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Abstract 

Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a zinc blende 
crystal structure, which is a type of cubic lattice structure. This lattice is composed of indium and phosphorus atoms 
arranged in a lattice of cube-shaped cells, with each cell containing four indium atoms and four phosphorus atoms. 
This lattice structure is the same for all materials with a zinc blende crystal structure and is the most common type 
of lattice structure in semiconductors. Indium phosphide (InP) has several chemical applications. It is commonly used 
as a dopant in the production of semiconductors, where it helps control the electrical properties of the material. 
InP is also utilized in the synthesis various indium-containing compounds, which can have applications in catalysts 
and chemical reactions. Additionally, InP nanoparticles have been investigated for their potential use in biomedical 
imaging and drug delivery systems. The topological characterization of 3D molecular structures can be performed 
via graph theory. In graph theory, the connections between atoms are represented as edges and the atoms 
themselves are represented as nodes. Furthermore, graph theory can be used to calculate the topological descriptors 
of the molecule such as the degree-based and reverse degree-based irregularity toplogical indices. These descriptors 
can be used to compare the topology of different molecules. This paper deals with the modeling and topological 
characterization of indium phosphide (InP) via degree-based and reverse irregularity indices. The 3D crystal 
structure of the InP is topologically modeled via partition of the edges, and derived closed form expressions for its 
irregularity indices. Our obtained results will be surely be helpful in investigating the QSPR/QSAR analysis as well 
as understanding the deep irregular behavior of the indium phosphide (InP).
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Introduction
Chemical graphs, are graphs that represent the molecular 
and atomic structures including bonds and interactions, 
represent the fundamental framework of molecules 
and atoms [1–3]. Chemical graphs are often used in 
chemistry and biochemistry research, as well as in 
computer simulations of chemical processes [4].

The molecular/chemical graph refers to the 
representation of a molecular/chemical substance in the 
form of a graph [5, 6]. A molecular graph is a graphical 
representation of a molecule, where the atoms are 
represented by vertices and the chemical bonds by edges. 
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The edges represent the interactions between the atoms, 
with each edge representing a single bond. The structure 
of the graph uses to determine the properties of the 
molecule, such as its shape and chemical properties. For 
example, the connectivity of graph used to determine the 
type of molecule (e.g. linear or cyclic), and the number of 
edges can be used to determine the number of chemical 
bonds in the molecule [7]. Degree based indices measure 
the number of edges that are connected to a vertex of 
a graph. These indices are a measure of the degree of 
connectivity of a vertex. The degree of a vertex is the 
number of edges incident to it. These indices are also 
referred to as degree centrality.

The degree based index of a graph can be used to 
describe the graph’s structure and the patterns of 
connectivity between its vertices [8]. It is a useful tool 
for analyzing the connectivity of networks, as well as 
for predicting the behavior of a given graph or network. 
Degree indices are also used to identify vertices or edges 
that are important for the overall structure of a graph or 
network. For example, in social networks, degree indices 
can be used to identify influential nodes. Additionally, 
degree indices can be used to measure the clustering of 
vertices, or to detect communities within a graph [9–11].

It is used to measure the complexity of the molecular 
structure of organic compounds. Topological indices 
are designed to quantify the connectivity of atoms in a 
molecule [12, 13]. The most common topological indices 
are the Wiener index, Randic index, Szeged index, and 
Zagreb index [14]. These indices are calculated from the 
graph of a given molecule, from which the number of 
vertices, edges, and cycles are determined.

The Wiener index is a measure of the total length 
of the shortest paths between all pairs of vertices in a 
molecule. The Randic index is a measure of the number 
of paths with a given length that join the pair of atoms in 
a molecule. The Szeged index is a measure of the number 
of cycles of given length in a molecule. The Zagreb index 
[15] is a measure of the number of cycles of given length 
in a molecule.

Topological indices are used in the field of medicinal 
chemistry to predict the biological activity of compounds. 
They are also used in the field of drug design to identify 
compounds that are likely to have the desired biological 
activity. In addition, topological indices can be used to 
predict the physical properties of compounds [16], such 
as boiling point and melting point.

In theoretical chemistry and nanotechnology, there 
are various graph-related numerical descriptors that 
are relevant [17–25]. Degree-based descriptors assess 
a node’s degree, which is the number of edges that 
connect it. Distance-based descriptors assess the 
distance between nodes and can be used to determine 

a node’s centrality in the graph. Counting-related 
graph descriptors count edges, vertices, and other 
graph constituents. These characteristics are useful for 
understanding the structure of a graph and comparing 
different graph architectures [21, 26–33]. The degree-
based graph descriptors also be used to identify the 
number of rings in a molecule and the size of the 
rings. In addition, they can be used to characterize 
the topology of a molecule, such as its hydrogen bond 
network and its connectivity. These graph-based 
descriptors can also be used to classify molecules into 
different categories, such as drug-like or non-drug-like. 
The degree-based graph descriptors provide important 
insights into the physical and chemical properties of 
a molecule and can be used to better understand its 
reactivity and behavior [34]. Researchers are working 
on connectivity/topological indices in various ways [35, 
36]. Some are developing them as graph descriptors, 
while others are applying them to analyze the chemical 
properties of molecules [8, 37, 38].

The QSPR and QSAR models are based on the theory 
of molecular topology, which uses mathematical and 
statistical techniques to describe the spatial arrangement 
of atoms and bonds in a molecule [39, 40]. This approach 
provides insight into the molecular structure, as well as 
its physical and chemical properties. With the increasing 
availability of powerful computational methods, 
these models are becoming increasingly accurate and 
predictive. By taking into account the topology of a 
molecule, QSPR and QSAR models can accurately 
predict the structure–property relationships of a variety 
of materials and can be used to optimize the design of 
new materials [10, 41, 42].

Topological indices are numerical descriptors of 
molecular structure that are derived from the graph 
theory of a molecule. These indices provide a way to 
quantify the complexity of the molecular structure and 
are used to predict a range of molecular properties, such 
as physical, chemical, and biological activities. Generally, 
topological indices can be divided into two categories: 
atom-based and distance-based. Atom-based indices 
are derived from the connectivity of the atoms in the 
molecule, while distance-based indices are derived from 
the distances between the atoms. Both types of indices 
are used to characterize the overall topology of the 
molecule, but distance-based indices can provide more 
information about the shape and size of the molecule.

Topological indices are also used to compare molecules 
to identify similar structures and to design novel 
molecules with desirable properties. These indices are 
also used to identify important structural features for 
target molecules, such as hydrogen-bonding sites and 
aromatic rings.
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A regular graph is one in which every vertex has the 
same degree, or number of connections connecting 
to it. The irregularity topological index of a graph is a 
graph invariant used to measure how close a graph is to 
being regular [43].

The irregularity topological indices are important 
in measuring the complexity of the structure of the 
molecules. These indices are particularly useful in the 
design of drug molecules, as they provide a way to 
measure the complexity of the structure and the ability 
of the molecule to interact with its target. In addition, 
these indices are also used to predict the toxicity and 
other properties of the molecules.

Preliminaries
We need to first define some fundamentals; let H be 
a graph with the labels E for the bonds and V for the 
atoms. Whereas |E| contributed as the number of 
edges or bonds and |V| represent the total number 
of nodes or atoms. The irregularity index is a more 
efficient technique to express irregularity. Recently, 
a new approach of studying irregularity indices has 
been developed [44, 45]. The 1st irregularity index was 
introduced by Bell in 1992 [46]. Most of these indices 
used the concept of imbalance of an edge defined as 
imballµν =

∣

∣dµ − dν
∣

∣.
The Albertson index, AL was defined by Alberston 

and written as [47]

In this index, the imbalance of edges is computed.
The irregularity index IRL and IRLU is introduced by 

Vukicevic and Gasparov as

and

Recently, Abdoo and Dimitrov introduced the new 
term “total irregularity measure of a graph G”, which is 
given as [48]

Recently, Gutman introduced the IRF irregularity 
index of the graph, which is given as [49]

AL(H) =
∑

µν∈E(H)

∣

∣dµ − dν
∣

∣

IRL(H) =
∑

µν∈E(H)

∣

∣lndµ − lndν
∣

∣

IRLU(H) =
∑

µν∈E(H)

∣

∣dµ − dν
∣

∣

min
(

dµ, dν
)

IRRt(H) =
1

2

∑

µν∈E(H)

∣

∣dµ − dν
∣

∣

The Randic index itself is directly related to an 
irregularity measure, which is described as [50]

The detailed tracing of more irregularity indices of 
a similar nature is accessible in [15]. These indices are 
given by

Recently, authors computed irregularity indices of a 
nanotubes [51]. Gao et al. computed irregularity measure 
of some dendrimer structures and molecular structures 
[52, 53]. Hussain et  al. computed these irregularity 
measures for some classes of benzenoid systems [54].

Crystal structure of indium phosphide
Indium phosphide (InP) is a binary semiconductor com-
posed of indium and phosphorus. It has a zinc blende 
crystal structure, which is a type of cubic lattice struc-
ture. This lattice is composed of indium and phosphorus 
atoms arranged in a lattice of cube-shaped cells, with 
each cell containing four indium atoms and four phos-
phorus atoms. This lattice structure is the same for all 
materials with a zinc blende crystal structure and is the 
most common type of lattice structure in semiconduc-
tors. Its crystal structure is comparable to that of the 
majority of group III -V semiconductors, which have 
a face-centered cubic shape, as illustrated in Fig.  1 [17, 
55]. The most common commercial method for syn-
thesizing indium phosphide is known as the Bridgman 
technique. This method is used to combine refined high 
temperatures and pressures with indium and phosphorus 

IRF(H) =
∑

µν∈E(H)

(

dµ − dν
)2

IRA(H) =
∑

µν∈E(H)

(

d−1/2
µ − d−1/2

ν

)2

IRDIF(H) =
∑

µν∈E(H)

∣

∣

∣

∣

dµ

dν
−

dν

dµ

∣

∣

∣

∣

,

IRLF(H) =
∑

µν∈E(H)

∣

∣dµ − dν
∣

∣

√

dµdν

IRLA(H) = 2
∑

µν∈E(H)

∣

∣dµ − dν
∣

∣

(

dν + dµ
) ,

IRD1(H) =
∑

µν∈E(H)
ln
{

1+
∣

∣dµ − dν
∣

∣

}

IRGA(H) =
∑

µν∈E(H)
ln

(

dµ + dµ
)

2
√

dµdν
, IRB(H)

=
∑

µν∈E(H)

(

√

dµ −
√

dν

)2
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in a vacuum sealed quartz tube. The tube is placed into 
a furnace and heated for several hours as the pressure is 
slowly increased. This process results in a single-crystal 
ingot of indium phosphide. The results of the electro-
chemical etching of indium phosphide nano-crystalline 
surface were studied using scanning electron microscope 
(SEM). SEM images of the etched surface show that the 
etching process resulted in the formation of nano-sized 
pores, with a mean pore size of around 0.2  μm. The 
etched surface also shows high surface roughness, with 
the average roughness value of about 2.4  nm. The SEM 
images also show that the etching process had removed 
the native oxide layer from the surface.

The number of vertices and edges of InP[r, s], are 
10rs+ 3r+ 3rs+ 2 and 16rs  respectively for r × s  unit 
cells. Furthermore, Table  1 gives details about the edge 
partition.

Main results
In this section we have computed some degree based 
irregularity topological indices and reverse irregularity 
indices for InP[r, s], and derived closed formulas for 
them, the graph is depicted in Fig. 1. The computational 
results are as follows:

Theorem  4.1  The irregularity indices for the graph of 
InP[r, s] with r, s ≥ 1 corresponds to:

1. IRDIF(InP[r, s]) = 6rs+ 21r+ 21s− 15

2. AL(InP[r, s]) = 8rs+ 20r+ 20s− 12

3. IRL(InP[r, s]) = 2.7724rs+ 8.3176r+ 8.3176s− 5.5452

4. IRLU(InP[r, s]) = 4rs+ 16r+ 16s− 12

5. IRLF(InP[r, s]) = 2.8284rs+ 8.8284r+ 8.8284s− 6

6. IRF(InP[r, s]) = 16rs+ 52r+ 52s− 36

7. IRLA(InP[r, s]) = 8
3
rs+ 112

15
r+ 112

15
s− 24

5

8. IRD1(InP[r, s]) = 4.3944rs+ 9.9396r+ 9.9396s− 5.5452

9. IRA(InP[r, s]) = 0.1716rs+ 1.1716r+ 1.1716s− 1

10. IRGA(InP[r, s]) = 0.2356rs+ 1.128r+ 1.128s− 0.8924

11. IRB(InP[r, s]) = 1.3724rs+ 5.3724r+ 5.3724s− 4

12. IRRt(InP[r, s]) = 4rs+ 10r+ 10s− 6

Proof  According to edge partition of InP[r, s] , and 
above definitions, we computed the irregularity indices, 
and the computations are given by:

1. IRDIF(InP[r, s]) =
∑

µν∈E(H)

∣

∣

∣

dµ
dν

− dν
dµ

∣

∣

∣

2. AL(InP[r, s]) =
∑

µν∈E(H)

∣

∣dµ − dν
∣

∣

=
∣

∣

∣

∣

1

4
−

4

1

∣

∣

∣

∣

{4(r+ s− 1)}

+
∣

∣

∣

∣

2

4
−

4

2

∣

∣

∣

∣

{4(rs+ r+ s)}

+
∣

∣

∣

∣

4

4
−

4

4

∣

∣

∣

∣

{4(2rs− r− s)}

=
15

4
× 4(r+ s− 1)+

3

2
× 4(rs+ r+ s)+ 0

= 15r+ 15s− 15+ 6rs+ 6r+ 6s

IRDIF(InP[r, s]) = 6rs+ 21r+ 21s− 15

= |1− 4|{4(r+ s− 1)}
+ |2− 4|{4(rs+ r+ s)}
+ |4 − 4|{4(2rs− r− s)}

= 12r+ 12s− 12+ 8rs+ 8r+ 8s

Fig. 1  Crystal structure of indium phosphide (InP)

Table 1  Edge partition of InP[r, s],  based on degrees of end vertices of each edge
(

dµ, dν
)

, µν ∈ InP[r, s]
(

cµ, cν
)

, µν ∈ InP[r, s] No.ofedges/frequency

(1, 4) (4, 1) 4(−1)

(2, 4) (3, 1) 4(∂)

(4, 4) (1, 1) 4(2)
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3. IRL(InP[r, s]) =
∑

µν∈E(H)

∣

∣lndµ − lndν
∣

∣

4. IRLU(InP[r, s]) =
∑

µν∈E(H)
|dµ−dν |

min(dµ,dν)

5. IRLF(InP[r, s]) =
∑

µν∈E(H)
|dµ−dν |√

dµdν

6. IRF(InP[r, s]) =
∑

µν∈E(H)

(

dµ − dν
)2

7. IRLA(InP[r, s]) = 2
∑

µν∈E(H)
|dµ−dν

(dµ+dν)

AL(InP[r, s]) = 8rs+ 20r+ 20s− 12

=
∣

∣ln1− ln4
∣

∣{4(r+ s− 1)}
+

∣

∣ln2− ln4
∣

∣{4(rs+ r+ s)}
+

∣

∣ln4 − ln4
∣

∣{4(2rs− r− s)}

= 5.5452× (r+ s− 1)+ 2.7724 × (rs+ r+ s)+ 0

IRL(InP[r, s]) = 2.7724rs+ 8.3176r+ 8.3176s− 5.5452

=
|1− 4|

1
{4(r+ s− 1)} +

|2− 4|
2

{4(rs+ r+ s)}

+
|4 − 4|

4
{4(2rs− r− s)}

= 12(r+ s− 1)+ 4(rs+ r+ s)+ 0

IRLU(InP[r, s]) = 4rs+ 16r+ 16s− 12

=
|1− 4|
√
4

{4(r+ s− 1)}

+
|2− 4|
√
8

{4(rs+ r+ s)}

+
|4 − 4|
√
16

{4(2rs− r− s)}

= 6(r+ s− 1)+ 2.8284(rs+ r+ s)+ 0

IRLF(InP[r, s]) = 2.8284rs+ 8.8284r+ 8.8284s− 6

= (1− 4)2{4(r+ s− 1)}
+ (2− 4)2{4(rs+ r+ s)}
+ (4 − 4)2{4(2rs− r− r)}

= 36(r+ r− 1)+ 16(rs+ r+ s)+ 0

IRF(InP[r, s]) = 16rs+ 52r+ 52s− 36

= 2

[

12
5
(r+ s− 1)+ 4

3
(rs+ r+ s)+ 0

]

8. IRD1(InP[r, r]) =
∑

µν∈E(H) ln
{

1+
∣

∣dµ − dν
∣

∣

}

9. IRA(InP[r, s]) =
∑

µν∈E(H)

(

d−1/2
µ − d−1/2

ν

)2

10. IRGA(InP[r, r]) =
∑

µν∈E(H) ln
(dµ+dν)
2
√

dµdν

= 2

[

|1− 4|
(1+ 4)

{4(r+ s− 1)} +
|2− 4|
(2+ 4)

{4(rs+ r+ s)}

+
|4 − 4|
(4 + 4)

{4(2rs− r− s)
]

=
24

5
(r+ s− 1)+

8

3
(rs+ r+ s)

IRLA(InP[r, s]) =
8

3
rs+

112

15
r+

112

15
r−

24

5

= ln {1+ |1− 4| }{4(r+ r− 1)}
+ ln {1+ |2− 4| }{4(rs+ r+ s)}
+ ln{1+ |4 − 4|}{4(2rs− r− s)}

= ln 4 × {4(r+ s− 1)} + ln 3× {4(rs+ r+ s)} + 0

= 5.5452(r+ s− 1)+ 4.3944(rs+ r+ s)

IRD1(InP[r, s]) = 4.3944rs+ 9.9396r+ 9.9396s− 5.5452

=
(

1
−1/2 − 4

−1/2
)2

{4(r+ s− 1)}

+
(

2
−1/2 − 4

−1/2
)2

{4(rs+ r+ s)}

+
(

4
−1/2 − 4

−1/2
)2

{4(2rs− r− s)}

= (r+ s− 1)+ 0.1716(rs+ r+ s)

IRA(InP[r, s]) = 0.1716rs+ 1.1716r+ 1.1716s− 1

= ln
(1+ 4)

2
√
4

{4(r+ r− 1)}

+ ln
(2+ 4)

2
√
8

{4(rs+ r+ r)}

+ ln
(4 + 4)

2
√
16

{4(2rs− r− s)}

= 0.2231× 4(r+ s− 1)+ 0.0589× 4(rs+ r+ s)+ 0
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11. IRB(InP[r, s]) =
∑

µν∈E(H)

(√

dµ −
√
dν
)2

12. = 1

2
[|1− 4|{4(r+ s− 1)} + |2− 4|{4(rs+ r+ s)}

+|4 − 4|{4(2rs− r− s)}]

Theorem  4.2  The reverse irregularity indices for the 
graph of InP[r, s] with r, s ≥ 1 are corresponding to:

1. CIRDIF(InP[r, r]) = 32
3
rs+ 77

3
r+ 77

3
s− 15

2. CAL(InP[r, s]) = 8rs+ 20r+ 20s− 12

3. CIRL(InP[r, s]) = 4.3944rs+ 9.9396r+ 9.9396s− 5.5452

4. CIRLU(InP[r, s]) = 8rs+ 20r+ 20s− 12

5. CIRLF(InP[r, s]) = 4.6188rs+ 10.6188r+ 10.6188s− 6

6. CIRF(InP[r, s]) = 16rs+ 52r+ 52s− 36

7. CIRLA(InP[r, s]) = 4rs+ 44
5
r+ 44

5
s− 24

5

8. CIRD1(InP[r, s]) = 4.3944rs+ 9.9396r+ 9.9396s− 5.5452

9. CIRA(InP[r, s]) = 0.7144rs+ 1.7144r+ 1.7144s− 1

10. CIRGA(InP[r, s]) = 0.5752rs+ 1.4676r+ 1.4676s− 0.8924

11. CIRB(InP[r, s]) = 2.1436rs+ 6.1436r+ 6.1436s− 4

12. CIRRt(InP[r, s]) = 4rs+ 10r+ 10s− 6

= 0.8924(r+ s− 1)+ 0.2356(rs+ r+ s)

IRGA(InP[r, s]) = 0.2356rs+ 1.128r+ 1.128s− 0.8924

=
(√

1−
√
4

)2

{4(r+ s− 1)}

+
(√

2−
√
4

)2

{4(rs+ r+ s)}

+
(√

4 −
√
4

)2

{4(2rs− r− s)}

= 4(r+ s− 1)+ 1.3724(rs+ r+ s)

IRB(InP[r, s]) = 1.3724rs+ 5.3724r+ 5.3724s− 4

=
1

2
[|1− 4|{4(r+ s− 1)}

+|2− 4|{4(rs+ r+ s)}
+|4 − 4|{4(2rs− r− s)}]

= 6(r+ s− 1)+ 4(rs+ r+ s)

IRRt(InP[r, s]) = 4rs+ 10r+ 10s− 6

Proof  According to edge partition of InP[r, s] , and above 
definitions, we computed the irregularity indices, and the 
computations are given by:

1. CIRDIF(InP[r, s]) =
∑

µν∈E(H)

∣

∣

∣

cµ
cν

− cν
cµ

∣

∣

∣

2. CAL(InP[r, s]) =
∑

µν∈E(H)

∣

∣cµ − cν
∣

∣

3. CIRL(InP[r, s]) =
∑

µν∈E(H)

∣

∣lncµ − lncν
∣

∣

4. CIRLU(InP[r, s]) =
∑

µν∈E(H)
|cµ−cν |

min(cµ,cν)

=
∣

∣

∣

∣

4

1
−

1

4

∣

∣

∣

∣

{4(r+ s− 1)}

+
∣

∣

∣

∣

3

1
−

1

3

∣

∣

∣

∣

{4(rs+ r+ s)}

+
∣

∣

∣

∣

1

1
−

1

1

∣

∣

∣

∣

{4(2rs− r− s)}

= 15× (r+ s− 1)+
32

3
(rs+ r+ s)+ 0

= 15r+ 15s− 15+
32

3
rs+

32

3
r+

32

3
s

CIRDIF(InP[r, s]) =
32

3
rs+

77

3
r+

77

3
s− 15

= |4 − 1|{4(r+ s− 1)}
+ |3− 1|{4(rs+ r+ s)}
+ |1− 1|{4(2rs− r− s)}

= 12r+ 12r− 12+ 8rs+ 8r+ 8s

CAL(InP[r, s]) = 8rs+ 20r+ 20s− 12

=
∣

∣ln4 − ln1
∣

∣{4(r+ s− 1)}
+

∣

∣ln3− ln1
∣

∣{4(rs+ r+ s)}
+

∣

∣ln1− ln1
∣

∣{4(2rs− r− s)}

= 5.5452× (r+ s− 1)+ 4.3944 × (rs+ r+ s)+ 0

CIRL(InP[r, s]) = 4.3944rs+ 9.9396r+ 9.9396s− 5.5452
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5. CIRLF(InP[r, r]) =
∑

µν∈E(H)
|cµ−cν |√

cµcν

6. CIRF(InP[r, s]) =
∑

µν∈E(H)

(

cµ − cν
)2

7. CIRLA(InP[r, s]) = 2
∑

µν∈E(H)
|cµ−cν |
(cµ+cν)

= 2

[

12
5
(r+ s− 1)+ 8

4
(rs+ r+ s)+ 0

]

=
|4 − 1|

1
{4(r+ s− 1)}

+
|3− 1|

1
{4(rs+ r+ s)}

+
|1− 1|

1
{4(2rs− r− s)}

= 12(r+ s− 1)+ 8(rs+ r+ s)+ 0

CIRLU(InP[r, s]) = 8rs+ 20r+ 20s− 12

=
|4 − 1|
√
4

{4(r+ s− 1)}

+
|3− 1|
√
3

{4(rs+ r+ s)}

+
|1− 1|
√
1

{4(2rs− r− s)}

= 6(r+ s− 1)+ 4.6188(rs+ r+ s)+ 0

CIRLF(InP[r, s]) = 4.6188rs+ 10.6188r+ 10.6188s− 6

= (4 − 1)2{4(r+ s− 1)}
+ (3− 1)2{4(rs+ r+ s)}
+ (1− 1)2{4(2rs− r− s)}

= 36(r+ s− 1)+ 16(rs+ r+ s)+ 0

CIRF(InP[r, r]) = 16rs+ 52r+ 52s− 36

= 2

[

|4 − 1|
(1+ 4)

{4(r+ s− 1)}

+
|3− 1|
(3+ 1)

{4(rs+ r+ s)}

+
|1− 1|
(1+ 1)

{4(2rs− r− s)
]

=
24

5
(r+ s− 1)+ 4(rs+ r+ s)

8. CIRD1(InP[r, s]) =
∑

µν∈E(H)

ln
{

1 +
∣

∣cµ − cν
∣

∣

}

9. CIRA(InP[r, r]) =
∑

µ∈E(µ)

(

c
−1/2
µ − c

−1/2
ν

)2

10. CIRGA(InP[r, r]) =
∑

µν∈E(µ) ln
(cµ+c|nu)
2
√
cµν

11. CIRB(InP[r, s]) =
∑

µν∈E(µ) (
√
cµ −√

cν)
2

CIRLA(InP[r, s]) = 4rs+
44

5
r+

44

5
s−

24

5

= ln{1+ |4 − 1|}{4(r+ s− 1)}
+ ln{1+ |3− 1|}{4(rs+ r+ s)}
+ ln{1+ |1− 1|}{4(2rs− r− s)}

= ln4 × {4(r+ s− 1)} + ln3× {4(rs+ r+ s)} + 0

= 5.5452(r+ s− 1)+ 4.3944(rs+ r+ s)

CIRD1(InP[r, s]) = 4.3944rs+ 9.9396r+ 9.9396s− 5.5452

=
(

4
−1/2 − 1

−1/2
)2

{4(r+ s− 1)}

+
(

3
−1/2 − 1

)2

{4(rs+ r

+ s)} +
(

1
−1/2 − 1

−1/2
)2

{4(2rs− r− s)}

= (r+ s− 1)+ 0.7144(rs+ r+ s)

CIRA(InP[r, s]) = 0.7144rs+ 1.7144r+ 1.7144s− 1

= ln
(4 + 1)

2
√
4

{4(r+ s− 1)}

+ ln
(3+ 1)

2
√
3

{4(rs+ r+ s)}

+ ln
(1+ 1)

2
√
1

{4(2rs− r− s)}

= 0.2231× 4(r+ s− 1)+ 0.1438× 4(rs+ r+ s)+ 0

= 0.8924(r+ s− 1)+ 0.5752(rs+ r+ s)

CIRGA(InP[r, s) = 0.5752rs+ 1.4676r+ 1.4676s− 0.8924
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12. CIRRt(InP[µν]) = 1
2

∑

µ∈E(µ) |cµ − cν |

=
(√

4 −
√
1

)2

{4(r+ s− 1)}

+
(√

3−
√
1

)2

{4(rs)+ r+ s}

+
(√

1−
√
1

)2

{4(2rs− r− s)}

= 4(r+ s− 1)+ 2.1436(rs+ r+ s)

CIRB(InP[r], s) = 2.1436rs+ 6.1436r+ 6.1436s− 4

=
1

2
[|4 − 1|{4(r+ s− 1)}

+|3− 1| {4(rs+ r+ s)}
+|1− 1|{4(2rs− r− s)}]

Numerical results and discussion
Here, we explored the indium phosphide (InP) , defined 
in Fig.  1, the moving parameters for this structure are 
s, r ≥ 1 . We have computed irregularity indices as well as 
reverse irregularity indices of indium phosphide InP[s, r] . 
The numerical values of the derived analytical expres-
sions of degree-based irregularity indices and reverse 
irregularity indices are presented in Tables  2, 3, and 
the corresponding graph representations are shown in 
Figs.  2, 3 respectively. The comparison of these indices 

= 6(r+ s− 1)+ 4(rs+ r+ s)

CIRRt(InP[s, r]) = 4r, s+ 10r+ 10s− 6

Table 2  Numerical table of irregularity indices associated with 
the structure of  InP[s, r] for different values of s, r.

[s, r] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5]

IRDIF (ℍ) 33 93 165 249 345

AL(ℍ) 36 100 180 279 388

IRL(ℍ) 13.8624 38.8148 69.312 105.354 146.9408

IRLU(ℍ) 24 68 120 180 248

IRLF(ℍ) 14.4852 40.6272 72.426 109.8816 152.994

IRF(ℍ) 84 236 420 636 884

IRLA(ℍ) 42.6667 95.4667 153.6 217.0667 285.8667

IRD1(ℍ) 18.7284 51.7908 93.642 144.282 203.7108

IRA(ℍ) 1.5148 4.3728 7.574 11.1184 15.006

IRGA(ℍ) 1.5992 4.562 7.996 11.9012 16.2776

IRB(ℍ) 8.1172 22.9792 40.586 60.9376 84.034

IRRt (ℍ) 18 50 90 138 194

Table 3  Numerical table of reverse irregularity indices 
associated with the structure of InP[s, r] for different values of s, r.

[∂] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5]

CIRDIF(∂) 47 130.3333 235 361 508.3333

CAL(∂) 36 100 180 276 388

CIRL(∂) 18.7284 51.7908 93.642 144.282 203.7108

CIRLU(∂) 36 100 180 276 388

CIRLF(∂) 19.8564 54.9504 99.282 152.8512 215.658

CIRF(∂) 84 236 420 636 884

CIRLA(∂) 16.8 46.4 84 129.6 183.2

CIRD1(∂) 18.7284 51.7908 93.642 144.282 203.7108

CIRA(∂) 3.1432 8.7152 15.716 24.1456 34.004

CIRGA(∂) 2.618 7.2788 13.09 20.0516 28.1636

CIRB(∂) 10.4308 29.1488 52.154 79.4464 111.026

CIRRt(∂) 18 50 90 138 194

Fig. 2  Graphical representation of Table 2

Fig. 3  Graphical representation of Table 3



Page 9 of 10Salman et al. BMC Chemistry          (2024) 18:101 	

in Figs. 2, 3 depict that, IRF(H) and CIRF(H) have higher 
values as compared to other indices, it shows that these 
indices have high power of prediction of the physico-
chemical properties of the molecular structure. Hence, 
the analytical expressions of these indices, in turn, 
referred to as tools for predicting several properties of 
molecular compounds in replacement of the  laboratory 
experiments. In this regard, these indices are critical for 
capturing the molecular structure into a real number and 
predicting the important properties of chemical com-
pounds. As a result, we believe that our these research 
results could be useful in predicting various properties of 
indium phosphide (InP).

Conclusion
Graph theory is a useful tool to model and characterize 
the molecular structures. In graph theory, the 
connections between atoms are represented as edges 
and the atoms themselves are represented as nodes. 
The distance between atoms, bond types, and 3D 
shapes of molecules can then be used to characterize 
the topology of the molecule. Furthermore, it can be 
used to calculate the topological descriptors of the 
molecule such as the degree-based and reverse degree-
based irregularity toplogical indices. In this study, 
the 3D crystal structure of the InP is topologically 
modeled via partition of the edges, and derived closed 
form expressions for its irregularity indices. The 
numerical values of the derived analytical expressions 
of degree-based irregularity indices and reverse 
irregularity indices are then obtained and performed 
a comparatively analysis. The results show that, the 
topological indices IRF(H) and CIRF(H) have higher 
values as compared to other indices, it means that 
these indices have high power of prediction of the 
physico-chemical properties of indium phosphide 
(InP) . Hence, the derived analytical expressions 
of these indices, in turn, referred to as tools for 
predicting several properties of molecular compounds 
in replacing  laborious laboratory experiments. In 
this regard, these indices are critical for capturing the 
molecular structure into a real number and predicting 
the important properties of chemical compounds. 
We believe that, these results will surely be helpful 
in investigating the QSPR/QSAR analysis as well as 
understanding the deep irregular behavior of the 
indium phosphide (InP) . In the near future, we aim to 
calculate the distance based and resistance distance 
based topological indices for certain 3D crystal 
structures.
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