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Abstract 

Determination of protein–ligand binding affinity (PLA) is a key technological tool in hit discovery and lead optimiza-
tion, which is critical to the drug development process. PLA can be determined directly by experimental methods, 
but it is time-consuming and costly. In recent years, deep learning has been widely applied to PLA prediction, the key 
of which lies in the comprehensive and accurate representation of proteins and ligands. In this study, we proposed 
a multi-modal deep learning model based on the early fusion strategy, called DeepLIP, to improve PLA prediction 
by integrating multi-level information, and further used it for virtual screening of extracellular signal-regulated protein 
kinase 2 (ERK2), an ideal target for cancer treatment. Experimental results from model evaluation showed that Deep-
LIP achieved superior performance compared to state-of-the-art methods on the widely used benchmark dataset. 
In addition, by combining previously developed machine learning models and molecular dynamics simulation, we 
screened three novel hits from a drug-like natural product library. These compounds not only had favorable physico-
chemical properties, but also bound stably to the target protein. We believe they have the potential to serve as start-
ing molecules for the development of ERK2 inhibitors.

Keywords  Protein–ligand binding affinity, Deep learning, Extracellular signal-regulated protein kinase 2, Virtual 
screening, Natural products

Introduction
Drug ligands exert specific effects in organisms by inter-
acting with target proteins, and binding affinity is con-
sidered the most important criterion for quantifying 
the degree of interaction between them [1]. Therefore, 

accurate determination of protein–ligand binding affin-
ity (PLA) is of great significance in the drug discovery 
process [2, 3]. Traditionally, binding affinities obtained 
by experimental methods are more reliable, but they are 
usually expensive and cannot meet the needs of large-
scale drug screening [4]. In contrast, computational 
methods (e.g., molecular docking and molecular dynam-
ics simulation) can quickly prioritize suitable candidates 
for subsequent experimental testing [5]. However, these 
physics-based strategies also suffer from low accuracy 
and high computational overhead [6]. In recent years, 
benefiting from the rapid development of artificial intel-
ligence technology, some machine learning (ML)/deep 
learning (DL)-based computational methods have been 
applied to PLA prediction, among which the perfor-
mance of ML methods represented by Random Forest 
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and Support Vector Machine relies heavily on the manu-
ally extracted features, while DL methods represented 
by Neural Network are able to automatically capture the 
feature information from the raw inputs, and their abil-
ity to fit complex nonlinear relationships is also stronger 
[7, 8]. The current DL methods for PLA prediction can 
be divided into two types: sequence-based methods and 
structure-based methods.

Generally, sequence information refers to the amino 
acid sequence of the target protein and the Simplified 
Molecular Input Line Entry System (SMILES) string of 
the drug ligand, which can be further extended to the 
descriptor information (tabular data) of both [9, 10]. 
DeepDTAF developed by Wang et  al. extracts sequence 
information from three parts (target protein, binding 
pocket, and drug ligand) to predict PLA [10]. It should 
be noted that despite the simplicity of the representa-
tion, sequence-based methods mostly ignore receptor-
ligand interactions. Structural information refers to the 
three-dimensional structure of the protein–ligand com-
plex, where voxels, graphs, and point clouds are common 
forms of characterization, and such implicit features are 
critical for the generation of interactions [6, 11–13]. The 
structure-aware interactive graph neural network (SIGN) 
proposed by Li et al. not only preserves the distance and 
angle information between atoms, but also incorporates 
long-range interactions into the training process [13]. 
However, structure-based methods usually lack explicit 
descriptions (e.g., physicochemical properties). Conse-
quently, researchers have begun to integrate the infor-
mation learned from multiple modalities. The advantage 
of fusion models lies in combining complementary rep-
resentations, thus improving overall performance [14, 
15]. Jones et al. constructed a deep fusion model (FAST) 
inspired by the field of computer vision. This framework 
improved PLA prediction by combining two features 
extracted from 3D convolutional neural networks and 
spatial graph neural networks [15]. However, the com-
putational overhead of 3D convolution is high because it 
requires invalid voxelization of the 3D structures.

To overcome these limitations, we proposed Deep-
LIP, a novel DL architecture that employs an early fusion 
strategy for PLA prediction. Unlike existing methods, 
DeepLIP represents protein binding pockets and ligands 
as descriptors, thereby mitigating the redundancy of 
sequence encoding. Moreover, this architecture departs 
from the conventional voxelization representation by 
introducing spatial graphs. This departure not only 
accelerates computational speed but also allows for a 
more nuanced understanding of receptor-ligand interac-
tions. By fusing these three disparate levels of heteroge-
neous information, DeepLIP is able to capture multiple 
representations and combine them for complementary 

purposes, ultimately enhancing the reliability of pre-
dictions. To the best of our knowledge, the proposed 
fusion model is the first attempt to integrate such diverse 
sources of information, underscoring its novelty and 
potential for advancing PLA prediction. In addition, we 
explored the integration of our novel approach with other 
computational strategies for multistep virtual screening 
to identify promising extracellular signal-regulated pro-
tein kinase 2 (ERK2) inhibitors for further investigation. 
As part of the Ras–Raf–MEK–ERK signaling cascade, 
aberrant activation of ERK2 has been implicated in many 
diseases, including cancer, arthritis, and osteoporosis [16, 
17]. Therefore, the development of inhibitors against this 
target may be of great clinical value.

Materials and methods
Dataset preparation
For the PLA prediction task, the most commonly used 
dataset is PDBbind, which consists of three subsets (the 
general set, the refined set, and the core set) [18]. Typi-
cally, DL models achieve better performance when 
trained on the data-rich general set. However, many stud-
ies have shown that training on the refined set improves 
the model’s prediction on the core set, mainly due to the 
higher quality of data labeling in the refined set [19]. In 
this study, in order to fairly compare the performance 
of these DL models, we referred to the way employed 
in previous works: the refined set (3,772 samples) and 
the core set (285 samples) of PDBbind v2016 were used 
as the training set and the external test set, respectively. 
More specifically, 20% of the samples from the former 
were randomly selected as the validation set to optimize 
the hyperparameters of the pre-training models, and the 
latter was the benchmark dataset of CASF-2016, a scor-
ing function evaluation platform [20]. Moreover, the non-
overlapping refined set (1259 samples) of PDBbind v2020 
was used as the internal test set, and the model with the 
best performance on it was chosen for the benchmark 
test. It should be noted that the entries within the train-
ing dataset (v2016) are not represented in the test dataset 
(v2020). The statistics of these datasets are summarized 
in Table 1.

Model architecture
As shown in Fig.  1, the architecture of the proposed 
DeepLIP comprises four components: input representa-
tion module, feature extraction module, feature fusion 
module, and affinity prediction module. The functions of 
these modules will be described in detail below.

Input representation module
DeepLIP contains three inputs, in which the ligands 
and the pockets (the cavity inside the protein that 
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directly binds to the ligand, which plays a key role in the 
strength of PLA) are represented in the form of descrip-
tors. Specifically, we obtained the SMILES string of the 
ligand (.sdf structure) and the amino acid sequence of 
the protein binding pocket (.pdb structure) based on 
the chemoinformatics toolkit Openbabel [21] and the 
bioinformatics toolkit Biopython [22], respectively, and 
then calculated the 196 chemical descriptors for ligands 
and 147 CTD (Composition, Transition and Distribu-
tion) descriptors for pockets using the Descriptors mod-
ule of the RDKit toolkit and the PyProtein module of 
the PyBioMed toolkit [23], respectively. In addition, the 
interactions between the two are represented in the form 
of graphs, and this process was accomplished using the 
PN_graph_construction_and_featurization module of the 
DGL-LifeSci toolkit [24]. The details of these representa-
tions are listed in Supplementary Table 1.

Feature extraction module
The three representations are further extracted by three 
independent neural network models, in which the ligand 
features and the pocket features are captured in a simi-
lar way. Specifically, it mainly consists of three identical 
submodules, each containing a 1D convolutional layer, a 

BatchNormalization layer, and a PReLU layer. Addition-
ally, the interaction features are captured through the 
PotentialNet architecture proposed by Feinberg et  al. 
[25]. Its highlights are the utilization of distance thresh-
olds as well as gated graph sequence neural networks to 
learn non-covalent interaction information.

Feature fusion module and affinity prediction module
The local features extracted by the three neural network 
models are concatenated to form a vector based on the 
early fusion strategy (extracting features from multiple 
modal information and fusing them), and then the result-
ing global features are fed into the fully connected layers 
to predict PLA [26]. It is worth noting that before the 
fully connected layers, a self-attention layer is introduced 
to adaptively balance the importance of each representa-
tion so that the model can better understand the feature 
information from different levels. The hyperparameters 
that need to be tuned in the DeepLIP architecture are 
provided in Supplementary Table 2.

Model training
DeepLIP was implemented with the graph framework 
DGL (version 1.0.1) and the DL framework Pytorch 

Table 1  Statistical summary of the datasets used in this study

Dataset Purpose Source Number

Training set Training the model Refined set of PDBbind v2016 3018

Validation set Optimizing the hyperparameters Refined set of PDBbind v2016 754

Internal test set Finding the best model Refined set of PDBbind v2020 1259

External test set Benchmark test Core of PDBbind v2016 285

Fig. 1  Schematic illustration of DeepLIP, including input representation, feature extraction, feature fusion, and affinity prediction modules
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(version 1.13.1), and the hyperparameter search of the 
model was done using the open-source toolkit Optuna. 
In addition, since the prediction of PLA is a regression 
task, we employed SmoothL1Loss as the loss function 
to train DeepLIP. After training, the model with the 
minimum error on the validation set was evaluated on 
the internal test set. The whole process was repeated 10 
times with different random seeds, and finally the model 
with the best performance was used for the benchmark 
test.

Evaluation metrics
In this work, three metrics were adopted to evaluate the 
performance of DeepLIP. Pearson Correlation Coefficient 
(PCC) is mainly used to measure the degree of linear cor-
relation between the predicted values and the true values, 
and a larger value indicates a stronger linear correlation 
between the two. Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) are both indications to assess 
the gap between the predicted values and the true values; 
the former represents the overall accuracy of the model, 
and the latter can estimate the error rate of the model. 
Normally, the smaller their values are, the closer the pre-
dicted values are to the true values.

Generation of complex conformations
In this study, we used Autodock Vina software [27] to 
generate docking conformations of protein–ligand com-
plexes and fed them into DeepLIP to re-predict PLA. The 
molecular docking process involved converting the 3D 
structures of the target protein (PDB ID: 1TVO) pocket 
and small molecule ligands to pdbqt format and docking 
them together. The docking box was positioned near the 
location of the co-crystallized ligand, and its size was set 
to 6.25 Å × 6.25 Å × 6.25 Å. In addition, to verify the reli-
ability of the docking process, the co-crystallized ligand 
was re-docked into the pocket of ERK2. Based on the 
superposition of the docked conformation and the origi-
nal conformation (Supplementary Fig.  1), we observed 
that the spatial orientations of the two conformations 
were highly compatible, suggesting that the protocol met 
the requirements. Finally, the optimal binding poses were 
selected as input for the proposed model.

Molecular dynamics simulation
The binding stability of five complex conformations with 
the highest predicted PLA was evaluated using Gromacs 
software [28], and the procedure was as follows. First, 
a topology file of the complex was generated based on 
the CHARMM36 force field [29], and water molecules 
(SP216) were added to the system along with counterions 
(Na+/Cl−). Next, the potential energy of the system was 
optimized using the steepest descent method, and then 

the complexes and solvents were sequentially coupled 
using a canonical ensemble with the temperature main-
tained at 300 K and an isothermal-isobaric ensemble with 
the pressure maintained at 1 bar. Finally, a 100 ns molec-
ular dynamics simulation was performed for each system 
at normal temperature and pressure, while the average 
binding free energy of the last 10 ns trajectory was cal-
culated by the molecular mechanics Poisson-Boltzmann 
surface area (MM/PBSA) method [30].

Results
Performance of DeepLIP and comparison 
with state‑of‑the‑art methods
Overall performance of DeepLIP on the internal test set
After training the models on the refined set of PDBbind 
v2016, we directly conducted extensive experiments on 
the non-overlapping refined set of PDBbind v2020 and 
selected the best models for the subsequent benchmark 
test, which is significant in terms of more realistically 
reflecting the generalization performance and providing 
a fairer comparison. As shown in Table  2, the optimal 
performance of DeepLIP on the internal test set achieved 
0.698 (PCC), 1.112 (MAE), and 1.372 (RMSE), while the 
overall robustness of the 10 experiments was desirable. 
These results illustrate to some extent that DeepLIP has 
favorable prediction accuracy on unknown data.

Comparison of DeepLIP with competitive state‑of‑the‑art 
methods on the external test set
To more thoroughly evaluate the performance of Deep-
LIP, we performed a comparative analysis with the 
highest-performing models in the literature. It should 
be noted that all models were trained on the refined 
set of PDBbind v2016 to ensure fairness. As observed 
from Table  3, our proposed models surpassed the 

Table 2  The detailed results of 10 experiments on the internal 
test set

No. PCC MAE RMSE

0 0.696 1.510 1.907

1 0.724 1.212 1.546

2 0.657 1.197 1.511

3 0.698 1.112 1.372

4 0.592 1.444 1.785

5 0.605 1.451 1.774

6 0.662 1.223 1.617

7 0.697 1.187 1.489

8 0.547 1.478 1.858

9 0.709 1.154 1.457

Average ± standard 
deviation

0.659 ± 0.056 1.297 ± 0.146 1.632 ± 0.176
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state-of-the-art methods in terms of MAE and RMSE, 
with the values of both achieving 1.014 and 1.265, respec-
tively. In addition, the value of PCC was also the high-
est, far exceeding the other models. Interestingly, we 
found that the models constructed based on fused fea-
tures generally outperformed the individual models on 
the external test set. In addition to performance, we also 
compared the computational efficiency of these models 
on the core set of PDBbind v2016. As shown in Supple-
mentary Table 3, Pafnucy took the longest time to infer 
because voxelization required a large amount of compu-
tational resources. In contrast, DeepDTAF was the fastest 
method due to the fact that it used the simplest represen-
tation. As the proposed DeepLIP discarded 3D voxels, it 
achieved a better balance between computational speed 
and performance and was more competitive compared to 
other models.

Ablation studies of DeepLIP
In order to explore the importance of different input rep-
resentations for PLA prediction, we conducted a series of 
ablation studies on the internal test set by removing the 
pocket features (DeepLI), the ligand features (DeepIP), 
and the interaction features (DeepLP). As shown in Sup-
plementary Fig. 2 and Supplementary Table 4, removing 
either the pocket features or the ligand features resulted 
in a substantial drop in the performance of the model, 
while removing the interaction features significantly 
deteriorated the predictive robustness of the model in 
terms of RMSE and MAE.

Moreover, when we used these models for the bench-
mark test, their performance also showed different 
degrees of degradation (Fig.  2). Specifically, DeepLI 
exhibited the most obvious decrease in performance, 
with a PCC of only 0.287, as well as high MAE and RMSE 
of 1.911 and 2.357, implying that the pocket features are 

critical for PLA prediction. These results are consistent 
with the findings of Wang et  al. [10]. Similarly, DeepIP 
exhibited a smaller decrease in performance, with a PCC 
of 0.674, as well as MAE and RMSE of 1.472 and 1.842. 
We hypothesize the possible reason for this is that Poten-
tialNet retains the partial information about the ligand 
when extracting the interaction features, and thus the 
performance degradation due to the lack of ligand fea-
tures is relatively insignificant. It is worth noting that 
although sequence-based DeepLP had the strongest pre-
dictive correlation on the external test set (the value of 
PCC was 0.886), its overall prediction gap was still large 
(the values of MAE and RMSE were 1.410 and 1.695, 
respectively), which also illustrates the importance of 
interaction features.

Visualization of the global features learned by DL models
Investigating the black-box mechanism of DL models is 
a popular research direction in the field of artificial intel-
ligence. In this study, to intuitively understand the infor-
mation learned by these models, we utilized the Principal 
Component Analysis (PCA) algorithm to map the cap-
tured high-dimensional features into a two-dimensional 
space. As can be seen in Fig. 3A, the distribution of fea-
tures extracted after the self-attention layer of DeepLIP 
was parabolic, which is very easy to fit. In contrast, the 
distributions of the features captured by DeepLI (Fig. 3B) 
and DeepIP (Fig. 3C) were more disordered, which well 
explains their worse performance on the external test 
set. It should be noted that DeepLP (Fig.  3D) extracted 
a dispersed feature distribution, which may also be the 
reason for the strong correlation but low accuracy of its 
prediction. These results confirm that the fused features 
learned by DeepLIP can effectively reduce the fitting dif-
ficulty and thus improve the overall performance.

Screening power of DeepLIP and Autodock Vina targeting 
ERK2
To verify the application potential of the fusion model in 
real cases, we employed the trained model to perform PLA 
prediction on 145 ERK2 inhibitors with known activity (the 
dataset was derived from a previous study by our group), 
while the prediction results of Autodock Vina were used 
as a control to simulate the virtual screening process [31]. 
We assessed the ability of the two methods to discrimi-
nate between ERK2 inhibitors/non-inhibitors at different 
activity thresholds, and their overall accuracy is shown in 
Fig. 4. Specifically, the prediction performance of DeepLIP 
at each threshold was significantly better than that of the 
traditional scoring function, with overall accuracy ranging 
from 75.17 to 93.79%. In addition, the values of the confu-
sion matrix at different activity thresholds are listed in Sup-
plementary Table  5. We found that the model predicted 

Table 3  Performance comparison of DeepLIP with state-of-the-
art DL-based models

All models were evaluated with the External Test Set after training on the refined 
set of PDBbind v2016 in this study

Model Architecture PCC MAE RMSE

DeepDTAF [10] 1D-CNN 0.704 1.287 1.629

OnionNet [4] 2D-CNN 0.742 1.120 1.511

Pafnucy [11] 3D-CNN 0.696 1.223 1.617

PointTransformer [13] PointTransformer 0.753 1.290 1.580

SIGN [12] GNN 0.797 1.027 1.316

GraphBAR [6] GNN 0.726 1.241 1.542

FAST [15] Fusion of 3D-CNN 
and GNN

0.761 1.231 1.534

DeepLIP Fusion of 1D-CNN 
and GNN

0.830 1.014 1.265
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reliably for ERK2 inhibitors in most cases, but the predic-
tion for ERK2 non-inhibitors was relatively weak. Never-
theless, our proposed DeepLIP can still help researchers 
discover more reliable inhibitors, thus reducing the cost of 
subsequent biological experiments.

Identification of potential ERK2 inhibitors from natural 
products
Given the unique advantages of DeepLIP in the identi-
fication of ERK2 inhibitors, we attempted to integrate 

it with other commonly used virtual screening tools for 
the discovery of natural product inhibitors against ERK2. 
In addition, an in-house library containing 851 drug-like 
natural products manually collected from the relevant 
literature was used in the overall workflow (Fig.  5). It 
should be noted that these compounds are clearly named, 
sourced, and reported with biological activities. We first 
performed an initial screening based on a previously 
trained machine learning classification model [31]. Sup-
plementary Fig.  3A shows the distribution of machine 

Fig. 2  Correlation scatter plot for the benchmark test given by the best models of DeepLIP (A), DeepLI (B), DeepIP (C), and DeepLP (D)
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learning scores for the 851 original compounds. Subse-
quently, we selected 173 compounds with scores greater 
than 0.9 to narrow the screening space, and these com-
pounds were fed into DeepLIP to predict their bind-
ing affinity to the target protein. Supplementary Fig. 3B 
illustrates the distribution of binding affinities for the 
173 screened compounds. Finally, five natural products 
with the highest affinity were selected as potential ERK2 
inhibitors. Detailed information about these molecules is 
summarized in Table 4.

Dynamic binding properties of screened hits
To further investigate the binding stability between 
the screened compounds and the target protein, we 
performed 100  ns molecular dynamics simulations. 
The Root Mean Square Deviation (RMSD) reflects 
the movement process of the complex during the 
simulation, and its drastic fluctuation indicates that 
the system may be unstable. Figure  6A, B shows the 

variation of RMSD values with simulation time for 
ligand molecules and protein backbones, respectively. 
For the ligand molecule, the RMSD values of Glau-
cine, Sclareol, Rotundine, and Schisanhenol were 
stabilized below 0.1 nm, while the fluctuation of Dihy-
droguaiaretic Acid (DA) was more pronounced due to 
its longer chemical scaffold and freer movement within 
the binding pocket. For the target protein, the RMSD 
values of ERK2 were stabilized at around 0.2 nm when 
bound to Rotundine, DA, and Schisanhenol, while the 
fluctuation was greater when bound to Glaucine and 
Sclareol, suggesting that these complexes were unsta-
ble. Therefore, to see if their stability improved or not, 
the simulation time was extended to 200 ns. As shown 
in Supplementary Fig. 4, the RMSD trajectory of Glau-
cine at 100–200 ns was smoother compared to that at 
0–100  ns, while the RMSD trajectory of Sclareol still 
fluctuated drastically. The instability might be due to 

Fig. 3  The PCA of the global features extracted by DeepLIP (A), DeepLI (B), DeepIP (C), and DeepLP (D) on the external test set
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the fact that it is a strong inhibitor. Overall, these com-
pounds were able to bind tightly to the active pocket 
of the target protein because the trajectories of both 
ligand molecules and protein backbones were reason-
able. Figure 6C analyzes the number of hydrogen bonds 
formed between ligand molecules and the target pro-
tein during the simulation. Specifically, the highest 
number of hydrogen bonds were formed between DA 

and ERK2, while the lowest number of hydrogen bonds 
were formed between Rotundine and ERK2.

Calculation of MM/PBSA binding free energy
We also calculated the MM/PBSA binding free energy 
based on the last 10 ns trajectory. As shown in Table 5, 
the affinity of DA, Sclareol, and Glaucine for ERK2 was 
higher than that of the previously identified active com-
pounds [31], and they were promising to be used as 
potential ERK2 inhibitors for more in-depth studies. 
Notably, DA and Sclareol have been reported to have 
anti-cancer/anti-tumor activities, which further con-
firmed the reliability of the screening results [33, 35]. 
Subsequently, we decomposed the energy into the inter-
action between each amino acid residue and the ligand 
molecule, and extracted the key residues that contrib-
uted positively. As can be seen in Fig.  6D, VAL-39 and 
LEU-156 had a significant effect in most systems, which 
implies that they may be potential action sites for ERK2 
inhibitors. Finally, we compared the binding modes of 
the three screened inhibitors before and after simulation 
(Supplementary Fig. 5). DA lost one hydrogen bond with 
LYS-54 but formed a new hydrogen bond with MET-108 
and TYR-36, respectively, the former of which serves as 
a key residue in the hinge region and is the action site 
of many reported inhibitors (e.g., GDC-0994 [38] and 
FR180204 [39]). No hydrogen bond was formed in the 
Glaucine-ERK2 complex, suggesting that their interac-
tions may be dominated by hydrophobic bonds. A new 
hydrogen bond was formed between Sclareol and LYS-
54 after simulation, and this catalytic residue is located 

Fig. 4  Comparison of the screening performance of DeepLIP and Autodock Vina at different ERK2 activity thresholds

Fig. 5  Virtual screening workflow adopted in this study
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in the gatekeeper region, which is also a common site for 
inhibitors [40]. In addition, all ligands exhibited different 
degrees of reduced solvent exposure.

Discussion
In recent years, an increasing number of computational 
chemists have utilized DL algorithms to predict PLA in 
structure-based virtual screening. It has been shown that 
combining artificial intelligence techniques with classi-
cal computer-aided drug design methods facilitates the 
acceleration of the virtual screening process while reduc-
ing false positive rates caused by imbalanced positive and 
negative samples [41, 42].

In this work, DeepLIP effectively integrates hetero-
geneous information from three levels. Specifically, it 
consists of four modules. In the input representation 
module, ligands, protein binding pockets, and interac-
tions were represented as molecular descriptors, pro-
tein descriptors, and spatial graphs, respectively. In 

the feature extraction module, two sequence features 
(descriptors) and one structural feature (graph) were 
extracted by 1D convolutional neural networks and 
graph neural networks, respectively. In the feature fusion 
module, the captured local features were concatenated 
and then assigned appropriate weights by a self-atten-
tion layer. In the affinity prediction module, the acquired 
global features were fed into fully connected neural net-
works to predict PLA. Experimental results showed that 
DeepLIP outperformed most existing DL approaches and 
achieved superior performance on the external test set. 
Furthermore, the results of the ablation studies showed 
that each of the local features contributed positively to 
the prediction of PLA, with the pocket feature contribut-
ing the most.

In terms of drug discovery, we performed a first round 
of virtual screening of an in-house library of our group 
(containing 851 drug-like natural products) based on a 
previously trained ERK2 activity classification model. 

Table 4  Details of the five natural products screened from the in-house library

Compound Name Type Chemical structure Source Reported activity

Schisanhenol Monophenol Schisandra rubriflora Anti-apoptosis effect [32]

Dihydroguaiaretic acid Polyphenol Saururus chinensis Anti-cancer activity [33]

Rotundine Alkaloid Corydalis tuber Analgesic effect [34]

Sclareol Diterpenoid Salvia sclarea Anti-tumour and anti-
inflammatory activities 
[35, 36]

Glaucine Alkaloid Glaucium flavum Anti-oxidative and anti-
viral activities [37]
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Next, we utilized the proposed DeepLIP model to per-
form PLA prediction on 173 molecules with high con-
fidence and selected five hits with the highest affinity 
among them. The results of molecular dynamics simu-
lation showed that three natural products were able to 
bind stably to ERK2 and had higher MM/PBSA binding 

free energies than our previously identified active natural 
products.

However, we cannot ignore that DeepLIP currently 
has certain limitations. First, the use of binding pock-
ets as local features limits the application of the model 
in many scenarios, since most of the newly discovered 

Fig. 6  Molecular dynamics simulation of five hit-ERK2 complexes. A and B show the RMSD values of ligand molecules and protein backbones, 
respectively. C Shows the number of hydrogen bonds, and D shows the energy contributions of positive amino acid residues

Table 5  MM/PBSA binding free energy (kJ/mol) of each ERK2-ligand complex

ΔEvdw represent van der Waals energy, ΔEele represent electrostatic energy, ΔEPB represent polar solvation energy, ΔESA represent solvent accessible surface area 
energy, and ΔEbind represent total binding energy

Ligand ΔEvdw ΔEele ΔEPB ΔESA ΔEbind

Schisanhenol − 123.22 ± 1.12 − 6.64 ± 1.46 94.36 ± 3.12 − 16.74 ± 0.82 − 51.85 ± 2.29

Dihydroguaiaretic Acid − 103.09 ± 0.84 − 2.83 ± 0.68 53.54 ± 1.73 − 12.53 ± 0.11 − 64.90 ± 1.24

Rotundine − 149.45 ± 1.41 − 67.01 ± 2.26 177.08 ± 2.91 − 18.63 ± 0.10 − 58.05 ± 1.79

Sclareol − 142.97 ± 0.99 − 18.92 ± 1.18 99.08 ± 1.62 − 16.81 ± 0.07 − 79.57 ± 1.33

Glaucine − 158.79 ± 1.11 − 25.80 ± 0.54 109.46 ± 1.16 − 17.75 ± 0.01 − 92.94 ± 1.16
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target proteins do not have precise pocket location 
information. Second, the performance of DeepLIP in 
large-scale virtual screening needs to be evaluated, and 
only ERK2 was initially applied in this study. Finally, the 
prediction results are still a “black box”, and users can-
not understand which residues in the interaction con-
tribute more to the predicted binding affinity. In the 
coming years, we will strive to refine the architecture in 
the above aspects and optimize the chemical structures 
of the screened hits as well as evaluate their biological 
activities.

Conclusion
In this study, we developed DeepLIP, a novel DL archi-
tecture that integrates three types of heterogeneous 
information: ligands, protein binding pockets, and inter-
actions. Unlike existing prediction models, DeepLIP no 
longer focused on lengthy sequence coding, but instead 
represented pockets and ligands in the form of descrip-
tors. At the same time, interactions that are critical for 
binding affinity were represented in the form of graphs. 
Extensive experiments on the benchmark test dem-
onstrated the advantages of DeepLIP over other state-
of-the-art methods, and the results of ablation studies 
confirmed the effectiveness of each representation for 
PLA prediction. In addition, we combined this model 
with other commonly used virtual screening tools to 
identify three potential ERK2 inhibitors from 851 drug-
like natural products. These compounds had unique 
chemical scaffolds and remained stable while binding to 
the target protein. Overall, our proposed DeepLIP pro-
vides a valuable tool for the practical application of DL 
methods in drug discovery.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13065-​024-​01219-x.

Supplementary Material 1.

Acknowledgements
Not applicable.

Author contributions
RY and BC designed the research and wrote the manuscript. RY and FS per-
formed the experiments and analyzed data. LZ and FB revised the manuscript. 
All authors read and approved the final manuscript.

Funding
This work was supported by Shandong Provincial Medical and Health Science 
and Technology Development Plan Project (No. 202002050626).

Availability of data and materials
The datasets generated and/or analysed during the current study are available 
in the PDBbind repository, http://​www.​pdbbi​nd.​org.​cn/​downl​oad.​php. The 

3D structure of ERK2 is available in the RCSB PDB repository, https://​www.​rcsb.​
org/​struc​ture/​1TVO.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have no competing interests to declare.

Received: 24 February 2024   Accepted: 29 May 2024

References
	1.	 Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibi-

otic discovery. Cell. 2020;180:688–702.
	2.	 Lim S, Lu Y, Cho CY, et al. A review on compound-protein interaction 

prediction methods: data, format, representation and model. Comput 
Struct Biotechnol J. 2021;19:1541–56.

	3.	 Dhakal A, McKay C, Tanner JJ, et al. Artificial intelligence in the prediction 
of protein–ligand interactions: recent advances and future directions. 
Brief Bioinform. 2022;23: bbab476.

	4.	 Zheng L, Fan J, Mu Y. OnionNet: a multiple-layer intermolecular-contact-
based convolutional neural network for protein–ligand binding affinity 
prediction. ACS Omega. 2019;4:15956–65.

	5.	 Leelananda SP, Lindert S. Computational methods in drug discovery. 
Beilstein J Org Chem. 2016;12:2694–718.

	6.	 Son J, Kim D. Development of a graph convolutional neural network 
model for efficient prediction of protein–ligand binding affinities. PLoS 
ONE. 2021;16: e0249404.

	7.	 Chauhan NK, Singh K. A review on conventional machine learning vs 
deep learning. In: 2018 international conference on computing, power 
and communication technologies. 2018. p. 347–52.

	8.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.
	9.	 Ozturk H, Ozgur A, Ozkirimli E. DeepDTA: deep drug-target binding affin-

ity prediction. Bioinformatics. 2018;34:821–9.
	10.	 Wang K, Zhou R, Li Y, et al. DeepDTAF: a deep learning method to predict 

protein–ligand binding affinity. Brief Bioinform. 2021;22: bbab072.
	11.	 Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development 

and evaluation of a deep learning model for protein–ligand binding 
affinity prediction. Bioinformatics. 2018;34:3666–74.

	12.	 Li S, Zhou J, Xu T, et al. Structure-aware interactive graph neural networks 
for the prediction of protein–ligand binding affinity. In: Proceedings of 
the 27th ACM SIGKDD conference on knowledge discovery and data 
mining. 2021. p. 975–85.

	13.	 Wang Y, Wu S, Duan Y, et al. A point cloud-based deep learning strategy 
for protein–ligand binding affinity prediction. Brief Bioinform. 2022;23: 
bbab474.

	14.	 Nguyen T, Le H, Quinn TP, et al. GraphDTA: predicting drug–target bind-
ing affinity with graph neural networks. Bioinformatics. 2021;37:1140–7.

	15.	 Jones D, Kim H, Zhang X, et al. Improved protein–ligand binding affinity 
prediction with structure-based deep fusion inference. J Chem Inf Model. 
2021;61:1583–92.

	16.	 Roskoski RJ. ERK1/2 MAP kinases: structure, function, and regulation. 
Pharmacol Res. 2012;66:105–43.

	17.	 Lu N, Malemud CJ. Extracellular signal-regulated kinase: a regulator of cell 
growth, inflammation, chondrocyte and bone cell receptor-mediated 
gene expression. Int J Mol Sci. 2019;20:3792.

	18.	 Wang R, Fang X, Lu Y, et al. The PDBbind database: collection of binding 
affinities for protein–ligand complexes with known three-dimensional 
structures. J Med Chem. 2004;47:2977–80.

https://doi.org/10.1186/s13065-024-01219-x
https://doi.org/10.1186/s13065-024-01219-x
http://www.pdbbind.org.cn/download.php
https://www.rcsb.org/structure/1TVO
https://www.rcsb.org/structure/1TVO


Page 12 of 12Yang et al. BMC Chemistry          (2024) 18:108 

	19.	 Kyro GW, Brent RI, Batista VS. HAC-Net: a hybrid attention-based convolu-
tional neural network for highly accurate protein–ligand binding affinity 
prediction. J Chem Inf Model. 2023;63:1947–60.

	20.	 Su M, Yang Q, Du Y, et al. Comparative assessment of scoring functions: 
the CASF-2016 update. J Chem Inf Model. 2019;59:895–913.

	21.	 O’Boyle NM, Banck M, James CA, et al. Open babel: an open chemical 
toolbox. J Cheminform. 2011;3:33.

	22.	 Cock PJ, Antao T, Chang JT, et al. Biopython: freely available Python tools 
for computational molecular biology and bioinformatics. Bioinformatics. 
2009;25:1422–3.

	23.	 Dong J, Yao Z, Zhang L, et al. PyBioMed: a python library for various 
molecular representations of chemicals, proteins and DNAs and their 
interactions. J Cheminform. 2018;10:16.

	24.	 Li M, Zhou J, Hu J, et al. DGL-LifeSci: an open-source toolkit for deep 
learning on graphs in life science. ACS Omega. 2021;6:27233.

	25.	 Feinberg EN, Sur D, Wu Z, et al. PotentialNet for molecular property 
prediction. ACS Cent Sci. 2018;4:1520–30.

	26.	 Steyaert S, Pizurica M, Nagaraj D, et al. Multimodal data fusion for cancer 
biomarker discovery with deep learning. Nat Mach Intell. 2023;5:351–62.

	27.	 Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of 
docking with a new scoring function, efficient optimization, and multi-
threading. J Comput Chem. 2010;31:455–61.

	28.	 Pronk S, Pall S, Schulz R, et al. GROMACS 4.5: a high-throughput and 
highly parallel open source molecular simulation toolkit. Bioinformatics. 
2013;29:845–54.

	29.	 Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force 
field: a force field for drug-like molecules compatible with the CHARMM 
all-atom additive biological force fields. J Comput Chem. 2010;31:671–90.

	30.	 Kongsted J, Ryde U. An improved method to predict the entropy term 
with the MM/PBSA approach. J Comput Aided Mol Des. 2009;23:63–71.

	31.	 Yang R, Zhao G, Zhang L, et al. Identification of potential extracellular 
signal-regulated protein kinase 2 inhibitors based on multiple virtual 
screening strategies. Front Pharmacol. 2022;13:1077550.

	32.	 Yu LH, Liu GT. Schisanhenol attenuated ox-LDL-induced apoptosis and 
reactive oxygen species generation in bovine aorta endothelial cells 
in vitro. J Asian Nat Prod Res. 2008;10:799–806.

	33.	 Jeong M, Kim HM, Kim HJ, et al. Kudsuphilactone B, a nortriterpenoid iso-
lated from Schisandra chinensis fruit, induces caspase-dependent apopto-
sis in human ovarian cancer A2780 cells. Arch Pharm Res. 2017;40:500–8.

	34.	 Chang CK, Lin MT. dl-Tetrahydropalmatine may act through inhibition 
of amygdaloid release of dopamine to inhibit an epileptic attack in rats. 
Neurosci Lett. 2001;307:163–6.

	35.	 Noori S, Hassan ZM, Mohammadi M, et al. Sclareol modulates the Treg 
intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cell Immu-
nol. 2010;263:148–53.

	36.	 Huang GJ, Pan CH, Wu CH. Sclareol exhibits anti-inflammatory activity 
in both lipopolysaccharide-stimulated macrophages and the lambda-
carrageenan-induced paw edema model. J Nat Prod. 2012;75:54–9.

	37.	 Spasova M, Philipov S, Nikolaeva-Glomb L, et al. Cinnamoyl- and hydroxy-
cinnamoyl amides of glaucine and their antioxidative and antiviral activi-
ties. Bioorg Med Chem. 2008;16:7457–61.

	38.	 Blake JF, Burkard M, Chan J, et al. Discovery of (S)-1-(1-(4-Chloro-3-
fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)
pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an extracellular signal-
regulated kinase 1/2 (ERK1/2) inhibitor in early clinical development. J 
Med Chem. 2016;59:5650–60.

	39.	 Ohori M, Kinoshita T, Okubo M, et al. Identification of a selective ERK 
inhibitor and structural determination of the inhibitor-ERK2 complex. 
Biochem Bioph Res Commun. 2005;336:357–63.

	40.	 Heightman TD, Berdini V, Braithwaite H, et al. Fragment-based discovery 
of a potent, orally bioavailable inhibitor that modulates the phosphoryla-
tion and catalytic activity of ERK1/2. J Med Chem. 2018;61:4978–92.

	41.	 Mullowney MW, Duncan KR, Elsayed SS, et al. Artificial intelligence for 
natural product drug discovery. Nat Rev Drug Discov. 2023;22:895–916.

	42.	 Parvatikar PP, Patil S, Khaparkhuntikar K, et al. Artificial intelligence: 
machine learning approach for screening large database and drug 
discovery. Antiviral Res. 2023;220: 105740.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	AI-based prediction of protein–ligand binding affinity and discovery of potential natural product inhibitors against ERK2
	Abstract 
	Introduction
	Materials and methods
	Dataset preparation
	Model architecture
	Input representation module
	Feature extraction module
	Feature fusion module and affinity prediction module

	Model training
	Evaluation metrics
	Generation of complex conformations
	Molecular dynamics simulation

	Results
	Performance of DeepLIP and comparison with state-of-the-art methods
	Overall performance of DeepLIP on the internal test set
	Comparison of DeepLIP with competitive state-of-the-art methods on the external test set

	Ablation studies of DeepLIP
	Visualization of the global features learned by DL models
	Screening power of DeepLIP and Autodock Vina targeting ERK2
	Identification of potential ERK2 inhibitors from natural products
	Dynamic binding properties of screened hits
	Calculation of MMPBSA binding free energy

	Discussion
	Conclusion
	Acknowledgements
	References


