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Introduction
Shale gas, as a cleaner and more efficient form of natu-
ral energy, is at the forefront of oil and gas exploration 
and has been a hot topic of research in recent years [1, 2]. 
The estimated amount of recoverable shale gas is more 
than 30 × 1012 m3 in China, of which the Sichuan Basin 
has the highest reserves [3]. As the demand for shale 
gas increases, the current challenge is how to improve 
shale gas recovery efficiency. The safety running of pipe-
line steel is the primary factor in guaranteeing shale gas 
exploitation. Nevertheless, wellbores and gathering pipe-
lines often suffer from severe corrosion due to the harsh 
environment in shale gas wells [4, 5]. Especially once the 
wellbore fails due to corrosion, it leads to the shutdown 
of gas wells for repairs, greatly restricting the high-effi-
ciency exploitation of shale gas resources [6]. The corro-
sion of steel especially pitting corrosion is the principal 
reason influencing the mechanical properties of pipelines 
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Abstract
In this study, the corrosion behavior of N80 and TP125V steels was delved firstly into produced water from shale 
gas fields containing CO2-O2. Moreover, the localized corrosion of these steels was investigated to elucidate 
the effects of aerobic and anoxic on steel corrosion. The results indicated that the corrosion rates of N80 and 
TP125V steels under aerobic conditions were lower compared to those in the presence of CO2-O2. Specifically, at 
temperature of 100 °C and with dissolved oxygen (DO) concentration of 4 mg/L in the CO2-O2 environment, the 
N80 and TP125V steels exhibited the highest corrosion rate, with values of 0.13 mm/y and 0.16 mm/y, respectively, 
as determined by specific weight loss measurements. Conversely, these rates decreased to 0.022 mm/y and 
0.049 mm/y under aerobic conditions. Furthermore, severe localized corrosion of N80 and TP125V steels with a DO 
concentration of 4 mg/L was also observed in the CO2-O2 environment. Finally, it was evident that pitting corrosion 
is the predominant type of corrosion affecting N80 and TP125V steels in the produced water from shale gas fields.
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and their service life [7]. However, the corrosion mecha-
nism of steel is also indefinable but depends on the envi-
ronmental conditions.

Corrosion is closely related to material types and envi-
ronmental conditions [8]. Carbon steel has been com-
monly applied in oil and gas fields because of its favorable 
mechanical properties as well as low costs [9]. The pro-
duction tubing utilized in shale gas wells is commonly 
fabricated from materials such as N80 and TP125V steel 
grades [10]. However, carbon steel has a low corrosion 
resistance, and localized corrosion is commonly found 
[11]. Many factors have a deep influence on steel corro-
sion, such as temperature, pressure, dissolved oxygen, 
quality of produced water, and microorganisms [12–16]. 
Jiang et al. [17] discovered severe corrosion of mild steel 
in a shale gas gathering condition, and microbiologi-
cal corrosion connected with under-deposit corrosion 
(UDC) made a big contribution to steel corrosion. The 
environments downhole in shale gas wells are complex, 
following the high pressure, high temperature, a high salt 
solution, and the maximum temperature can exceed 100 
℃ [18, 19]. Temperature as one of the important param-
eters that can directly influence the corrosion rates of 
steel, and there is an extreme value for steel corrosion 
rates as the increase of the temperature in a sealed envi-
ronment [20].

Furthermore, hydraulic fracturing in shale gas wells 
can introduce dissolved oxygen (DO), which is also a sig-
nificant factor in the corrosion of steel materials [21, 22]. 
DO interacts with iron in an aqueous medium to produce 
Fe2O3 [23]. Compared with the condition containing 
only CO2, the cathodic reaction rate could be acceler-
ated, and reduce the formation probability of FeCO3 due 
to the conversion of FeCO3 into Fe2O3 in the presence of 
O2 [24]. Previous studies mainly focus on the influence of 
CO2, microorganisms, temperature, and Cl− on steel cor-
rosion [25, 26]. However, the impact of DO on the corro-
sion behavior of steel in a shale gas environment remains 
uncertain. The presence of oxygen in a CO2-saturated 
test solution has been shown to alter corrosion behavior 
and mechanisms [27]. Tang et al. observed that the intro-
duction of DO in the supercritical CO2 phase can expe-
dite the corrosion of steel, resulting in the formation of 
dual-layer corrosion products due to the presence of a 
small amount of DO [28]. In a similar vein, Li et al. [29]
reported that DO could reduce the corrosion rate of N80 
steel by promoting the formation of a protective FeCO3 
layer under supercritical CO2 conditions.

In our previous studies, we found that the corrosion of 
TP125V and N80 steel was most extensive under condi-
tions of 100  °C and saturated CO2 [30]. Consequently, 
this work focuses on the corrosion behavior of these two 
steels in a shale gas field produced water as the change of 
DO was deeply studied in this work, using weight loss, 

surface analysis, and electrochemical measurements, 
which provides insight into the possible influence of aero-
bic and anoxic shale gas environments on steel corrosion.

Experimental
Steel specimens
N80 and TP125V steels, commonly applied as the mate-
rial for downhole tubing in the shale gas field, were used 
to explore the corrosion behavior, and their chemical 
compositions are shown in Table S1. The C content was 
determined using a Carbon-Sulfur Analyzer instrument 
(CS-3000, NCS Testing Technology Co., China), while 
the other elements were measured by Atomic Absorption 
Spectroscopy (iCE 300, Thermo Fisher Scientific, USA). 
Steel specimens were applied in the experiment of weight 
loss and surface morphologies with the size of 10 mm × 
30 mm × 3 mm. Electrochemical experiments, including 
open-circuit potential (OCP), electrochemical imped-
ance spectroscopy (EIS), and potentiodynamic polariza-
tion studies, were conducted using working electrodes 
with an area of 1 cm2 under stagnant. The samples were 
consistently polished with 400#, 600#, and 1200# silicon 
carbide abrasive papers, rinsed with ultrapure water, ace-
tone, and anhydrous ethanol in series, following steriliza-
tion of more than 30 min by ultraviolet (UV) light.

Test solution
In this work, the test solution was prepared based on 
the chemical components of the shale gas field produced 
water from Sichuan Changning Natural Gas Develop-
ment Co., Ltd., and the chemical components of the 
artificial shale gas field produced water were as shown 
in Table S2. To simulate the natural shale gas produced 
water, the field used drainage aid of 0.1 wt%, drag reducer 
of 0.1 wt%, and biocide of 0.05 wt% which were added 
to the test solution. The drainage aid, drag reducer and 
biocide, obtained from Chengdu Nengte Technology 
Development Co., Ltd., with respective product numbers 
CT5-12 A, CT1-20D, and CT10-4B, serve as the principal 
materials for hydraulic fracturing gas extraction in shale 
gas wells in the Sichuan-Chongqing region. The experi-
ments were divided into two parts. For the first part, the 
concentration of dissolved oxygen was 2, 4, and 6 mg/L, 
respectively, adjusted by sparging CO2 gas to investi-
gate the influence of DO on steel corrosion. For the sec-
ond part, the corrosion study of steel was conducted in 
an aerobic condition at 60℃ and 100 ℃ to instigate the 
influence of temperature on steel corrosion.

Weight loss
After a specific time of testing, all specimens applied 
were taken out and were slightly washed with a pick-
ling solution containing corrosion inhibitors. Then the 
washed specimens were further rinsed with distilled 
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water, acetone, and absolute ethyl alcohol, respectively. 
Subsequently, all specimens were dried using N2. The 
weight loss was calculated based on the change in the 
specific mass of specimens. The following equation was 
used to calculate the corrosion rates of different steel 
specimens.

 
CR =

8.76× 104 × (M1 −M2)

Atρ
 (1)

Where CR, A, t and ρ are corrosion rate (mm/y), the 
working area of steel (cm2), testing time (h) and the den-
sity of steel (kg/m3), respectively. M1 and M2 are the spe-
cific mass of the specimens initially and after corrosion 
(g).

Characterizations of surface films
The surface films of two steel specimens caused by cor-
rosion under different test conditions were conducted by 
scanning electron microscopy (SEM, JSM-IT200, JEOL, 
Japan), and their chemical compositions were measured 
by X-ray diffractometer (XRD) (Ultima IV, Rigaku, Japan) 
and energy disperse spectroscopy (EDS) (JSM-IT200, 
JEOL, Japan). Before SEM observation, a thin gold film 
coated on the specimen aims to increase the quality of 
the images. The corrosion morphologies of bare speci-
mens were observed by a three-dimensional microscope 
(Leica DVM6, Germany) to characterize the localized 
corrosion.

Electrochemical measurements
Electrochemical tests in this work were conducted based 
on a three-electrode system via a CS350 electrochemi-
cal workstation, while steel specimens were the working 
electrode, Ag/AgCl electrode, and Pt plate correspond-
ing to the reference and counter electrodes, respec-
tively. OCP was scanned at a scan rate of 0.5 mV/s to 
achieve a stable state, and EIS was performed subse-
quently by applying sinusoidal voltage signal of 10 mV 
corresponding to the frequency range of 105 ~ 10− 2 Hz. 

Potentiodynamic polarization curves with a potential 
range of -250 mV to + 350 mV vs. corrosion potential at 
a potential sweep rate of 0.5 mV/s. Zview2 and Cview2 
software (Scribner, Inc.) were used to analyze the mea-
sured impedance and polarization data, respectively. All 
of the tests were repeated at least three times to ensure 
the reproducibility of experimental data.

Results and discussion
Effect of DO concentration on the corrosion of N80 and 
TP125V steels at 100℃
Corrosion rates based on weight loss
The corrosion rates of N80 and TP125V steels calculated 
from the specific weight loss are depicted in Fig. 1 at 100 
℃ with different concentrations of DO and a test time of 
3 d. As can be seen from Fig. 1, N80 and TP125V steels 
both have the biggest corrosion rates at the DO of 4 mg/L 
corresponding to the values of 0.13 and 0.16  mm/y 
respectively. Therefore, the changes in DO have an influ-
ence on steel corrosion in shale gas field conditions. The 
existence of O2 can change the components and struc-
ture of corrosion products thus then causing the change 
in steel corrosion behavior [31]. At this intermediate con-
centration, there is enough dissolved oxygen to promote 
the formation of corrosion products, such as oxides, 
which can enhance the rate of metal dissolution. How-
ever, at higher concentrations of DO, the formation of 
a more protective oxide layer can inhibit further corro-
sion, leading to a lower corrosion rate. Furthermore, it is 
also found that the corrosion rates of TP125V steel at 100 
℃ are slightly higher than those of N80 steel, which may 
be due to the composition of the material and its unique 
morphological characteristics [30].

Corrosion product morphology analysis
SEM images of the surface morphologies of N80 steel 
and the corresponding EDS after 3 d of testing at 100 ℃ 
in artificial shale gas field produced water with different 
concentrations of DO are presented in Fig. 2. There is a 
thin corrosion product film for the specimen with DO 

Fig. 1 Corrosion rates of the specimens calculated from weight loss in artificial shale gas filed produced water containing the DO of 2, 4, and 6 mg/L at 
100 ℃ after 3 days of testing: (a) N80 steel; (b) TP125V steel
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of 2  mg/L (Fig.  2a), and the polish lines and some par-
ticles of corrosion products are also seen (Fig. 2a and b). 
The appearance of polish lines suggests slight corrosion. 
When the DO increases to 4 mg/L and 6 mg/L, corrosion 
products on the surface of the specimen have noticeably 
increased and there are also some larger particles cover-
ing the surface of the specimen, which further indicates 
that the corrosion should be severe. A loose and porous 
corrosion product film appears (Fig. 2d and e) with DO 
of 4 mg/L which is conducive to the acceleration of steel 
corrosion due to the easy diffusion and transfer of corro-
sive ions, such as Cl− [32]. As the DO further increases to 
6 mg/L, a similar porous film structure is also found but 
the size of corrosion product particles is small (Fig.  2g 
and h). The smaller corrosion product particles and the 
dense structure can inhibit the erosion of corrosive ions, 
leading to a reduced corrosion rate. From the EDS analy-
sis results, the dominating elements in corrosion prod-
ucts consist of C, O, Ca, Mg, Fe, and Cr. (Fig. 2c, f and i, 
and Table S3, and the contents of these elements under 
different test conditions are similar. Therefore, the pri-
mary corrosion products are FeCO3 and iron oxides on 
account of the coexistence of O2 and CO2 [33, 34].

Figure 3 presents the SEM images of the surface mor-
phologies of TP125V steel and the corresponding EDS 
after 3 d of testing at 100 ℃ in shale gas field produced 
water with different concentrations of DO. For TP125V 
steel, the surface morphologies are similar to N80 steel 

when the DO are 2 and 4 mg/L (Figs. 2 and 3), and the 
polish lines as well as the porous corrosion product films 
both can be observed. This also further explains the rea-
son for the higher corrosion rate with a DO of 4 mg/L. 
Referring to Fig.  2b, the greater amount of corrosion 
products (Fig.  3b) also indicates that the corrosion of 
TP125 is more severe than that of N80 when the DO is 
2  mg/L. When the DO is 6  mg/L, the denser corrosion 
product film can be recognized (Fig.  3g and h) and can 
inhibit the erosion of corrosive ions. This is also the 
reason for the decrease in the corrosion rate. The EDS 
analysis results also demonstrate that the elements in 
corrosion products include C, O, Fe, Ca, and Mg (Fig. 3c, 
f, i, and Table S4, also corresponding to the corrosion 
products of FeCO3 and iron oxides.

Analysis of the bare corrosion morphology of steels
The bare corrosion morphologies of N80 steel after 
removing the surface corrosion products with a test time 
of 3 d at 100 ℃ are depicted in Fig. 4. From the overall 
point of view, the specimens suffer from different degrees 
of localized corrosion under different test conditions. For 
the specimen with DO of 2  mg/L, the polish scratches 
on the sample surface are still clearly visible, and some 
small and shallow corrosion pits can be observed with a 
maximum depth of about 10.09  μm (Fig.  4a-a2). When 
the DO increases to 4 mg/L, serious pitting corrosion on 
steel surface having a maximum depth of about 24.40 μm 

Fig. 2 SEM images of surface films on N80 steel and the corresponding EDS after 3 days of testing at 100 ℃ in shale gas field produced water with dif-
ferent concentrations of DO: (a, b and c) 2 mg/L; (d, e, and f) 4 mg/L; (g, h and i) 6 mg/L
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Fig. 4 The bare corrosion morphologies of N80 steel without corrosion products after 3 days of testing at 100℃ in shale gas field produced water with 
different concentrations of DO: (a, a1 and a2) 2 mg/L; (b, b1, and b2) 4 mg/L; (c, c1, and c2) 6 mg/L

 

Fig. 3 SEM images of surface films on TP125V steel and the corresponding EDS after 3 days of testing at 100℃ in artificial shale gas field produced water 
with different concentrations of DO: (a, b and c) 2 mg/L; (d, e, and f) 4 mg/L; (g, h and i) 6 mg/L
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is observed (Fig.  4b-b2). However, both the density and 
depth of corrosion pits decrease for the specimen with 
DO of 6 mg/L, with the maximum depth of the corrosion 
pits reaching approximately 14.99  μm (Fig.  4c-c2). The 
test results of bare surface morphologies are in accor-
dance with the corrosion rates (Fig. 1a), the corrosion of 
N80 steel is significantly enhanced when DO is 4 mg/L.

The bare corrosion morphologies of TP125V steel 
without corrosion products after 3 d are presented in Fig-
ure S1. From Figure S1 a-a2, the corrosion is slight with 
the DO of 2 mg/L, but some small areas corresponding 
to the black color can be attacked by corrosion. However, 
severe pitting corrosion is observed on steel specimens 
with the DO of 4 mg/L, and the maximum depth of cor-
rosion pits is about 45.42  μm (Figure S15b-b2). When 
the DO furtherly increases to 6  mg/L, the corrosion of 
steel has an apparent mitigation and pitting corrosion has 
a maximum depth of about 26.93 μm (Figure S1 5c-c2). 
Similarly, these results are consistent with the corrosion 
rate findings presented in Fig.  1b. It can be concluded 
that the appearance of DO in the test solution has a 
deep influence on the corrosion process, and the uni-
form and pitting corrosion is more serious when the DO 
is 4  mg/L. Furthermore, the corrosion rate of TP125V 
steel has exceeded N80 steel in artificial shale gas field 
produced water. The generation of pitting corrosion can 
derive from the addition of field-used drainage aid, drag 

reducer, and biocide which have a corrosion inhibition 
effect on steel corrosion [12]. During the exploitation of 
oil and gas fields, large amounts of corrosion inhibitors 
are widely applied but pitting corrosion dominates one of 
the main corrosion types [35–37].

Corrosion behavior of N80 and TP125V steels under 
aerobic and anoxic conditions
Corrosion rates derived from weight loss
Figure 5 depicts the uniform corrosion rates of N80 and 
TP125V steels calculated from weight loss after 14 d of 
testing in CO2 saturated and in air-saturated artificial 
shale gas field produced water at 60℃ and in air-satu-
rated artificial shale gas field produced water at 100 ℃. 
In the CO2-saturated environment, the corrosion rate of 
N80 steel reaches 0.038  mm/y, whereas in the air-satu-
rated environment, the corrosion rate is only 0.009 mm/y, 
significantly lower than in the CO2-saturated environ-
ment (Fig.  5a). A similar result is observed for TP125V. 
The corrosion rate of TP125V steel is 0.013 mm/y in the 
CO2-saturated environment, while the corrosion rate 
is merely 0.008  mm/y in the air-saturated environment 
(Fig. 5b). This substantial reduction in the corrosion rate 
in the air-saturated environment compared to the CO2-
saturated environment further indicates that CO2 has a 
greater promoting effect on metal corrosion than O2. 
Thus, it is evident that the corrosion rates of both steels 

Fig. 5 Corrosion rates of N80 steel (a) and TP125V steel (b) calculated from weight loss after 14 days of testing in CO2 saturation and air saturation in air-
saturated artificial shale gas field produced water at 60℃; corrosion rates of N80 steel (c) and TP125V steel (d) calculated from weight loss after 14 days 
of testing in air-saturated artificial shale gas field produced water at 60 and 100 ℃
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in the anoxic condition are significantly higher than those 
in the air-saturated environment. This finding suggests 
that in shale gas environments, CO2 corrosion is more 
critical to consider than oxygen corrosion. The increase 
in temperature can accelerate the corrosion rates of steel 
belongs to the kinetics of electrochemical corrosion. 
Therefore, temperature is one of the considerable factors 
influencing steel corrosion in shale gas conditions. There 
is a low corrosion rate for N80 steel at 60 ℃ with a value 
of 0.009 mm/y, but the value increases to 0.022 mm/y at 
100 ℃ (Fig.  5c). For TP125V steel, the corrosion rates 
of the specimen reach 0.008 and 0.049  mm/y at 60 and 
100 ℃, respectively (Fig.  5d). Therefore, it can be con-
cluded that the corrosion of N80 and TP125V steels has 
a little difference at a low temperature, but the corrosion 
of TP125V steel is more serious compared to N80 steel 
at a high temperature, i.e., TP125V steel has a lower cor-
rosion resistance under high-temperature conditions. 
Higher temperature can increase the migration of cor-
rosive ions and accelerate both the anodic and cathodic 
reactions. Thus then, the corrosion rate on both steel 
increased as the temperature increased. Furthermore, it 

is also discovered that steel corrosion in the air-saturated 
test solution has a decrease compared to that in the CO2-
O2 solution. Therefore, the individual oxygen corrosion 
of pipeline steel in shale gas produced water does not 
need to be paid more attention.

Corrosion product morphology analysis
SEM images of surface films on N80 and TP125V steels 
and the corresponding EDS after 14 d of testing at 60 
and 100 ℃ in aerobic shale gas field produced water are 
displayed in Figs. 6 and 7. For N80 steel, there is a thin 
film caused by corrosion on steel at 60 ℃ (Fig. 6a), and 
some agglomerate corrosion product particles cover 
on steel surface (Fig.  6a and b). When the temperature 
increases to 100 ℃, only little corrosion products are 
found (Fig.  6c and d), and some corrosion pits are also 
observed (Fig. 6d), suggesting a weak uniform corrosion. 
When the steel changes to TP125V steel, the morpholo-
gies of the surface film have a little change compared to 
N80 steel. Some loose corrosion products can also be 
found at 60 ℃, and the surface corrosion products have 
decreased when the temperature is 60 ℃ (Fig. 7d and e). 

Fig. 7 SEM images of surface films on TP125V steel and the corresponding EDS after 14 days of testing at 60 ℃ and 100 ℃ in aerobic shale gas field 
produced water: (a, b, and c) 60 ℃; (d, e, and f) 100 ℃

 

Fig. 6 SEM images of surface films on N80 steel and the corresponding EDS after 14 days of testing at 60 ℃ and 100 ℃ in aerobic shale gas field pro-
duced water: (a, b, and c) 60 ℃; (d, e, and f) 100 ℃
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Furthermore, EDS analysis results demonstrate that the 
main corrosion products focus on iron oxides (Tables S5 
and S6), the typical products of oxygen corrosion.

SEM images in Figs.  6 and 7 show that the surface 
scratch lines of N80 and TP125V steels are easily recog-
nized no matter whether the temperature is 60 or 100 ℃ 
which demonstrates that the uniform corrosion is not 
severe for steel specimens corresponding to the weight 
loss (Fig. 5). The key factor in this work causing a low cor-
rosion rate is the adding of some chemicals with corro-
sion inhibition effect as stated above. Furthermore, steel 
corrosion rates in the aerobic condition are smaller than 
that in the CO2-O2 environment (Figs.  1 and 5). There-
fore, the presence of CO2-O2 in the test solution can con-
siderably promote steel corrosion but the corrosion will 
alleviate when only in the O2 environment.

XRD analysis results
Figure  8 shows the specific components of the corro-
sion products formed on N80 and TP125V steels after 
14 d of testing at 60 and 100 ℃ in aerobic shale gas field 
produced water. As exhibited in Fig. 8a, the typical corro-
sion products of N80 steel at 60 ℃ are mainly composed 
of CaCO3, FeOOH, and CaMg(CO3)2, while Fe2O3 is 

dominated at 100℃. For TP125V steel, Fe2O3 and Fe3O4 
dominate the primary corrosion products (Fig.  8b). The 
peak intensity of the corrosion products is low and Fe 
has a high peak in XRD spectra, which demonstrates that 
the contents of surface corrosion products are low corre-
sponding to SEM images of surface films (Figs. 6 and 7).

Analysis of the bare corrosion morphology
The bare surface corrosion morphologies of N80 and 
TP125V steels after 14 d of testing at 60 and 100 ℃ in 
aerobic shale gas field produced water are exhibited in 
Figs. 9 and 10. At 60 ℃, both the corrosion of N80 and 
TP125V steels is slight especially localized corrosion, and 
only some minute-sized corrosion pits are found (Fig. 9a-
a2 and 10a-a2). When the temperature increases to 100 
℃, the density and depth of corrosion pits have a con-
siderable increase compared with those at 60 ℃. For N80 
steel, the maximum depth of pitting corrosion is about 
18.49  μm at 100 ℃ (Fig.  9b2). However, the size of the 
corrosion pits of TP125V steel (Figure S2) is higher than 
those for N80 steel, and its maximum depth is about 
20.69 μm (Figure S2 b2). Therefore, the localized corro-
sion of TP125V steel in aerobic shale gas field produced 
water at a high temperature is more serious compared 

Fig. 9 The bare surface corrosion morphologies of N80 steel after 14 days of testing at 60 and 100 ℃ in aerobic shale gas field produced water: (a-a2) 
60 ℃, (b-b2) 100 ℃

 

Fig. 8 XRD analysis results of the corrosion products on N80 (a) and TP125V (b) steels after 14 days of testing at 60 and 100 ℃ in aerobic shale gas field 
produced water
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with N80 steel, which is also in agreement with weight 
loss (Fig. 5). The formation of pitting corrosion can derive 
from the formation of some defects in corrosion inhibitor 
film as well as the erosion of Cl− [38].

EIS analysis
The Nyquist and Bode diagrams of N80 and TP125V 
steels with a test time of 14 d at 60 ℃ in aerobic shale 
gas field produced water are shown in Fig. 10. To do the 
electrochemical analysis, 60 ℃ is chosen as a typical tem-
perature. For N80 steel, the diameters of Nyquist plots 
have a gradual increase as time overall, but the imped-
ance values change little after 7th d (Fig. 10a). Two time-
constants are easily found in Bode plots, demonstrating 
the formation of a protective film limited the diffusion 
process of corrosive ions [39]. The two time-constants 

are formed initially on the first day. Therefore, the formed 
surface film cannot be the corrosion product film, but an 
adsorption film of corrosion inhibitor coming from the 
field used drag reducer, drainage aid and biocide. This 
agrees with the SEM observation in Fig.  9a and b, i.e., 
no apparent corrosion product film formation. A similar 
situation is also found in the Bode plots of TP125V steel 
(Fig. 10d). Furthermore, the impedance values of TP125V 
steel also have a similar tendency to N80 steel.

EIS diagrams are fitted well based on the equivalent 
circuit presented in Fig.  11a, and the corresponding 
Rp values, the sum of Rf and Rct, i.e., the fitted results of 
EIS data are exhibited in Fig. 11b. Rp values are inversely 
proportional to steel corrosion rates. In the equivalent 
circuit, Rs, Rf, and Rct are assigned to the resistances of 
solution, surface film as well as charge transfer, while 

Fig. 11 Equivalent circuit (a) used to fit EIS data and the corresponding fitted results of TP125V steel (b), i.e., Rp, the sum of Rf and Rct

 

Fig. 10 Nyquist and Bode diagrams of N80 (a and b) and TP125V (c and d) steels after 14 days of testing at 60 ℃ in aerobic shale gas field produced water
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Qf and Qdl correspond to surface film and double-layer 
capacitance. From Fig.  11b, the changes of Rp values of 
N80 and TP125V steels with time have a similar law, but 
the Rp values of TP125V steel are higher than N80 steel 
before 7 d. There is a small difference in the Rp values 
of N80 and TP125V steels after 7 d of testing but the Rp 
values of TP125V steels are smaller overall. These dem-
onstrate that the corrosion behavior of N80 and TP125V 
steels at 60 ℃ has a little difference and their corrosion 
difference is related to the test time.

Polarization curves
Figure  12 presents the polarization curves of N80 and 
TP125V steels after 14 d of testing at 60 ℃ in aerobic 
shale gas field produced water, and the fitted electro-
chemical parameters including the anodic and cathodic 
Tatel slopes (Ba and Bc), the corrosion potential (Ecorr), 
the corrosion current density (Icorr) and the corrosion 
rate are exhibited in Table S7. The cathodic reaction of 
TP125V steel is inhibited while its anodic reaction is 
slightly enhanced compared with the N80 steel. The cor-
rosion potential of TP125V steel has a little negative shift. 
However, the polarization curves of N80 and TP125V 
steels have a small difference. From the fitted electro-
chemical parameters in Table S7, the corrosion current 
densities of N80 and TP125V steels are close, and the 
values are 3.44 × 10− 6 and 2.40 × 10− 6 A/cm2, respectively. 
The values of corrosion current density show a positive 
correlation with steel corrosion rates. Therefore, it is 
also concluded that the corrosion behavior of N80 and 
TP125V steels at 60 ℃ are similar, and the corrosion rate 
of N80 steel is slightly higher than TP125V steel. Further-
more, a passivation phenomenon can be seen from the 
polarization curve of N80 steel, which is probably formed 
due to the corrosion product film.

Conclusion
The introduction of DO in CO2-saturated artificial 
shale gas filed produced water has a deep influence on 
steel corrosion behavior, and N80 and TP125V steels 
both have the biggest corrosion rates with the DO of 
4  mg/L at 100 ℃ corresponding to the values of 0.13 
and 0.16  mm/y respectively. Serious localized corrosion 
is also found for N80 and TP125V steels at the DO of 
4  mg/L, and the maximum depths of pitting corrosion 
are about 24.40 and 45.42  μm, respectively. When the 
DO is 2 and 6 mg/L, both the uniform and localized cor-
rosion are slight. The increase in the content of DO leads 
to an intensification of corrosion to a certain extent, but 
further increases do not exacerbate corrosion, which can 
be relate to the characteristics of the corrosion products. 
Localized corrosion is the main corrosion type for N80 
and TP125V steels deriving from the addition of some 
corrosion-inhibitive components.

N80 and TP125V steels have high corrosion rates in 
CO2-saturated test solution with values of 0.038 and 
0.013  mm/y, and the values turn out to be 0.009 and 
0.008  mm/y in air-saturated test solution at 60 ℃. It is 
evident that the corrosion rates of both steels in the 
anoxic condition are significantly higher than those in 
the air-saturated environment. Besides, the corrosion 
rates of N80 and TP125V steels with values of 0.022 and 
0.049 mm/y at 100 ℃ are higher compared to their rates 
at 60 ℃, which indicates that temperature is also a key 
factor influencing the degree of oxygen corrosion. In 
addition, weight loss, the bare corrosion morphologies, 
and the analysis results of electrochemical measurements 
demonstrate that the corrosion difference between N80 
and TP125V steels at 60 ℃ is small. Localized corrosion 
is also the typical corrosion type in aerobic conditions, 
and the main corrosion products are iron oxides, the typ-
ical products of oxygen corrosion. EIS data confirm the 
adsorption and formation of a corrosion inhibitor film on 
steel thus leading to slight uniform corrosion.
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