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Abstract
Based on a structural family of thirty-two NR2B-selective N-Methyl-D-Aspartate receptor (NMDAR) antagonists, 
two phenylpiperazine derivatives labeled C37 and C39 were conceived thanks to molecular modeling techniques, 
as novel NMDAR inhibitors exhibiting the highest analgesic activities (of pIC50 order) against neuropathic pain, 
with excellent ADME-toxicity profiles, and good levels of molecular stability towards the targeted protein of 
NMDA receptor. Initially, the quantitative structure-activity relationships (QSARs) models were developed using 
multiple linear regression (MLR), partial least square regression (PLSR), multiple non-linear regression (MNLR), and 
artificial neural network (ANN) techniques, revealing that analgesic activity was strongly correlated with dipole 
moment, octanol/water partition coefficient, Oxygen mass percentage, electronegativity, and energy of the lowest 
unoccupied molecular orbital, whose the correlation coefficients of generated models were: 0.860, 0.758, 0.885 
and 0.977, respectively. The predictive capacity of each model was evaluated by an external validation with 
correlation coefficients of 0.703, 0.851, 0.778, and 0.981 respectively, followed by a cross-validation technique 
with the leave-one-out procedure (CVLOO) with Q2

cv of 0.785, more than Y-randomization test, and applicability 
domain (AD), in addition to Fisher’s and Student’s statistical tests. Thereafter, ten novel molecules were designed 
based on MLR QSAR model, then predicted with their ADME-Toxicity profiles and subsequently examined for 
their similarity to the drug candidates. Finally, two of the most active compounds (C37 and C39) were chosen for 
molecular docking and molecular dynamics (MD) investigations during 100 ns of MD simulation time in complex 
with the targeted protein of NMDA receptor (5EWJ.pdb).
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Introduction
N-methyl-D-aspartate (NMDA) receptors are part of 
ionotropic receptors physiologically activated by gluta-
mate and glycine, which play an essential role in learning, 
memory, and synaptic plasticity in the central nervous 
system (CNS). They are mainly known for their perme-
ability to divalent cations of calcium (Ca2+) and mon-
ovalent cations of potassium (K+) and sodium (Na+) in 
membrane cells, due to their structural nature as a tetra-
meric combination of two GluN1subunits linked to gly-
cine and two GluN2 subunits fixed to glutamate sites, in 
which the distribution of each NMDA subunit is closely 
associated with neuronal plasticity and synaptic defi-
ciencies [1]. Recently, it was discovered as a potential 
therapeutic target for neurological and mental diseases, 
including memory impairments, chronic pain, schizo-
phrenia, Parkinson’s, and Alzheimer’s disorders [2–5]. In 
this respect, the discovery of powerful NMDA receptor 
antagonists is an absolute necessity for treating this class 
of neurodegenerative disorders, which requires a selec-
tive activation of each blocked receptor which occurs 
more frequently for older cells than younger ones.

Nowadays, the computer-assisted drug design (CADD) 
approach based on in silico techniques has taken on 
enormous importance in the pharmaceutical sector, 
aimed at discovering new drug candidates [6–8]. It has 
been widely reported in the literature to save the time 
and costs of experimentation before any pre-clinical and 
clinical tests. However, in vivo and in vitro tests remain 
strongly recommended for each new compound designed 
based on in silico studies [9–12]. Many scientific articles 
were focused on NMDA receptors as a major neurotrans-
mitter in the human brain, closely involved in the exci-
totoxicity process responsible for the pathophysiology 
of various diseases, to concept the new competitive and 
non-competitive NMDA receptor antagonists, which 
could be recommended as an effective treatment for sev-
eral neurological impairments such as Alzheimer’s, cere-
bral vascular accidents, and chronic pain [13–16].

The present work aims to concept novel NR2B-selec-
tive NMDAR antagonists using in-silico techniques 
based on computer molecular modeling, including QSAR 
modeling, ADME-Tox predictions, molecular docking, 
and molecular dynamics investigations.

In the first stage, QSAR technique was carried out to 
a structural class of thirty-two selective inhibitors of 
NMDA receptor, acting as analgesic agents against neu-
ropathic pain [5, 17], in which four QSAR models were 
generated using MLR, PLSR, MNLR, and ANN tech-
niques to predict the linear and nonlinear relationship 
between various molecular descriptors of NR2B-selec-
tive NMDAR antagonists and their analgesic activi-
ties of pIC50 order [18, 19]. The developed models were 
applied on a training set of twenty-six molecules and 

then validated on a test set of six molecules [20]. There-
after, ten novel molecules (C33 to C42) were designed 
based on the most active compound (C22) and predicted 
in humans by their absorption, distribution, metabolism, 
excretion, and toxicity (ADMET), then examined for 
their similarity to the drug candidates [21]. In the sec-
ond stage, two novel-designed molecules labeled C37 
and C39, were chosen for molecular docking to study 
their inhibition mechanisms towards NMDA receptor, 
encoded in protein data bank by 5EWJ.pdb [22]. In the 
final stage, C37 and C39 molecules, which were predicted 
to have greater analgesic activity than the most active 
compound C22, were chosen for the molecular dynam-
ics (MD) technique to test the thermodynamic stabil-
ity of each (ligand-protein) complex [23, 24], which was 
equally compared to the original compound (C22) over 
100 nanoseconds of MD simulation time after being 
complexed to the same protein target.

Materials and methods
Experimental database
A structural family of 32 NMDA receptor antagonists, 
which were successfully examined using experimental 
in vivo and in vitro assays to block the binding of [3 H]-
ifenprodil to rat brain membranes as authored by Kosuke 
Anan, et al. [17], was chosen as an appropriate database 
to concept new active molecules with the highest inhibi-
tory activities using molecular modeling techniques, 
where the analgesic activities against neuropathic pain of 
the original molecules (C1 to C32) were expressed on a 
decimal logarithm scale (pIC50 = - log10IC50), as presented 
in Table 1.

Molecular descriptors calculation
To establish a reliable QSAR model, we have calculated 
a variety of molecular descriptors as classified in Table 2, 
where the thermodynamic and physicochemical descrip-
tors were calculated by MM2 method using ChemBio3D 
software [25], the constitutional descriptors were cal-
culated by ACD/chemsketch software [26], at the same 
time the geometry of the studied compounds was opti-
mized using the density functional theory (DFT) with the 
B3LYP functional [27], combined with the 6-31G + G(d, 
p) basis, thus the quantum descriptors were calculated 
with the help of Gaussian 09 package software [28].

Statistical methods
To generate the mathematical models that exhibit the 
quantitative relationships between the biological activity 
and the calculated molecular descriptors, different statis-
tical methods were used such as Multiple Linear Regres-
sion (MLR), Partial Least Squares Regression (PLSR), 
Multiple Non-Linear Regression (MNLR) and Artificial 
Neural Network (ANN).
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Table 1  Studied molecules and their observed activities pIC50 
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As a first step, the number of molecular descriptors 
was minimized using the Principal Component Analysis 
(PCA) by XLSTAT 2014 software, as a very important 
step to make the studied information less redundant, 
because it serves to reduce the size of the original vari-
ables that are correlated with each other into some syn-
thetic variables that are independent from one another, 
called the principal components or factorial axes [29–31].

As a second step, the linear variation of these indepen-
dent variables (uncorrelated descriptors) with the depen-
dent variable (analgesic activity), was tested using MLR 
method with stepwise selection. In this case, where there 
are more predictors than observations and there is strong 
collinearity between these predictors, the PLS method is 
the best and it would be interesting to be able to study 
more precisely the quality of the model by minimizing 
the difference between the observed and calculated val-
ues [32]. Finally, the molecular descriptors used were 
chosen as input parameters in the multiple nonlinear 
regression (MNLR) and artificial neural network (ANN). 
All four models obtained were generated to predict the 
effects of these NMDA antagonists on the rat brain. Each 
tested model was treated according to the following sta-
tistical criteria: R, R2, and R2adj that must tend towards 
1, which mean respectively: correlation coefficient, deter-
mination coefficient, and adjusted coefficient. Mean 
square error (MSE) should be minimal (tend towards 0), 
the Fisher value (F) must be inferior to the critical value 
of Fisher, and the probability value (p-value), it’s better to 
be under 5% for a 95% confidence level. To make these 
four QSAR models applicable, we have used the external 
validation technique on six new compounds constituting 
the test set. Also, we have performed the cross-validation 
method with the “leave-one-out” procedure, in order to 
examine the reliability of the developed models. So, the 
validity of the performance estimate will be obtained by 
performing this conventional procedure, which is real-
ized by removing a single example from the training base, 
applied each time on the N-1 compounds [33]. In addi-
tion to cross-validation method, two other techniques are 
very important: the first one is “Y-randomization” tech-
nique; this sort of approaches is particularly appropriate 
when we are not sure of our model of the data generation 

process [34]. To do this, we were based on our full set of 
32 compounds, after that we have searched randomly a 
new training test of 26 molecules to validate and ensure 
the security of the statistical tests [35].

Drug likness and in-silico ADMET predictions
To examine the drug likness of novel chemical com-
pound, the physicochemical feautures must satisfy at 
least two of Lipinski’s five rules, with an acceptable 
ADMET profile, and good oral biovailability by the 
human body, without any adverse toxic effects on the 
human body. For this purpose, SwissADMET, pKCSM, 
and CLC Drug Discovery servers were carefully used to 
test the physicochemical and pharmacokinetic profiles 
[36, 37] of nine chemical compounds designed based on 
QSAR results.

Molecular docking modeling
Molecular docking is often used in computational chem-
istry to accelerate drug discovery at early stages [9]. For 
this project, this molecular modeling technique is based 
on the cell key phenomenon, where the best position of 
the ligand or drug candidate (the agent) is the key that 
can open the cell (or protein) to have finally a more stable 
complex by energetic order [38].

The crystal structure of amino-terminal domains of the 
NMDA receptor subunit GluN1 and GluN2B in complex 
with ifenprodil, coded in protein data bank by 5EWJ.
pdb (https://www.rcsb.org/structure/5EWJ) was cho-
sen as the targeted protein of NMDA receptor, in which 
can complex the inhibitors studied [39]. The responsible 
protein was discovered using X-ray diffraction method, 
in machine simulation with a resolution equal to 2.77 Å 
[40]. Then, it was prepared by removing all the water mol-
ecules bound, the sodium atom, and all the suspended 
ligands were removed, while adding the polar hydrogens 
using the Discovery Studio software, for the reason that 
the cavity method works best [41]. All this is to indicate 
the map coordinates of the co-crystallized ligand. After 
the preparation of the protein and quoting its active site, 
we have launched the docking calculation in AutoDock 
4.2 program. In this way we have docked in the protein 
receptor three molecules already optimized by the DFT 
theory (output file): the first one is noted C22, having the 
greatest analgesic activity against neuropathic disease of 
pIC50 = 7.9, and the second ones are the new predicted 
molecules (C37 and C39) to compare their mechanisms 
of inhibition towards the most active compound. With 
the help of algorithm AUTOGRID We were able to cen-
tralize the grid boxes on (86.63 Å, -7.51 Å, -64.01 Å) by 
putting the sizes: 110, 110, and 110 in their three-dimen-
sional structure, and running 10 genetic algorithms, with 
a total of two million five hundred thousand evals. At 
the end, we have got the strongest complex out of fifty 

Table 2  List of different calculated descriptors
Type of descriptors Name of descriptors
Quantum descriptors HOMO and LUMO Energies (E 

homo, E lumo) - Hardness (ƞ)
Dipole moment (µ) - Electroneg-
ativity (χ) - Gap Energy (E gap)

Constitutional descriptors % C - % H - % O
Physicochemical descriptors Octanol-water partition coef-

ficient (Log P) - Density (d)
Thermodynamic descriptors Kinetic Energy (K) - Potential 

Energy (P) - Total Energy (T)

https://www.rcsb.org/structure/5EWJ
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conformations obtained [42], and we have visualized the 
2D and 3D interactions of the protein-ligand by discovery 
studio 2020 [43].

Molecular dynamics simulation
To validate the thermodynamic stability of ligands C37, 
C39, and standard drug C22 with the NMDA receptor 
for their analgesic effect were shortlisted for performing 
MD simulation based upon their docking score, physi-
cochemical analysis and observed chemical interactions 
with the target receptors. All the above said MD simula-
tions were executed for a time period of 100 ns by using 
Desmond module of Schrodinger’s Maestro software 
[44]. Addition of explicit solvent molecules followed by 
their neutralization by adding the respective ions. The 
steepest-descent algorithm was used to relax the system 
and eliminate any steric clashes or poor contacts within 
atoms in order to minimize the system’s energy. Using a 
short series having low temperature with constant pres-
sure (NPT) simulations, the system was brought to equi-
librium. Positional constraints are applied to the system 
in addition to a progressive increase in temperature [45–
47]. This makes it more likely that the system will be in 
a stable, balanced state prior to the simulation, in order 
to get the appropriate outcomes, the simulation is per-
formed for 100 ns while taking into account the system’s 
energies, atom positions, and RMSD values. This aids in 
comprehending the system’s dynamic behavior and pro-
vides long-term intuitions on the complex’s structure and 
functional stability [24, 48–50].

Results and discussions
Statistical database
To establish the QSAR mathematical models, we have 
selected a set of 32 compounds from recently pub-
lished work of K.Anan, et al., including NR2B-selective 

antagonists that Inhibit binding of [3 H]-ifenprodil to rat 
brain membranes [17]. Therefore, the database will be 
represented as a matrix of 32 rows (active molecules) and 
14 columns (molecular descriptors) as illustrated in Table 
S1. Then, we worked randomly to divide this complete set 
into two subsets: the first one (training set) includes 26 
compounds that are used to build the model and the sec-
ond one (test set) includes 6 compounds to validate this 
established model.

Principal component analysis
To reduce the size of the basic data, we have applied the 
principal component analysis method, calculating a num-
ber of linear combinations of the original variables such a 
way to summarize the data with minimal loss of informa-
tion, focusing on the correlation matrix given in Table S2 
[51].

According to the correlation matrix, the variables that 
have a correlation coefficient absolutely higher than 90% 
are strongly correlated. So, we have found 9 following 
correlations:

First, the density is strongly and negatively correlated 
with % C and % H of -94.5% and − 96.1% respectively, 
also a strong positive correlation of 94.7% between % C 
and % H, this means that the three are correlated with 
each other several times. Second, it was observed that: 
the potential energy (P), kinetic energy (K) and the total 
energy (T), are totally correlated because the correlation 
coefficient is equal to 1 in absolute value. Third, E Homo, 
E gap and hardness are strongly correlated with each 
other, such as: r(E homo, E gap)= -90.2%, r(E homo, ƞ)= 
-90.4% and r(ƞ, E gap) = 99.8%. Finally, we have dropped 
these nine descriptors because every three variables 
share the same information, as they are largely correlated 
with each other. Thus, we have limited our study to five 
major uncorrelated descriptors pictured in Fig. 1.

These descriptors are projected on the first two princi-
pal components t1 and t2. Since, 46.074% of the studied 
variables are explained by the first principal component, 
24.901% of the variables contribute to the construction 
of the second and only 11.441% of the variables contrib-
ute to the construction of the third principal component. 
Therefore, we can propose that only the first two princi-
pal components are sufficient to obtain a good explana-
tion of the data, because the variability explained by the 
first two principal components is: 70.97% of the total 
variability, as illustrated in Fig. 2.

Multiple linear regression
The Multiple Linear Regression is a statistical technique 
for estimating the relationship between more than two 
variables which have cause-effect relations [52]. For 
that, we have applied this technique on the training test 
including twenty-six observations (N = 26) and we have 

Fig. 1  The projection of the uncorrelated variables on the plane of the 
first two principal components t1 and t2
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found the best following QSAR model as illustrated in 
the following equation:

	
pIC50 = −5.031 + 42.028 ∗ E lumo + 65.706 ∗ χ− 0.228 ∗ µ

+ 1.308 ∗ Log P + 0.244 ∗%O � (1)

This established model shows that biological activity, 
is a quantitative variable significantly influenced by the 
following five descriptors: E lumo, χ, µ, Log P and % O, 
because the probability corresponding to the slope of 
each variable is less than 5% as noted in Table 3.

To know, all the variables have a positive weight on the 
biological activity except the dipole moment, as shown 

in Fig.  3, because each increase in activity is accompa-
nied by an increase of 42.028  kcal/mol in the energy of 
the lowest unoccupied molecular orbital, 65.706 in the 
electronegativity of the compound, 1.308 log P (Hight 
lipophilicity), and 0.244% of oxygen, but results in a 
decrease of 0.228 in the dipole moment. For a 95% con-
fidence interval, the null hypothesis (H0) posed by the 
Fisher statistical test is rejected, because the calculated 
Fisher value (F = 24.664) is much higher than the critical 
value: [F (26, 5) = 2.59, p < 0.0001], as simplified by the 
one ANOVA test (Table 4). So, the variance is homoge-
neous between the dependent variable (pIC50) and the 
five explicative variables. In addition, the determination, 
correlation, and adjustment coefficients of R = 0.928, 
R²=0.860 and R²adjusted = 0.826, show a strong relation-
ship between descriptors and answers. So, the first QSAR 
model obtained by MLR has good predictive compe-
tence, with a minimal standard error (RMSE = 0.272).

Partial least squares regression (PLSR)
To model a linear relationship between a set of predictors 
and a response variable, so that the variance is minimal, 
we have applied the partial least squares regression tech-
nique, in a way that solves linear regression problems and 
to have finally a good quality of adjustment, and a good 
predictive power [53, 54]. The results of this regression 
technique yield the second QSAR model given in the fol-
lowing Eq. 2:

	
pIC50 = −3.696− 20.573 ∗ E lumo + 37.531 ∗ X + 2.353E-02 ∗ µ

+ 1.229 ∗ Log P + 0.121 ∗%O.
� (2)

This model generated by the PLSR technique, is also 
applied on the same training set of twenty-six observa-
tions (N = 26) and given by the following statistical cri-
teria: the standard error (RMSE = 0.314) is minimal, the 
determination and correlation coefficients which are 
respectively: R = 0.870 and R²=0.758, show that there is a 
good quality of adjustment and a good predictive power 
of the model made by the regression on the partial least 
squares.

Multiple non-linear regression (MNLR)
Non-linear regression analysis is a type of regression 
analysis in which the data are modeled by a non-linear 
combination of several independent variables [55]. To 
realize this technique, we have used preprogrammed 
function of type:

Table 3  Significance test of the slopes
Source Value t Pr > |t| Lower 

Terminal 
(95%)

Higher 
Ter-
minal 
(95%)

Constant -5.031 -2.341 0.030 -9.514 -0.549
E lumo 42.028 2.174 0.042 1.706 82.349
X 65.706 3.567 0.002 27.277 104.134
µ -0.228 -3.353 0.003 -0.371 -0.086
Log P 1.308 9.038 < 0.0001 1.006 1.610
% O 0.244 5.974 < 0.0001 0.159 0.329

Table 4  Analysis of variance (ANOVA 1)
Source DDL Total square Mean square F Pr > F
Model 5 9.103 1.821 24.664 < 0.0001
Error 20 1.476 0.074
Adjusted total 25 10.579

Fig. 3  Degree of influence of the descriptors on the activity

 

Fig. 2  The explanatory power of the principal components
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Y = a0 +

∑ n

i=1

(
ai ∗Xi + bi ∗Xi2

)
� (3)

As: Y: the predicted biological activity (pIC50), Xi: the 
explicative variable, a0: the constant of the QSAR model, 
a.i.: the slope of each descriptor to one degree and bi: 
the slope of each descriptor of two degrees. This func-
tion presents the non-linear combination of the biologi-
cal activity (pIC50) as a function of the five independent 
variables found previously by the linear model QSAR, 
based on the same training set of twenty-six observations 
(N = 26). So, the final results produce the third QSAR 
model as indicated in the following Eq. 4:

	

pIC50 = 23.360 + 64.956 ∗ E lumo − 354.817 ∗ X − 0.360 ∗ µ
+ 3.680 ∗ log P − 0.166 ∗% O + 297.460 ∗ E lumo2

+ 1599.438 ∗ X2 + 2.258E-2 ∗ µ2

− 0.550 ∗ log P2 + 1.461E-2 ∗%O2

� (4)

This mathematical model is defined by a good coefficient 
of determination (R = 0.941) and a good correlation coef-
ficient (R2 = 0.885), in addition the model Root Mean 
Square Error is minimal (RMSE = 0.285), this means that 
the last QSAR model generated by the MNLR technique 
has a good predictive competence and a strong non-lin-
ear relationship between descriptors and answer.

Artificial neural network (ANN)
One of the most important steps in QSAR studies is to 
develop a non-linear relationship between activity and 
molecular descriptors, using the ANN method [56], 
which differs from the function of biological neurons in 
a number of parameters such as structures, layers, com-
putational style, processing speed, connections, strength, 
storage and transmission of information [57]. In the pres-
ent study, we have used three-layer neural networks, the 
input layer contains 5 neurons representing the selected 
descriptors, the hidden layer contains 3 neurons (H1, H2 
and H3), and the output layer represents the observed 

activity values (pIC50). A parameter ρ serves a major 
role in the determination of the best ANN architecture, 
is used to identify the number of hidden neurons [58], 
which must be in the interval: 1 < ρ < 3 [59]. It’s given by 
the following Eq. 5:

	
ρ =

The number of weight
The number of connections in the NN

� (5)

So, the architecture of the Artificial Neural Networks 
used in this work is [5–3–1], as shown in Fig. 4.

The obtained results of the artificial neural network, 
using the JMP version 8.0 software, show a very good 
correlation of 97.7% between the observed and predicted 
values, with a minimal coded residual standard error 
equal to 0.189 and an external validation correlation coef-
ficient of 98.1%, operating on 16 turns and 2.734 of over-
adjustment penalty, with 75 maximum iterations, and 
0.00001 of convergence criteria. This indicates that the 
descriptors selected by multiple linear regression, are rel-
evant, and the model has a high statistical quality.

Validation techniques
External validation
To evaluate the accuracy of four predictive models and 
ensure their generalizability, it is essential to validate 
them externally before they are applied in clinical prac-
tice [60]. For this purpose, we have tested the six new 
molecules constituting the test set on a training test basis 
and we have arrived at the results presented in Table 5.

Based on the set test (N = 6), the first regression estab-
lished by MLR method and illustrated in Fig. 5, results an 
external validation correlation coefficient (R2ext = 0.703) 
between the observed and predicted activities, with 
an adjustment coefficient (R2adjusted = 0.629) and a 
minimal root mean square error (RMSE = 0.460). The 
second regression shown in Fig. 6, gives an external vali-
dation correlation coefficient (R2ext = 0.851) between the 

Fig. 4  Schematic diagram of three-layer artificial neural network
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observed and predicted activities, with a good adjust-
ment coefficient (R2adjusted = 0.814) and a minimal root 
mean square error (RMSE = 0.326). The third regression 
as presented in Fig. 7, gives an external validation correla-
tion coefficient (R2ext = 0.778) between the observed and 
predicted activities, with a good adjustment coefficient 
(R2adjusted = 0.722) and a minimal root mean square 
error (RMSE = 0.398) and the last regression, results 
an external validation correlation coefficient of 98.1%. 
According to ‘Alexander Golbraikh and Alexander Trop-
sha’ theory, an external validation correlation coefficient 
greater than 0.6 shows that the established QSAR model 
is externally validated. Consequently, we can say that the 
four QSAR models obtained respectively by MLR, PLSR, 
and MNLR techniques are externally validated because 
their correlation coefficients are largely higher than 0.6, 
so the experimental activity can be precisely predicted 
using one of four established QSAR models including all 
five of the following descriptors: E lumo, χ, µ, Log P and 
% [61].

Cross-validation
To measure the effectiveness of the QSAR models and 
examine their reliability, we have applied the cross-
validation technique with the leave-one-out procedure, 
removing each observation at each iteration, so that 
each observation is tested exactly a once [62, 63]. This 
technique is applied searching each time a new model of 
twenty-five compounds (N-1 = 25) and predicting the bio-
logical activity of the deleted sample, as noted in Table 6, 
such that quadratic coefficient q2 or (r2cv) given by Eq. 6 
is greater than 0.5, for that the models will be internally 
validated [64].

	
r2cv = 1−

∑ 26
1 (Y pred− Y obs) 2

∑ 26
1 (Y obs− Y mean) 2

= 0.785� (6)

As:
Y pred: the LOO predicted response value, Y obs: the 

observed response value and Y mean: is the average of 
the observed response values.

A high value of r2cv = 0.785 (greater than 0.5) indicates 
that the candidate QSAR model is reliable, robust, and 
has better internal predictivity. Despite this, ‘Alexander 
Golbraikh and Alexander Tropsha’s study confirms that 
the cross-validation technique is essential but not suffi-
cient, because the internal predictive power of the cross-
validation procedure tends to be overestimated and the 
high value of the quadratic coefficient may result from 
a hazard correlation. For this reason, a Y-randomization 
test is necessary [61].

Table 5  The results of external validation by the MLR, PLSR and 
MNLR methods
N° Observed pIC50 pIC50 MLR pIC50 PLSR pIC50 MNLR
C4* 7.200 6.644 7.021 6.749
C19* 7.700 6.975 6.864 6.914
C24* 7.800 6.526 6.565 6.721
C26* 6.000 7.375 7.481 7.334
C28* 6.200 7.470 7.371 7.396
C30* 7.200 7.094 7.211 7.113
*Indicates the test set molecules

Fig. 7  Correlation between the observed and predicted activities using 
MNLR technique

 

Fig. 6  Correlation between the observed and predicted activities using 
PLSR technique

 

Fig. 5  Correlation between the observed and predicted activities using 
MLR technique
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Validation using the Y-randomization test
To control the robustness of the QSAR model, we have 
used the Y-randomization test (or permutation test), 
based on repetitive randomizations of the answer data 
(Y). Thus, a new model is derived on a new training test 
of 26 compounds. But to improve the precision of the 
probability level, a few hundred runs of rerandomized 
data are usually necessary [65, 66]. The results of the vali-
dation using Y-randomization test displayed in Table S3, 
give the following statistical regression data of random 
model’s parameters:

	

Average r : 0.421739,Average r2 = 0.192447,

Average Q2
cv = −0.42364, and cR2p = 0.766375.

Although the re-ordered data give much lower R2 than 
the original data, and randomization constant (cR2p) is 
superior than 0.5, so we can be sure that the previous 
MLR QSAR model is correct, robust, and is not due to 
random chance.

Applicability domain
The main objective of the applicability domain (AD) for a 
predictive classification QSAR model is to define the area 
of chemical space where the model makes predictions 
with a given reliability [67]. For this goal, AD was carried 
out for the best QSAR model established by the MLR 
technique as given in Eq. 1, based on the leverage analysis 
illustrated by William diagram (Fig. 8) [68], which is per-
formed with the assistance of SPSS software. An obser-
vation with hi > h* significantly affects the performance 
of the regression and can be classified as an outlier not 
associated to a reliable prediction. To know, the warning 
leverage (h*) is defined as h*=3*K/n, and K = p + 1, Where 
n: is the number of the training set, and p: is the number 
of predictor descriptors [69].

The results show that the leverage values of all chemical 
compounds in the training and test sets, more than ten 
newly designed compounds were inferior to the warn-
ing leverage h* = 0.69 (p = 5, K = 6, n = 26) without excep-
tion. So, the QSAR MLR model was predicted correctly 
due to the absence of outliers. Therefore, all compounds 
are tested in the AD, which mentions that their predicted 
activities are reliable [70].

Drug similarity prediction of C22 compound, and novel 
molecules based on Lipinski, Ghose, Muegge, Veber and 
Egan rules
To arrive at a drug-like molecule, at least two of the 
following Lipinski’s rules must be verified: Molecular 
weight (≤ 500  g/mol) - Log P (High lipophilicity < 5) - 
Hydrogen bond donors (< 5) - Hydrogen bond acceptors 
(≤ 10) − 40 ≤ Molar refractive index ≤ 130. The number of 
rotatable bonds must be less than 10 [71, 72]. In addi-
tion, Lipinski’s violations must not exceed 1, otherwise 
the molecule may have bioavailability problems and a 
high probability of not being a drug [73]. The molecular 
descriptors of new designed molecules (C33 to C42) as 
presented in the Table  7, were calculated using Density 
Functional Theory (DFT) technique, and then tested 
with their synthetic accessibility and their drug similar-
ity rules, specifically Lipinski, Ghose, Egan, Veber and 
Muegge, based on the most active compound, scored 
C22.

The results obtained in Table 8, demonstrate that all ten 
compounds respect all Lipinski rules, which indicates the 
absence of oral bioavailability problems. All compounds 
are easy to synthesize, as their synthetic accessibility val-
ues are all about 3. In addition, all designed compounds 
meet the drug similarity rules except C36, C37 and C40 
that do not verify Ghose and Egan drug similarity rules, 
as presented in Table 9 [74].

Table 6  Observed and predicted pIC50 values of the training set 
from the QSAR models
Compounds 
Number

Observed 
pIC50

Pred 
pIC50 
MLR

Pred 
pIC50 
PLSR

Pred 
pIC50 
MNLR

Pred 
pIC50
CV 
(LOO)

C1 7.100 7.032 6.652 7.113 6.985
C2 7.100 7.007 6.809 7.089 6.963
C3 7.200 7.229 7.386 7.172 7.246
C5 7.300 6.983 7.166 7.147 6.933
C6 7.600 7.450 7.596 7.561 7.419
C7 7.500 7.303 7.540 7.390 7.240
C8 6.000 5.835 6.267 5.804 5.654
C9 6.000 6.176 6.491 6.229 6.262
C10 7.500 7.569 7.970 7.434 7.623
C11 6.300 6.495 6.645 6.395 6.534
C12 7.800 7.253 7.125 7.239 7.209
C13 6.000 6.079 5.910 5.911 6.108
C14 6.000 6.174 6.259 6.200 6.333
C15 6.000 6.409 6.443 6.279 6.504
C16 6.900 6.715 6.620 6.584 6.690
C17 7.600 7.810 7.631 7.843 7.844
C18 6.600 6.327 6.339 6.621 6.129
C20 6.800 7.129 6.994 7.136 7.190
C21 7.500 7.468 7.363 7.485 7.466
C22 7.900 7.508 7.373 7.539 7.469
C23 7.800 7.874 7.831 7.898 7.888
C25 7.500 7.390 7.255 7.336 7.347
C27 7.200 7.641 7.490 7.591 7.687
C29 7.300 7.364 7.170 7.338 7.370
C31 7.900 7.924 7.684 7.867 7.929
C32 7.300 7.555 7.691 7.496 7.585



Page 10 of 22El fadili et al. BMC Chemistry          (2024) 18:142 

ADMET in silico pharmacokinetics
To identify the new candidate drug with high success 
level and reduced experimental study duration, new 
compounds were designed based on the most potent 
inhibitor scored (C22), as presented in Table 7. This in-
silico study predicts the pharmacokinetic features of 
Adsorption, Distribution, Metabolism, Excretion and 
Toxicity (ADMET) [75] for ten compounds satisfying all 
conditions mentioned in Lipinski’s rule, as illustrated in 
Table 8. According to the results presented in Table  10, 
all the proposed compounds have a good absorption in 
the human intestine (IAH more than 70%) [72]. Except 
for C36, C37, C38 and C39, all the new compounds have 
a good distribution, as their human distribution volumes 
are estimated to be higher than − 0.44 Log L/kg, their 
BBB permeability superior than − 1 Log BB, and their 
CNS permeability included between − 2 and − 3 Log PS, 
thus do not penetrate the central nervous system [76]. 
C36 and C37 compounds, are potential inhibitors of 
cytochrome CYP450 (2C19), C33 to C39 molecules are 
possible inhibitors of cytochrome CYP450 (3A4), and 
C33-34 and C36-39 molecules could be inhibitors of 
cytochrome CYP450 (2C9). These last inhibitors are the 
only ones that have a low total clearance value, which 
means a great success of drug elimination by the organ-
ism. Any of these molecules having the AMES toxicity, 
this last property of ADMET has a major role in drug 
discovery [73]. Finally, we have succeeded in finding two 
new molecules, with highest analgesic activities (more 
than most active compound C22); verifying Lipinski, 

Muegge, Veber and Egan rules, and all in silico ADMET 
properties without exception, the first one noted C37 and 
the second one noted C39, they are predicted as power-
ful inhibitors of both cytochromes CYP450 (2C9) and 
CYP450 (3A4), with analgesic activities of pIC50 = 8.526 
and pIC50 = 7.991, respectively.

Additionally, the bioavailability test confirm that all 
these novel compounds were predicted with an excel-
lent oral bioavailability by the human body, because all 
tested molecules are part of the pink area of bioavailabil-
ity radars presented in Fig. 9, as a desired part selected on 
the basis of the physicochemical parameters of flexibility, 
saturation, solubility, lipophilicity, polarity and size.

Molecular docking
The results of molecular docking simulations shown in 
Fig. 10, confirm that both novel designed molecules (C37 
and C39) were efffectively docked to the active sites of 
NMDA receptor with lowest possible binding energies 
in kcal/mol (-8.22 and − 8.14, respectively.), producing 
common intermolecular interactions, like those detected 
towards Gln110, Tyr109 amino acids residues (AARs), 
which were the same chemical bounds detected with the 
most active compound labeled C22, which was equally 
docked to the same targeted receptor with a binding 
energy closer than the previous ones (-7.84  kcal/mol). 
All other types of intermolecular interactions resulted in 
each (ligand-5EWJ.pdb protein) complex are presented 
in Table 11, in which we have equally noticed that both 
designed molecules (C37 and C39) in addition to the 

Fig. 8  William’s diagram of MLR model established by Eq: (1)
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Table 8  Lipinski rules of the newly designed compounds
Compounds Physicochemical properties Lipinski violations

Molecular weight (g/mol) Molar refractive index Log P H-BA H-BD

Rule ≤ 500 40 ≤ MR ≤ 130 < 5 ≤ 10 < 5 ≤ 1
C33 418.81 112.10 2.28 5 2 Yes
C34 435.26 117.15 1.88 4 2 Yes
C35 426.42 120.11 2.61 6 2 Yes
C36 499.73 128.39 2.51 5 3 Yes
C37 499.73 128.39 2.43 5 3 Yes
C38 450.37 114.15 2.13 8 3 Yes
C39 450.37 114.15 2.02 8 3 Yes
C40 398.37 111.17 1.71 6 4 Yes
C41 382.37 109.15 1.96 5 3 Yes
C42 382.37 109.15 1.74 5 3 Yes

Table 7  Structural formula of the new studied compounds 



Page 12 of 22El fadili et al. BMC Chemistry          (2024) 18:142 

most active ligand (C22) were docked no further than 
protein target active sites, including Ser132 AAR in A 
chain and Gln110 AAR in B chain (Fig. 11), which affirm 
again that the studied ligands were actually docked to 
the active sites of the protein target, so the processes of 
molecular docking are successfully validated.

MD simulation
Drug-receptor complex has to be sufficiently stable 
over a nano-scaler time range to execute the therapeu-
tic response. As a result, the macromolecular complex 
underwent a 100 ns MD simulation by using Schro-
dinger’s Desmond software version 2022.4. The NMDA 
receptor’s dimeric structure is having of 710 amino acids 
consisting of 5502 heavy atoms out of overall 10,994 
atoms. Structural alterations and RMSD analysis of the 
macromolecular backbone was executed during the 100 
ns simulation to evaluate their thermodynamic stabil-
ity. The complexed ligand C37 comprising of thirty-two 
heavy atoms of fifty-eight atoms in total with the pres-
ence of seven rotatable bonds. The RMSD value of the 
NMDA receptor’s backbone was found to fluctuate 
between 1.5 and 4.0 Å, whereas the bound ligand C37 
exhibited some fluctuations within the macromolecular 
cavity with RMSD value in range of 3.0-5.5 Å followed by 
a sharp conformational change within the target cavity.

The atoms in a protein or ligand structure might devi-
ate from their initial location, and this can be measured 
by using their RMSF value. It is an important parameter 
for determining the flexibility and dynamic behavior of 
the macromolecular complex. Protein RMSF is impor-
tant because it may be used to predict protein dynamics 
and evaluate stability by providing information about the 
relative flexibility of various regions. MD based evalua-
tion of human NMDA receptor complexed with C37 has 
concluded that the RMSF for Cα backbone was found to 
be within 0.6–3.2 Å with couple of exceptions, while for 
ligand C37 higher RMSF value lies withing the range of 
2–4 Å within the target cavity.

The development of hydrophobic contacts, ionic inter-
actions, and hydrogen bonds during an MD simulation 
are responsible for the thermodynamic permanence of a 
receptor-ligand complex and it is evaluated by the con-
tinuous monitoring of their strengths throughout the 
simulation for all the three macromolecular complexes. 
Throughout the simulation ligand C37 was found to be 
interacting with the NMDA receptor via formation of 
hydrophobic bonds with the amino acids Tyr109_A, 
Ile127_A, Tyr128_A, Ile133_A, His134_A, Met134_B, 
and Pro177_B, whereas amino acid Tyr109_A, Ser132_A, 
Leu135_A, Lys137_B, and Asp138_B via hydrogen bond-
ing, while residues Ser108_A, Tyr109_A, Ser132_A, 
Ser136_A, Gln110_B, Asp113_B, Ala135_B, Asp136_B 
and Asp138_B are found to be interacting via water 
bridges.

The complexed ligand M7 comprising of thirty-two 
heavy atoms of forty-nine atoms in total with the pres-
ence of seven rotatable bonds. The RMSD value of the 
receptor’s backbone was found to fluctuate between 1.5 
and 3.5 Å, whereas the bound ligand C39 exhibited stable 
conformation throughout the simulation within the mac-
romolecular cavity with RMSD value in range of 6.0–9.0 
Å within the target cavity.

MD based evaluation of NMDA receptor complexed 
with ligand C39 has concluded that the RMSF for Cα 
backbone was found to be within 0.8–2.4 Å with couple 
of exceptions, while for ligand C39 is having RMSF value 
within the range of 2.0–3.0 Å. indicating its high stabil-
ity within the target cavity. Throughout the simulation 
ligand C39 was found to be interacting with NMDA 
receptor via formation of hydrophobic bonds with the 
amino acids Tyr109_A, Phe113_A, Ile127_A, Ile133_A, 
His134_A, and Ala107_B, whereas residues Thr105_A, 
Gly112_A, Ser129_A, Asp130_A, Gln105_B, Gln110_B, 
and Asp136_B, Val43, Ala47, Val71, Ile78, Ile90, Val120, 
and Val167 are found to be interacting via hydro-
gen bonding, while amino acid Thr105_A, Ser108_A, 
Arg115_A, Asp130-A, Ser132_A, Ser136_A, Thr76_B, 
Glu106_B, Asp113_B, Asp136_B and Asp138_BAsn46, 

Table 9  Drug likeness prediction of the selected compounds and C22 compound based on Ghose, Muegge, Veber, and Egan rules, 
and their synthetic accessibility
Compounds Muegge Veber Egan Ghose Synthetic accessibility
C33 Yes Yes Yes Yes 3.23
C34 Yes Yes Yes Yes 3.26
C35 Yes Yes Yes Yes 3.50
C36 Yes Yes Yes NO 3.33
C37 Yes Yes Yes NO 3.33
C38 Yes Yes Yes Yes 3.26
C39 Yes Yes Yes Yes 3.28
C40 Yes Yes NO Yes 3.30
C41 Yes Yes Yes Yes 3.25
C42 Yes Yes Yes Yes 3.21
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Fig. 9  Bioavailability radars for ten designed molecules (C33 to C42)
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Asp49, Glu50, Asp73, Arg76, and Gly77 are found to be 
interacting via water bridges.

The complexed standard drug C22 comprising of 
twenty-nine heavy atoms of forty-eight atoms in total 
with the presence of five rotatable bonds. The RMSD 
value of the NMDA receptor’s backbone was found to 

fluctuate between 1.5 and 2.7 Å, whereas the bound ligand 
C22 exhibited stable conformation throughout the simu-
lation within the macromolecular cavity with RMSD value 
in range of 4.0-6.4 Å within the target cavity. Figure  12 
demonstrates the revealed RMSD for macromolecular 

Fig. 10  2D and 3D docking positions illustrating the resulted interactions for C37, C39, and C22 phenylpiperazine derivatives, in complex with NMDA 
receptor coded as 5EWJ.pdb, with binding energies of -8.22, -8.14, and − 7.84 kcal/mol, respectively
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complexes of NMDA receptor complexed with ligand (a) 
C37, (b) C39, and standard drug (c) C22.

MD based evaluation of human NMDA receptor com-
plexed with ligand C22 has concluded that the RMSF for 
Cα backbone was found to be within 0.6–2.4 Å with cou-
ple of exceptions, while for ligand C22 is having RMSF 
value within the range of 2.0–3.0 Å. indicating its high 

stability within the target cavity. RMSF for macromolecu-
lar complexes of human NMDA receptor complexed with 
ligand (a) C37, (b) C39, and standard drug (c) C22 was 
depicted in Fig. 13.

Throughout the simulation ligand C22 was found to be 
interacting with human NMDA receptor via formation 
of hydrophobic bonds with the amino acids Ile133_A, 

Fig. 11  Active sites in A and B chains of NMDA receptor coded by 5EWJ.pdb code

 

Table 11  Types of intermolecular interactions produced in three studied complexes 
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His171_A, Met134_B, Phe176_B and Pro177_B, whereas 
residues Gln110_B, Asp136_B, and Asp138_B are found 
to be interacting via hydrogen bonding, while amino acid 
Ile127_A, Ser132_A, His134_A, Glu106_B, Gln110_B, 

Met132_B, Ile133_B, Asp136_B, and Asp138_B are found 
to be interacting via water bridges. Figure  14 illustrates 
the interacting residues of human NMDA receptor with 
complexed ligand C37, C39, and standard drug C22.

Fig. 12  RMSD for Cα chain backbone and complexed ligand for the macromolecular complex of NMDA receptor with ligands C37, C39, and standard 
drug C22 respectively, detected while executing 100ns MD simulation
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Conclusions
To concept new analgesic drugs for the treatment of neu-
ropathic pain, four QSAR models were developed and 
successfully validated using different assessment meth-
ods, in which the analgesic activity was significantly 
affected by the physicochemical, constitutional, and 
quantum descriptors, in particular: dipole moment, octa-
nol/water partition coefficient, Oxygen mass percentage, 
electronegativity, and energy of the lowest unoccupied 
molecular orbital. These results are partially qualified 
by molecular docking study, as the intermolecular inter-
actions produced by the most active compound (C22) 
towards the active sites of protein target coded 5EWJ, 
confirm the production of the chemical bonds with 
highly electronegativity atoms, such as fluorine and chlo-
rine in meta and para positions, respectively. This is in 

good agreement with the results developed by the QSAR 
model, as a noticeable increase in electronegativity, in 
the presence of an enriched mass percentage of the oxy-
gen element renders the ligand a highly potent analgesic. 
These results could provide important structural infor-
mation needed to optimize new good drug candidates for 
the treatment of neuropathic disease. Among these new 
drugs, two non-toxic compounds noted C37 and C39, 
respectively, were predicted to satisfy Lipinski, Muegge, 
Veber and Egan rules, with excellent ADMET pro-
files, and very good level of molecular stability towards 
NMDA receptor. For these reasons, C37 and C39 are 
strongly recommended to treat neuropathic pain. How-
ever, they must be subjected to experimental in vivo and 
in vitro investigations to examine their safety and efficacy 
as anti-chronic pain analgesic.

Fig. 13  Root mean square fluctuation: Observed RMSF for the macromolecular complex of C37, C39, and standard drug C22 respectively, with human 
NMDA receptor detected while executing 100ns MD simulation

 



Page 19 of 22El fadili et al. BMC Chemistry          (2024) 18:142 

Fig. 14  Protein-ligand contacts: Protein-ligand interactions identified between human NMDA receptor complexed with ligands C37, C39, and standard 
drug C22. The interactions were visualized using different colored bars, with green representing hydrogen bonds, blue representing water bridges, and 
purple representing hydrophobic interactions
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