperature. After 
completing the reaction, ethanol was added to the reac-
tion mixture, and the catalyst was separated with a simple 
filtration and washed with ethanol. The solid correspond-
ing pyrrole product was separated after a reduced solvent 
volume and filtered off. The pure N-aryl-2, 5-dimethyl 
pyrrole was achieved after recrystallizing in an  H2O/
EtOH mixture in 80–98% isolated yield.

Synthesis of N‑aryl pyrrole catalyzed by Humin‑SO3H
Humin-SO3H (0.01  g) was added to the mixture of 
2,5-dimethoxy tetrahydrofuran (1.2 mmol, 0.14 mL) and 
amin (1 mmol) in water, and the reaction was stirred at 
80 ℃. After the reaction, ethanol was added to the reac-
tion mixture, and the catalyst was separated with a sim-
ple filtration. The solid corresponding pyrrole product 
was separated after a reduced solvent volume and filtered 
off. The pure N-aryl pyrrole was achieved after recrystal-
lizing in an  H2O/EtOH mixture in 85–98% isolated yield.

Results and discussion
Humin-SO3H was prepared by adding drop by drop of 
 ClSO3H to dispersed Humin in dichloromethane and let 
it be stirred for 12 h. The solid product was filtered off, 
washed with  CH2Cl2, and dried under a vacuum oven at 
60  ℃ to achieve Humin-SO3H powder in brown color 
(Fig.  1). There are many hydroxyls functional groups in 
the Humin structure to react with  ClSO3H. The FTIR 
spectra and potentiometric titration chart of sulfonated 
Humin were compared with the basic Humin to con-
firm of –SO3H functional group in the Humin structure 
(Humin-SO3H).

The strong acidity of the potentiometric titration chart 
of Humin and Humin-SO3H was shown in Fig.  2 and a 
remarkable difference in acid strength can be seen. The 
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number of sulfonic acid groups on the Humin was cal-
culated by using the neutralization titration method and 
was found to be at 3.7  mmolg_1.

The FTIR spectroscopy is an important tool to show 
the structural characterization of the units of Humin 
and Humin-SO3H as shown in Fig. 3. In FTIR spectra of 
Humin, the wide pic that appeared in 2600–3600   cm−1 
is related to hydroxyl and carboxyl groups, and a pic in 
1023  cm−1 is related to the C–O bond. In the FTIR spec-
trum of Humin-SO3H, the pic in 2600–3600   cm−1 has 
been wider and three new appeared pics in frequencies of 
1285, 1172, and 578  cm−1, are related to symmetrical and 
asymmetrical tensile vibrations of O=S=O and tensile 
vibrations of S–O respectively [27]. FTIR spectra confirm 
the presence of the sulfuric acid group on the surface of 
Humin.

Humin-SO3H was used as a catalyst in the Paal–Knorr 
pyrrole synthesis reactions to show its catalytic activity. 
The reaction of 2,5-hexadione with aniline was consid-
ered a model reaction to optimized reaction conditions 
(Table 1).

By screening loading of the catalyst and considering 
the effect of the solvent and temperature on the reac-
tion rate, it was found that only 0.01 g of Humin-SO3H 
was sufficient for Paal-Knorr pyrrole synthesis at room 

temperature in water (Table 1, entry 5). The organic part 
of the catalyst affects the solubility of the substrates in 
water and the acidic part activates the substrate mol-
ecules at the same time. When these two factors are in 
play together, a drastic enhancement is observed in the 
products’ rates and yields.

To check the recyclability  of the catalyst, after com-
pletion of the model reaction, ethanol was added to the 
reaction mixture to solve N-phenyl-2,5-dimethyl pyrrole, 
and the solid Humin-SO3H was separated by a simple fil-
tration, washed with ethanol, dried at 100 ℃ and reused 
in a subsequent reaction. The results show, that the recy-
cled catalyst can be reused up to at least 3 times with a 
slight loss of catalytic activity under optimal conditions 
(Table 2).

After this success, to show the general applicability of 
the method, the reaction of structurally diverse amines 
with hexane-2,5-dione was studied under optimized 
reaction conditions. Aromatic and aliphatic amines eas-
ily reacted with hexane-2,5-dione to produce N-sub-
stituted pyrroles in high to excellent yields. Aliphatic 
amines reacted more efficiently than aromatic ones to 
give N-alkyl pyrroles in excellent yields (Table  3). Also, 
the polyaromatic substrates, 1-amino naphthalene, and 
4,4ʹ-methylenedianiline reacted efficiently to afford the 

Humin Humin
Fig. 1 The synthesis process of Humin-SO3H
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Fig. 2 Potentiometric titration chart of Humin and Humin-SO3H for equilateral point calculation
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desired products in good yields of 95% and 94% respec-
tively (Table 3, entries 5 and 12). In all the cases, at the 
end time, EtOH was added to the reaction mixture to 
solve precipitated pyrrole and filter off the solid cata-
lyst. The pure solid product was isolated by the reduced 
value of solvent by a simple filtration, recrystallizing in an 
 H2O/EtOH mixture without using any chromatography 
or cumbersome reaction workup.

Due to the success of the Humin-SO3H in green Paal-
Knorr pyrrole synthesis, we decided to develop its cata-
lytic activity for the Clauson-Kaas another common 
method for the synthesis of pyrrole, too. In this regard, 
the reaction of 2,5-dimethoxy tetrahydrofuran with 
aniline was chosen as the model substrate for the opti-
mization reaction conditions. The model reaction was 
performed under Paal-Knorr optimized conditions. The 
reaction proceeded sluggishly at room temperature and 
after 12 h, N-phenyl pyrrole was produced in only a 50% 
yield. To improve the yield of the model reaction, the 
effect of temperature, loading of catalyst, and solvent was 
screened (Table  4). The best yields of the products and 
reaction rate were obtained when the reaction was per-
formed in the presence of Humin-SO3H (0.01 g) in water 
at 80 ℃ (Table 4, entry 3) rather than using organic sol-
vents or under solvent-free conditions.

Encouraged by this result, we have performed the 
reactions of various amines with 2,5-dimethoxy tetrahy-
drofuran to probe the scope and reactivity of the new 

Fig. 3 FTIR spectroscopy of Humin and Humin-SO3H

Table 1 Optimization of reaction of 2,5-hexadione with aniline

Entry Cat.
(g)

Solvent
(mL)

Temp.
(˚C)

Time
(h)

Conv.
(%)

1 Humin-SO3H
(0.01)

– 30 2.5 100

2 Humin-SO3H
(0.01)

– 50 2.5 100

3 Humin-SO3H
(0.03)

H2O
(4 mL)

R.T 1 100

4 Humin-SO3H
(0.02)

H2O
(4 mL)

R.T 1 100

5 Humin-SO3H
(0.01)

H2O
(4 mL)

R.T 1 100

6 Humin-SO3H
(0.005)

H2O
(4 mL)

R.T 3 100

7 Humin
(0.01)

H2O
(4 mL)

R.T 2.5 100

8 Humin-SO3H
(0.01)

EtOH
(4 mL)

R.T 3 30

9 Humin-SO3H
(0.01)

CH3CN
(4 mL)

R.T 3 5

Table 2 Reusability of Humin-SO3H

Reusability time First Second Third

Time
(h)

1 1.25 1.25

Yield
(%)

95 92 91
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Table 3 Paal–Knorr Pyrrole Synthesis catalyzed by Humin-SO3H in water at room temperature

Entry Amine Product Time (h) Yield (%) TON TOF  (h−1)

1 1 98 26.48 26.48

2 1 98 26.48 26.48

3 2 98 26.48 13.24

4 1 94 25.40 25.40

5 3 95 25.67 8.89

6 1.15 96 25.94 22.55

7 3 83 22.43 7.47

8 0.5 97 26.21 52.42
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catalyst, and the results are summarized in Table 5. Aro-
matic amine with electron-donating and withdrawing 
group quickly produces corresponding pyrrole product in 
high to excellent yield. Also, the polyaromatic substrates, 
4,4ʹ-methylenedianiline, and 4,4ʹ-Oxydianiline reacted 
efficiently to afford the desired products in good yields of 
97% and 88% respectively (Table 5, entries 4 and 6).

To realize the efficacy and potency of Humin-SO3H, 
the present catalytic system was compared with several 
previously reported methods for Clauson-Kaas reaction 
of aniline with 2,5-dimethoxy tetrahydrofuran (Table 6). 
The Humin-SO3H exhibits high catalytic activity as com-
pared to other reports, which is attributed to the avail-
ability of more active and stable sites on the catalyst 
surface. The results clearly show that Humin-SO3H is 
a renewable carbon source, environmentally friendly, 
and efficient biocatalyst for synthesizing pyrrole in mild 
conditions.

Table 3 (continued)

Entry Amine Product Time (h) Yield (%) TON TOF  (h−1)

9 4 87 23.51 5.87

10 1.5 90 24.32 16.21

11 3 93 25.13 8.37

12 2.5 94 25.40 1.016

Reaction conditions: 2,5-Hexadion (1.2 mmol), amine (1 mmol), Water (4 mL), Humin-SO3H

(0.01 g), were mixed and stirred at room temperature

Table 4 Optimization of the reaction of Aniline with 
2,5-dimethoxy tetrahydrofuran

Entry Cat. (g) Solvent (mL) Temp. (℃) Time (h) Conv. (%)

1 Humin-SO3H
(0.01)

H2O R.T 12 50

2 Humin-SO3H
(0.01)

H2O 60 3 60

3 Humin-SO3H
(0.01)

H2O 80 1 100

4 Humin-SO3H
(0.02)

H2O 80 1.45 100

5 Humin-SO3H
(0.005)

H2O 80 3 70

6 Humin-SO3H
(0.01)

– 80 3 70

7 Humin-SO3H
(0.01)

EtOH 80 3.5 70

8 Humin-SO3H
(0.01)

CH3Cl 80 4.5 60
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Conclusion
This work presented a new green method for two gen-
eral routes, Paal-Knorr and Clauson-Kaas reactions, to 
be approved for synthesizing pyrrole. The advantages of 

this reaction include using water as a solvent and intro-
ducing waste Humin to a valuable supported bio-
catalyst (Humin-SO3H). The high stability, efficiency, 

Table 5 Synthesis of Pyrrole derivations with Humin-SO3H

Reaction conditions: 2,5-Dimethoxy tetrahydrofuran (1.2 mmol), amine (1 mmol), water (4 mL), and Humin-SO3H (0.01 g) were stirred at 80 ℃

Entry Amine Product Time (h) Yield (%) TON TOF  (h−1)

1 1 98 26.48 26.48

2 1.5 98 26.48 17.65

3 1.5 98 26.48 17.65

4 1.5 97 26.21 17.48

5 2.5 97 26.21 10.48

6 3 88 23.78 7.92

7 5 85 22.97 4.59

Table 6 Comparison of the activity of Humin-SO3H with another recent catalyst used for the reaction of 2,5-dimethoxy 
tetrahydrofuran with aniline

Entry Catalyst Solvent (mL) Temp. (℃) Time (h) Yield (%) References

1 P2O5 Toluene 110 45 87 [14]

2 Sc (OTf )3 Dioxane 100 0.6 91 [24]

3 MgI2⋅(OEt2)n CH3CN 80 6 85 [22]

4 FeCl3⋅7H2O H2O 60 1 95 [16]

5 β-CD-SO3H H2O 80 3.5 96 [11]

6 Nano-solfate  TiO2 – 120 0.5 98 [20]

7 Zn (OTf )2 – 70 8 94 [21]

8 Humin-SO3H H2O 80 1 98 This work
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eco-friendliness, and reusability are the advantages of 
Humin-SO3H biocatalyst in pyrrole synthesis.
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