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Abstract 

VEGFR-2 kinase inhibitors are clinically approved drugs that can effectively target cancer angiogenesis. However, 
such inhibitors have adverse effects such as skin toxicity, gastrointestinal reactions and hepatic impairment. In this 
study, machine learning and Topomer CoMFA, which is an alignment-dependent, descriptor-based method, were 
employed to build structural activity relationship models of potentially new VEGFR-2 inhibitors. The prediction 
ac-curacy of the training and test sets of the 2D-SAR model were 82.4 and 80.1%, respectively, with KNN. Topomer 
CoMFA approach was then used for 3D-QSAR modeling of VEGFR-2 inhibitors. The coefficient of q2 for cross-
validation of the model 1 was greater than 0.5, suggesting that a stable drug activity-prediction model was obtained. 
Molecular docking was further performed to simulate the interactions between the five most promising compounds 
and VEGFR-2 target protein and the Total Scores were all greater than 6, indicating that they had a strong hydrogen 
bond interactions were present. This study successfully used machine learning to obtain five potentially novel 
VEGFR-2 inhibitors to increase our arsenal of drugs to combat cancer.
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Introduction
Hepatocellular carcinoma (HCC) originates from 
hepatocytes and is a malignant tumor with the 
pathological characteristics of cancer cells arranged in 
substantial masses [1]. The number of deaths from liver 
cancer increased significantly every year, and the 5-year 
survival rate ranges from 12 to 35% depending on how 
early it is detected [2, 3]. In China, about 383,000 people 

die from liver cancer every year, and this accounts for 
about 51% of the world’s total [4]. The fatality rate also 
ranks second in the cause of death from malignant 
tumors in China, and the recurrence rate is high with 
poor prognosis [4, 5].

Vascular endothelial growth factor receptors (VEGFR) 
including VEGFR-1, VEGFR-2 andVEGFR-3 are 
members of the tyrosine kinase receptor superfamily. 
VEGFR-2 is widely expressed in epithelial cells, smooth 
muscle tissue, electrically excited cells and some tumor 
cells [6]. It is also highly expressed in cancer cells and 
is mainly involved in tumor growth and proliferation 
[6]. The malignant proliferation of hepatoma cells not 
only depends on their own rapid growth characteristics, 
but is also related to the local microenvironment and 
angiogenesis [7, 8]. Studies also show that hepatoma cells 
pro-mote angiogenesis by secreting VEGF-A and express 
VEGFR. In addition, they activate intracellular VEGFR-2 
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on tumor cell membranes in order to promote growth [9, 
10]. Hence, VEGFR-2 could be considered as a key drug 
target for the treatment of liver cancer.

VEGFR-2 inhibitors are generally classified into the 
following categories according to their binding mode: (a) 
Type I kinase inhibitors, such as sunitinib and brivanib 
alaninate, whose heterocycles competitively occupy the 
hydrophobic cavity with hydrophobic forces, instead 
of ATP [11, 12]. (b) Novel type I kinase inhibitors, 
including lenvatinib, fruquintinib and axitinib, each 
of which has an additional chemical fragment based 
on the structure of type I kinase inhibitor. These can 
interact with narrow cavity of the pocket at Asp1046 
and Glu885 through hydrogen bonds [13–15]. (c) In 
addition to forming hydrogen bonds with the amino 
group, type II kinase inhibitors including, sorafenib, 
tivozanib and cabozantinib, which can occupy aromatic 
rings of the two hydrophobic cavities [16–18]. (d) Novel 
type II kinase inhibitors, including ponatinib, which can 
introduce a structural fragment to the aromatic ring of 
the type II kinase inhibitor to occupy the outer portion of 
hydrophilic cavity II [19]. However, the weak selectivity 
against VEGFR-2 kinase inhibitors may also lead to 
adverse effects such as skin toxicity, gastro-intestinal 
reactions and hepatic impairment. Hence, there is a 
need to find novel and effective VEGFR-2 inhibitors 
for use in cancer treatment. Due to the difficulties in 
drug development, molecular docking, structure–
activity relationships/quantitative-structure–activity 
relationships and other computer-aided drug research 
are gradually playing an important role in the field of 
drug design [20–23].

In this study, machine learning, Topmer CoMFA 
and molecule docking approaches were used to build 
two-dimensional/structure–activity relationships (2D-
SAR), three-dimensional quantitative-structure–activity 
relationships (3D-QSAR) and VEGFR-2 inhibitors-
receptor interaction models were used to find potentially 
new VEGFR-2 inhibitors.

Materials and methods
Data preparation
The process of selecting training and validation sets in a 
study involves choosing subsets of data from the overall 
dataset to build and assess a predictive model. The 
selection is typically guided by principles that ensure 
the model’s generalizability and effectiveness. Random 
sampling is employed to ensure that both the training 
and validation sets are representative of the overall 
dataset. Here, for the 2D-SAR investigation, a training 
set consisting of 243 inhibitors and 275 non-inhibitors 
was randomly chosen (refer to Additional file 1:Training 
set for 2D-SAR). Similarly, a test set was established, 

comprising 72 inhibitors and 71 non-inhibitors (refer 
to Additional file  2:Test set for 2D-SAR). Additionally, 
after those inhibitors without IC50 values were filtered, 
which are not suitable for QSAR model. As a result, 63 
inhibitors with pIC50 were kept as data set to building 
Topomer COMFA prediction model. The molecular 
structures of VEGFR-2 inhibitors along with their 
corresponding IC50 values were compiled to SDF file for 
the purpose of conducting a 3D-QSAR study (refer to 
Additional file  3:The molecular structures of VEGFR-2 
inhibitors along with their corresponding pIC50).

In order to develop a prediction model for VEGFR-2 
inhibitors, it was imperative to characterize the acquired 
compounds. Molecular descriptors serve as crucial tools 
in the fields of chemistry, pharmacology, environmental 
protection, and health research. Here, Discovery Studio 
2020 software was utilized to generate a set of 160 
molecular descriptors.

Feature subset selection
The MRMR feature selection method, which is a filter 
selection method based on the mutual information 
maximization, was used to screening the molecule 
descriptors. The Maximum Relevance Minimum 
Redundancy (MRMR) feature selection method is 
based on the information theory concept of mutual 
information. Mutual information is a measure of the 
statistical dependence between two variables, indicating 
how much information one variable provides about 
the other [24, 25]. The MRMR method aims to select a 
subset of features that maximizes the relevance with the 
target variable while minimizing redundancy among 
the selected features. The underlying theory is that 
relevant features should have a strong relationship with 
the target variable, while redundant features should 
provide redundant or overlapping information that does 
not contribute significantly to the overall predictive 
power. The MRMR feature selection were performed by 
Expminer 2.0.

Machine learning algorithms
Machine learning algorithms are increasingly being 
used to deal with the growth of huge data in the life 
sciences including drug design, protein prediction, 
epidemic prediction [26–44]. In this paper, ten machine 
learning algorithms including K nearest neighbor (KNN), 
Adaboost, Bagging, Random Forest (RF), Random 
Trees (RT), AD tree, C4.5, Bayes net, Support vector 
ma-chine(SVM) and Artificial neural network(ANN) 
were employed to building a prediction model for 
selecting the optimal VEGFR-2 inhibitors. All the 
parameters of each algorithms applied in this study 
could be referred to Additional file  5. The values of the 
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parameters of the machine learning approaches. The brief 
theories of these algotithms are as following: The values 
of the parameters of the machine learning approaches.

K nearest neighbor (KNN)
The K-Nearest Neighbors (KNN) algorithm is a 
supervised machine learning algorithm that can be 
used for both classification and regression tasks. It is a 
non-parametric method, meaning it does not make any 
assumptions about the underlying data distribution. At 
its core, the KNN algorithm operates on the principle of 
similarity. It assumes that data points with similar feature 
values are likely to have similar labels or outcomes. 
In other words, if a new data point is similar to its 
neighboring points, it is likely to belong to the same class 
or have a similar target value [45].

Adaboost
Adaboost is a machine learning algorithm that belongs to 
the family of ensemble methods. It is primarily used for 
binary classification tasks, although it can be extended 
to handle multi-class problems as well. The main idea 
behind Adaboost is to iteratively train a series of weak 
classifiers on weighted versions of the training data. A 
weak classifier is a simple model that performs slightly 
better than random guessing. In each iteration, Adaboost 
adjusts the weights of misclassified samples, placing 
more emphasis on difficult-to-classify instances [46]. In 
this study.

Bagging
Bagging is an integrated learning algorithm. It works 
by generating multiple weak learners and assembling 
them into an integrated prediction algorithm. When 
a prediction result is given, the integrated algorithm 
averages the results of the integrated multiple weak 
learners. When a category prediction is given, a plural 
vote is performed. The multiple prediction algorithms 
it contains originate from bootstrap replications of 
the learning sets and use these replication sets as new 
learning sets. Bagging’s weak learners are not correlated, 
but originate from random sampling. Since the sampling 
is random and samples are put back after sampling, there 
is a possibility of repeated sample collection [47].

Random forest (RF)
Random Forest is an ensemble learning algorithm widely 
used in machine learning for classification and regression 
tasks. In Random Forest, a collection of decision trees is 
built using bootstrapping. Additionally, at each split in 
a tree, only a random subset of features is considered. 
For classification tasks, the final prediction is obtained 
through a voting mechanism, where each tree “votes” 

for the class label of a new data point, and the majority 
class label is assigned as the predicted label. In regression 
tasks, the final prediction is the average of the predicted 
values from all trees [48].

Random trees (RT)
Random Tree, also known as Random Decision Tree, 
is a machine learning algorithm that is a variant of 
the popular decision tree algorithm. It combines the 
concepts of decision trees with randomization to create 
a more diverse and robust model. In a Random Tree, the 
construction process is similar to a traditional decision 
tree. It recursively splits the data based on different 
features and their thresholds to create a tree structure. 
However, there are two key differences that introduce 
randomness [49].

C4.5
C4.5 is a decision tree algorithm developed by Ross 
Quinlan and widely used in machine learning for 
classification. It is an extension of the previous ID3 
(Iterative Dichotomizer 3) algorithm, introducing several 
improvements and enhancements. C4.5 algorithm 
constructs a decision tree by recursively partitioning the 
training data according to the features that provide the 
greatest information gain. The aim is to create a tree that 
accurately predicts the class labels of instances based on 
their feature values [50].

Bayes net
A Bayesian Network is a probabilistic graphical model 
that models dependencies and uncertainties among 
variables using directed acyclic graphs (DAGs). It 
assumes conditional independence between variables 
given their parent nodes. Each node has a conditional 
probability table (CPT) associated with it, representing 
the probability distribution given its parent node’s 
state. Bayesian networks can be used for inference and 
prediction, allowing for inferences and predictions on 
unobserved variables. The structure and parameters of 
Bayesian networks can be learned from data containing 
known dependencies between variables and their states 
[51].

Support vector machine (SVM)
Support Vector Machine (SVM) is a powerful supervised 
learning algorithm for classification and regression tasks. 
It is widely used to solve complex pattern recognition 
and decision boundary estimation problems. The basic 
principle of SVM is to find an optimal hyperplane 
for separating different classes of data points and 
maximizing the distance between the nearest classes 
of data points, which are called support vectors. The 
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intuitive understanding of this approach is that by 
maximizing the bounds, SVM aims to achieve better 
generalization ability and robustness to unseen data [52].

Artificial neural network (ANN)
Artificial Neural Network (ANN) is a computational 
model inspired by the structure and function of 
biological neural networks in the human brain. It is a 
powerful machine learning algorithm used for various 
tasks such as pattern recognition, classification, 
regression and optimization. The basic building blocks 
of artificial neural networks are artificial neurons, 
also known as nodes or perceptrons. Neurons receive 
inputs, apply weights to them, and produce outputs 
based on an activation function. These neurons are 
organized into a hierarchical structure that usually 
includes an input layer, one or more hidden layers, 
and an output layer. Information flows in the network 
in the forward direction, with each layer transforming 
the inputs until the final output is generated. During 
the training process, the connection weights between 
neurons are iteratively adjusted using optimization 
algorithms such as gradient descent. The goal is to 
minimize the difference between the predicted output 
and the actual output, thus improving the performance 
of the network [53].

Topomer CoMFA
Topomer CoMFA is a virtual screening technique based 
on QSAR as proposed by Cramer [54, 55] which can be 
used as a Topomer technique and a CoMFA technique 
to overcome the associated alignment problems [56–
58]. Topomer CoMFA has the advantage of simplicity, 
it can be modeled quickly and its modelling results 
are comparable to those of conventional CoMFA. In 
contrast to conventional CoMFA, Topomer CoMFA 
does not require manual stacking of ligands and can 
automatically stack regular Topomer. Instead, as with 
conventional CoMFA, stacking takes probe atoms to 
calculate electrostatic and steric fields and to model 
PLS. In the Topomer CoMFA method, the molecule 
is divided into different primitive fragments called 
“Topomers”. Each topomer represents a specific part of 
the molecule, similar to a functional group or moiety 
in a drug molecule. Subsequently, a three-dimensional 
molecular field is generated for each topomer, which 
describes various chemical properties within the 
molecule, such as steric configuration and charge 
distribution. These properties are used to construct 
a model describing the molecule-target interaction. 
Finally, using the collected activity data and molecular 
field information, a statistical analysis was performed 

to build a 3D-QSAR model related to biological activity. 
The model helps to predict the biological activity of 
other compounds. It is worth noting that Topomer 
CoMFA is a derivative of the CoMFA approach, and 
the core idea is to enhance the accuracy of prediction 
by modeling specific parts of the molecule. The exact 
methodology may vary depending on the study and the 
software tool [54, 59]. In this study, Topomer CoMFA 
were performed by Sybyl X2.0.

Molecular docking
Molecular docking is a fundamental tool in the study of 
interactions between bio-logical molecules, based on the 
‘lock and key model’ and the ‘induced-fit theory’ [60, 61]. 
The ‘lock and key’ model suggests that the matching of 
spatial shapes is the main requirement for distinguishing 
between different compounds. The two main topics of 
molecular docking methods are spatial matching and 
energy matching between molecules. Spatial matching 
is the basis for intermolecular interactions to occur, 
while energy matching is the basis for maintaining 
stable binding between molecules. Methods used for 
calculations regarding geometric matching include lattice 
point calculations, fragment growth, etc., while methods 
for energy calculations include simulated annealing, 
genetic algorithms, and so on. All of the above methods 
play a role in simplifying the system, and according to 
the degree of simplification as well as the way, they can 
be divided into the following three categories: rigid 
docking, semi-flexible docking and flexible docking. 
In this study, semi-flexible docking was applied. This 
method allows a certain degree of conformational change 
of the small molecules under study during the docking 
process, although the conformations of large molecules 
are generally fixed, and also restricts the adjustment of 
the conformations of small molecules, such as fixing the 
bond lengths and angles of certain non-critical parts [60]. 
Semi-flexible docking methods are more widely used 
among the various docking methods due to the amount 
of computation included as well as the predictive power 
of the model [62–68]. The steps of Semi-flexible docking 
are as following: firstly, a 2D small molecule database is 
constructed, secondly, the small molecules are processed 
according to the atom types and chemical bonding 
properties and converted into 3D structures and then 
saved; at the same time, the crystal structures of biological 
macromolecules are searched and downloaded through 
the Protein Crystal Structure Database (PDB) of the 
RCSB Protein Data Bank (RCSB) and the operations such 
as hydrogenation, charging, and energy minimisation are 
performed, combined with the establishment of pocket 
positions. At the same time, the crystal structure of the 
biomolecule was searched and downloaded from the PDB 
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(RCSB Protein Data Bank), and hydrogenation, charge 
addition, and energy minimisation were performed. 
After the pocket position was established, the prepared 
small molecules were docked at the active pocket of the 
macromolecular receptor, and the conformations were 
optimized and interactions evaluated by a function; 
and the candidate molecules were filtered by a scoring 
function for future studies [69]. In this study, molecule 
docking was performed by Discover Studio 2020.

Molecular dynamics simulation
Molecular Dynamics (MD) simulation is a computational 
technique employed to simulate the motion of atoms 
and molecules over a specified period. The fundamental 
principles underlying MD simulation are rooted in 
classical mechanics, quantum mechanics for atomic 
interactions, and the concepts of statistical mechanics. 
Molecular Dynamics simulation, by numerically 
solving Newton’s equations of motion, allows for a 
detailed exploration of the structural, dynamic, and 
thermodynamic aspects of molecular systems. This 
method finds broad applications in biophysics, materials 
science, and drug design.

(1) Potential Energy

The potential energy function is pivotal in molecular 
dynamics simulations, outlining intra- and inter-
molecular interactions. It encompasses terms for bond, 
angle, dihedral angle energies, van der Waals forces, 
electrostatic forces, and charge-charge interactions. 
Parameters from this function seamlessly integrate into 
a force field, composed of mathematical expressions 
describing forces between atoms. This synergy forms the 
foundation for accurately modeling dynamic molecular 
behavior.

(2) Newton’s Equations of Motion

Newton’s second law (F = ma)guides molecular 
dynamics, where F is the force from the force field, 
calculating acceleration (a) for each atom. This principle 
underlies molecular dynamics simulations, with 
numerical integration methods like Verlet or Leapfrog 
determining atomic velocity and position evolution over 
time.

(3) Initial and Boundary Conditions

Simulation begins with assigned initial positions and 
velocities, often stabilized by energy minimization. 
Boundary conditions, periodic or non-periodic, define 
interactions at system edges.

(4) Temperature and Pressure Control

Thermal bath algorithms, e.g., Nosé-Hoover 
thermostat, control temperature, while barostat 
algorithms manage pressure, crucial for realistic 
molecular environments.

(5) Simulation Time and Time Step

Simulation time, measured in femtoseconds or 
picoseconds, defines the overall duration, setting 
temporal scope. The time step, also in femtoseconds or 
picoseconds, governs numerical integration granularity, 
crucial for tracking atomic movements and determining 
computational efficiency.

(6) Dynamical Analysis

Examining energy profiles, velocity distributions, 
temperature, pressure, and other dynamic parameters 
refines understanding of molecular system dynamics.

Results and discussion
Feature selection and construction of 2D‑SAR prediction 
model
To correctly determine an optimal VEGFR-2 inhibitor 
before structural modification and synthesis by using 
computer modeling programs would shorten the task of 
finding potentially useful drugs. Hence, in this study, a 
2D-SAR prediction model was built to identify VEGFR-2 
inhibitors. As the features affect the model’s prediction 
accuracy, maximum relevance-minimum redundancy 
(MRMR), which is a feature selection method, was 
applied, before the model was built. Generally, a greater 
number of descriptors can lead to improved statistical 
results and correlations. In QSAR studies, a guideline 
often suggests selecting the maximum number of 
descriptors while adhering to the principle that the 
descriptor count should not exceed 1/5 of the number 
of molecules in the training dataset [70]. It’s important 
to note that while increasing the number of descriptors 
can enhance the statistical outcomes, it’s essential to 
balance this with the risk of overfitting and ensuring 
that the chosen descriptors are biologically relevant 
and meaningful in the context of the study’s objectives. 
The decision to use a higher number of descriptors 
should be made in accordance with the specific goals of 
the research, the characteristics of the dataset, and the 
available domain knowledge.

After screening the molecular descriptors with MRMR, 
a total of 25 molecule descriptors (the definitions see 
Additional file  4: Definitions of 25 descriptors) were 
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obtained from the original 160 molecule descriptors 
(Fig.  1). Figure  1 shows that the correlation between 
the 25 descriptors and target is weak, which means that 
there is no strongly correlated descriptor, and of these 
CoordDimension and Molecular_PolarSurfaceArea are 
most correlated features.

Based on these 25 molecule descriptors, 10 machine 
learning approaches were used to build the prediction 
model (Table  1). The prediction ability of model was 
evaluated by tenfold cross-validation tests. From Table 1, 
it can be seen that the prediction accuracies with 
Adaboost, Random Forest and KNN are higher than 
80% and the latter two achieved 87.3%. An independent 
set test was applied to further evaluate the model. The 
results also showed that the prediction accuracy of KNN 
achieved 84.3%, which was higher than the other nine 
machine learning algorithms. Hence, KNN was used 

to build the final prediction model due to its excellent 
prediction ability. Adaboost is a traditional ensemble 
learning algorithms, which has been applied widely in 
medicine science due to its capacity for over fitting [71, 
72]. However, Adaboost is a time consuming algorithm 
due to the special form of sample selection and its 
classifier weighting [46]. Although KNN is a simple 
algorithm which judges unknown samples according 
to their clustering ability, as the prediction accuracy 
of KNN was the highest, it was selected to build the 
final prediction model. The prediction accuracy also 
showed that the combination of the molecule descriptors 
contributed to model building although singe descriptors 
were not correlated to the prediction.

For machine learning algorithm, optimizing parameters 
is an important issue. For example, for Support Vector 
Machine (SVM), parameters like Capacity (C), kernel 

Fig. 1 Correlation matrix of the 25 descriptors used
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choice, and gamma play key roles in accurately discerning 
inhibitor activity [73]. The Capacity parameter balances 
model complexity and generalization, sigma shapes the 
kernel function’s behavior to capture both global trends 
and local variations, and gamma influences the decision 
boundary’s reach [74]. Through a systematic approach 
including grid search, cross-validation, and multiple 
metrics, optimal parameters were selected to enhance 
the SVM model’s performance [75, 76]. Interesting, in 
this study, the results indicate that the simplest k-Nearest 
Neighbors approach yielded the best predictive 
outcomes. This phenomenon may be elucidated that 
nearest neighbor methods directly consider the samples 
in the training data that are most similar to the target 
samples, and thus may capture these features more 
accurately when the data has significant local similarity 
and density distribution. Moreover, complex models may 
suffer from dimensionality catastrophe when the features 
are of high dimensionality, whereas nearest neighbor 
methods are able to maintain a better generalization 
ability in high-dimensional spaces due to their local 
similarity-based approach. In addition, complex models 
are prone to overfitting problems on small sample 
data, whereas nearest neighbor methods may have an 
advantage in this regard due to fewer parameters. The 
nearest neighbor method is also relatively less susceptible 
to noise because it focuses on neighboring training 

samples. Furthermore, the complexity of the model 
may affect its performance, while the nearest neighbor 
method is suitable for small sample data as a relatively 
simple model. Finally, the simplest nearest-neighbor 
method achieves the best prediction results probably 
because it is more adapted to the data characteristics, has 
better generalization ability, and can effectively capture 
local similarities and distributions in the data while 
avoiding the problems faced by complex models, such as 
over-fitting and dimensionality catastrophe.

Machine learning (ML) models can serve as powerful 
screening tools to search databases such as Zinc, Binding 
DB, and NCI databases for potential drug candidates and 
predict the activity of database compounds. In this study, 
our model with KNN could be trained on a dataset of 
known active and inactive compounds against a specific 
biological target or activity, learning to correlate chemical 
features with biological responses. Once trained, KNN 
model can be applied to screen large compound libraries, 
such as those in Zinc, Binding DB, and NCI databases, to 
identify molecules with the highest likelihood of activity 
against the target of interest. Additionally, our prediction 
model can predict the activity or potency of database 
compounds based solely on their chemical structures, 
enabling rapid virtual screening and prioritization of 
compounds for experimental testing. For instance, our 
prediction model can be integrated into online prediction 

Table 1 The prediction accuracy obtained by using different 
machine learning algorithms

Data set Algorithm SP SN ACC 

Training Set Adaboost 87.7 84.0 85.7

Bagging 75.7 81.1 78.6

RandomForest 88.5 86.2 87.3

RandomTree 77.0 82.5 81.5

C4.5 77.0 82.5 79.9

ADTree 75.7 69.1 72.2

KNN 85.2 88 87.3

Bayes Net 80.7 69.5 74.7

SVM 63.0 75.6 69.7

ANN 79.8 86.5 83.4

Test Set Adaboost 86.1 81.7 83.7

Bagging 75.5 76.1 75.8

RandomForest 85.4 79.4 82.2

RandomTree 78.1 73.9 75.8

C4.5 67.5 78.9 73.7

ADTree 70.9 70.6 70.7

KNN 82.1 83.9 84.3

Bayes Net 78.1 58.7 67.1

SVM 60.3 76.7 69.2

ANN 76.8 80.6 78.9

Fig. 2 A structural representation of the compound template 
with the highest activity obtained.  (A1:–NH2,  A2:–HCNO–C3H6OH, 
 A3:–CH3,  A4:F,A5:–H)

Table 2 The results from the two Topomer CoMFA model 
studies

Dataset Model 1 Model 2

Cutting 
model

q2 0.678 0.309

R2 0.899 0.508
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servers where users can input the chemical structure of a 
compound and receive a prediction of its activity against 
a specific target, providing a user-friendly platform for 
drug discovery and design.

Construction of a Topomer CoMFA model
Sixty-three inhibitor compound molecules together 
with their IC50 were collected from inhibitors to build 
a Topomer CoMFA model. The compound with the 
highest activity (Figure  2) was selected as the template. 
Two different cutting methods were chosen to build 
Topomer CoMFA model. Six principle components 
were applied y in modeling. The  q2 values for models 1 
and 2 were 0.678 and 0.309, respectively (see Table  2). 
The  R2 values for models 1 and 2 were 0.899 and 0.508, 
respectively (see Table 2). As the  q2 values of the model 
1 was both greater than 0.5, this meant the established 
models were statistically significant (p  <  0.05). Hence, 
model 1 was chosen to further study VEGFR-2 drug 
design and activity predictions. A cross-validation test 
was also performed to measure the prediction ability and 
experimental activity distribution of model 1 (Table 3).

Besides well quantitatively prediction, Topomer 
CoMFA model also provide relevant field information. 
Model 1 showed steric and electrostatic contour maps 

for the R1 and R2 sub-structure groups. The compound 
with highest activity was selected as an example to 
analyze (see Fig. 3). Green, yellow, blue and red represent 
adding large volume groups, small volume groups, 
positive charged groups and negative-charged groups, 
respectively, which can enhance the compound’s activity. 
Hence, increasing electrostatic field by adding big group 
at  A3 will benefit high activity and vice versa. Meanwhile, 
small groups with a positive-charge may also increase the 
compound’s bioactivity in A2 group. Negatively charged 
groups such as –F,–Br, will improve the activity at A4. 
Positively charged groups such as  CH3+ would increase 
the activity at A5. Large groups such as sulfonic acid 
group can also be introduced at A4, which may improve 
the drug molecular activity.

Here, although we collected over 600 chemical 
compounds, only a subset of compounds had PIC50 
values. Therefore, after screening, we obtained a final set 
of 63 VEGFR-2 inhibitor molecules with pIC50 values. 
Through the established model, we observed that the 
model’s predictive accuracy meets our requirements and 
is suitable for research purposes. However, we are aware 
that larger datasets contribute to more stable models. 
Therefore, we will continue to focus on relevant chemical 
compounds and update our dataset in the future.

Table 3 The predicted and actual pIC50 of compounds for model 1

NO. pIC50 NO. pIC50 NO. pIC50

Actual Predict Actual Predict Actual Predict

1 6.30 6.31 22 6.98 7.05 43 6.41 5.88

2 6.00 6.14 23 6.94 6.24 44 6.4 6.60

3 6.41 6.39 24 6.93 6.41 45 6.38 7.03

4 6.72 6.72 25 6.92 7.25 46 6.3 6.11

5 6.77 6.98 26 6.91 6.85 47 6.3 7.49

6 6.87 6.74 27 6.89 6.13 48 6.29 7.48

7 6.6 6.82 28 6.87 5.85 49 6.25 6.64

8 6.58 6.81 29 6.84 6.87 50 6.23 6.24

9 6.52 6.37 30 6.77 6.03 51 6.21 6.63

10 7.37 7.40 31 6.74 7.22 52 6.15 6.27

11 7.12 6.89 32 6.73 6.81 53 6.15 7.37

12 7.08 6.78 33 6.72 7.63 54 6.13 6.52

13 6.94 7.15 34 6.7 6.22 55 6.12 6.56

14 6.25 6.45 35 6.67 7.51 56 6.00 6.16

15 6.30 6.25 36 6.63 7.48 57 6.00 6.08

16 6.93 6.70 37 6.60 7.02 58 5.98 6.981

17 7.28 7.31 38 6.58 7.28 59 5.98 6.77

18 7.62 7.37 39 6.56 6.68 60 5.94 6.11

19 7.03 7.12 40 6.56 6.37 61 5.92 5.99

20 7.38 7.41 41 6.52 7.37 62 5.87 6.88

21 5.92 5.81 42 6.46 5.93 63 5.8 6.58
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Interactions between inhibitors and VEGFR‑2
Here, top five activity molecules (compounds 1–5) were 
selected to investigate their interactions to VEGFR-2 by 
using molecular docking. The results showed that these 
five molecules could all interact with VEGFR-2 with high 
docking scores (Table 4). The docking scores of the five 
top activity molecules were all higher than the five low 
activity molecules. We also found that some molecules 
bound to VEGFR-2 via hydrogen bonds at ASN217, 
ASN145, SER305, ASN284 and LYS255. In addition, 
some molecules also shared VAL143,VAL134,TYR356 

and ALA96 in order to bind to VEGFR-2 with 
hydrophobic forces (Fig.  4). The interactions of the five 
poor activity molecules and VEGFR-2 were also studied. 
After simulation, the results showed that the high activity 
inhibitors could always bind to VEGFR-2 in a more stable 
way than the poor activity inhibitors, although there was 
no well correlation between the pIC50s and their docking 
scores. The docking scores of compounds 59–63 were all 
significantly lower than compounds 1–5 which suggested 
the interactions with the former molecules were unstable 
with poor activities.

Fig. 3 3D contour maps of the Topomer CoMFA model for compound 47. A represent the steric contour maps of R1, B represent the electrostatic 
field maps of R1, C represent the steric contour maps of R2, D represent the electrostatic field maps of R2
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In order to explore the relationship of activity and 
hydrogen bonds/ hydrophobic forces, the pharmacophore 
of VEGFR-2 inhibitors were studied. As a result, four 
features of pharmacophores were obtained including 
H-acceptors, H-donors, Hydrophob and Ring aromatic 
which may affect greatly the activities of compounds 
(Fig.  5). Figure  5 suggested that the two aromatic rings 
contribute to the hydrophobic forces of the compounds. 
However, the NO- and NH- groups can also provide 
donors and acceptors to form hydrogen bonds which can 
improve the activities of the inhibitors.

The ‘Lock and key model’ and the ‘induced-fit 
theory’ are the basis for the docking of molecules 
[60]. When ligands and receptors bind to each other, 
there are electrostatic, hydrogen bonding and van der 
Waals force interactions as well as hydrophobic forces 
involved. The binding of a ligand and a receptor must 
satisfy the principle of mutual matching, i.e., their 
geometry and electrostatic, hydrogen bonding and 
hydrophobic interactions must complement each other. 
In this study, the molecule-receptor complexes with 
high pic50 always had strong interaction forces such 
as hydrogen bonds and electrostatic interactions that 
satisfied Lipinski’s theory [77]. However, bulky and 
negative groups are the key factors for high activities 
of VEGFR-2 inhibitors which is similar to Tong’s study 
[78].

In the reversible interaction of ligand with VEGFR-
2, ligand-receptor binding is transient and can be 
disrupted or reversed. At this point, the ligand 
interacts with specific binding sites on the receptor 
through non-covalent interactions such as hydrogen 
bonding, van der Waals forces and hydrophobic 
interactions [79, 80]. In contrast, the irreversible 
interaction between ligand and VEGFR-2 involves 
the formation of a covalent bond between the ligand 

and the receptor. The formation of this covalent bond 
results in a permanent or long-lasting connection 
between the ligand and the receptor that cannot be 
easily reversed. Irreversible binding typically occurs 
when the ligand contains a reactive functional group 
that can form covalent bonds with specific amino acid 
residues in the receptor binding site [81]. Such covalent 
modifications can lead to irreversible inhibition or 
activation of receptor function. It is important to note 
that the distinction between reversible and irreversible 
interactions is not always absolute. Some interactions 
may exhibit characteristics of both reversible and 
irreversible binding, depending on factors such as the 
concentration and duration of exposure to the ligand 
[82].

Design of potential VEGFR‑2 inhibitors
In order to optimize the activity of the VEGFR-2 
inhibitors, we conducted molecular design and structural 
modifications based on the information provided by 
the 2D/3D-QSAR models and pharmacophore features 
regarding the R1 and R2 substructural groups. The 
rational explanation for the design of the compounds 
in this text is based on a multi-faceted approach to 
optimizing the activity of VEGFR-2 inhibitors. The 
approach includes several structural modifications 
informed by 2D/3D-QSAR models and pharmacophore 
features, particularly focusing on the R1 and R2 
substructural groups. Here are the main idea of our 
rational design:

(1) Introduction of Small Amino Groups at Position 
A2. The incorporation of small amino groups 
with positive charges at position A2 is aimed 
at enhancing bioactivity. The positive charge 
can potentially improve the interaction of the 
compound with the target receptor. Adjusting the 
charge density at this position is a way to fine-tune 
the interaction further.

(2) Introduction of Negatively Charged Groups at 
Position A4. At position A4, negatively charged 
groups like -F and -Cl were introduced to enhance 
the compound’s activity. These groups can 
potentially form strong interactions with specific 
regions of the receptor, leading to improved 
inhibitory effects.

(3) Incorporation of Aromatic Heterocycles. Aromatic 
heterocycles were considered to enhance 
hydrophilicity, which can be advantageous in 
terms of increasing the compound’s activity. 
Different combinations of charges and sizes of 
these heterocycles were explored to optimize the 
interactions with the target receptor. Retention of 

Table 4 The results of molecular docking of ten compounds

NO pIC50 Total 
score(Kcal/
mol)

1 7.96 131.28

2 7.62 116.68

3 7.49 118.74

4 7.48 105.96

5 7.41 102.60

59 5.68 64.31

60 5.64 55.72

61 5.92 53.55

62 5.87 75.27

63 5.8 78.34
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Fig. 4 Interaction diagrams of the compounds and their acceptor (6ET4). A. The location of the active pocket with the upper right 
three-dimensional diagram showing the docking target, and the lower right two-dimensional diagram showing the docking effect. B–F The 
binding sites of compounds 1–5 with VEFGR-2
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Two Aromatic Rings: Retaining two aromatic rings 
in the compound’s structure is intended to augment 
hydrophobic interactions. This feature is important 
for enhancing the binding of the inhibitor to the 
receptor, which can lead to improved activity.

(4) Introduction of NH-Groups for Hydrogen Bonding. 
NH-groups were introduced to provide both 
donors and acceptors for hydrogen bonding. This 
feature improves the compound’s ability to form 
specific interactions with the receptor, potentially 
increasing its inhibitory activity.

The overall design strategy is to leverage information 
from computational models (2D/3D-QSAR models), 
understand the pharmacophore features relevant to 
the receptor (H-acceptors, H-donors, hydrophobicity, 
and ring aromaticity), and make targeted structural 
modifications to enhance the compound’s activity. As 
a result of this rational design approach, five potential 
VEGFR-2 inhibitors were obtained, which were predicted 
to have the potential to inhibit VEGFR-2 to a greater 
extent based on their structure and predicted pIC50 
values. The structure of molecules and predicted pIC50 
were listed in Table 5.

We also performed molecular dynamics (MD) studies 
for the final designed inhibitors to gain a comprehensive 
understanding of their behavior in complex biological 
environments. We conducted 250 ps molecular dynamics 
(MD) simulations for each designed inhibitor- VEGFR-2 
complex systems in an explicit aqueous solution. To 
assess the stability of each designed inhibitor within 

Fig. 5 The pharmacophore features of the inhibitor compounds

Table 5 Predicted pIC50 of designed VEGFR-2 inhibitors

NO Structure Predicted pIC50

1 8.30

2 8.29

3 8.17

4 8.02

5 8.00

6 8.00

7 8.00

8 7.94

9 7.87
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VEGFR-2 and validate the credibility of the MD 
simulation outcomes, we examined the root mean square 
deviation (RMSD) across the 250  ps MD trajectories. 
RMSD serves as a metric to characterize the temporal 
disparity between the VEGFR-2 and the initial structure, 
acting as an indicator of whether the system has attained 
a state of kinetic equilibrium. Figure  6 depicts the 
RMSD curves for each complex throughout the 250  ps 
MD simulation. As illustrated, designed inhibitors 
progressively achieves a state of kinetic equilibrium after 
the initial fluctuations. For the nine designed inhibitors, 
the systems of gradually reached MD equilibrium in the 
last 20 ps. Notably, for inhibitor 1 and 7, the fluctuations 
typically ranged between 8.3 and 8.4 from 228  ps. The 
equilibrium state in the initial 50  ps indicated that the 
initial conformation of the designed inhibitors and its 
binding mode with VEGFR-2 were unstable. However, 
stability was eventually achieved in the last 50  ps. All 

systems achieved molecular dynamics equilibrium within 
the final 20 ns. It is important to highlight that inhibitors 
5 and 9 exhibited higher fluctuations during the final 
20 ns, suggesting potential flexibility or dynamic behavior 
in their binding profiles compared to other inhibitors.

Molecular dynamics simulations offer a dynamic 
perspective, capturing the intricate motions and 
conformational changes that molecules undergo over 
time. This approach provides valuable insights into 
the stability of binding modes between the designed 
analogues and their target proteins, shedding light on 
the robustness of these interactions. In this study, we 
performed MD for designed inhibitors by considering 
the influence of the solvent environment. The results 
indicate that the designed inhibitors undergo dynamic 
structural changes during the simulation, eventually 
settling into stable binding conformations with 
VEGFR-2. The analysis of RMSD provided insights 

Fig. 6 RMSD observed during MD simulation of 250 ps for the VEGFR-2 complex of designed inhibitors
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into the temporal disparity between the initial and final 
structures, confirming the attainment of a state of kinetic 
equilibrium for all designed inhibitors. This information 
is crucial for understanding the stability and behavior of 
these inhibitors in a realistic biological context, aiding in 
the assessment of their potential as therapeutic agents 
targeting VEGFR-2. The study’s rigorous approach to MD 
simulations and detailed analysis enhances the credibility 
of the findings and contributes valuable data to the field 
of drug design and molecular interactions in complex 
biological systems.

VEGFR-2 inhibitors can modulate the signaling 
pathways associated with VEGFR-2, leading to 
various effects on angiogenesis and related processes. 
Several key signaling pathways can be influenced by 
VEGFR-2 inhibitors such as VEGF/VEGFR Signaling 
Pathway, PI3K/Akt/mTOR Pathway and MAPK/ERK 
Pathway. The binding of VEGF to VEGFR-2 activates 
downstream signaling cascades, including the PI3K/
Akt and MAPK/ERK pathways. VEGFR-2 inhibitors 
can block these pathways by preventing the binding of 
VEGF to the receptor, thereby inhibiting angiogenesis 
[83]. Meanwhile, VEGFR-2 activation leads to the 
activation of PI3K, which in turn activates protein 
kinase B (Akt) and mammalian target of rapamycin 
(mTOR) [84–86]. These signaling molecules play crucial 
roles in cell survival, proliferation, and angiogenesis. 
Moreover, VEGFR-2 activation triggers the activation of 
MAPK/ERK signaling, which contributes to angiogenic 
processes. VEGFR-2 inhibitors can disrupt this 
pathway by inhibiting the activation of VEGFR-2 and 
downstream signaling [87, 88]. By targeting VEGFR-2 
and modulating these signaling pathways, VEGFR-2 
inhibitors have potential therapeutic applications in 
conditions characterized by excessive angiogenesis, 
such as cancer, age-related macular degeneration, and 
certain inflammatory disorders. These inhibitors can help 
suppress abnormal blood vessel formation and inhibit 
the growth and spread of tumors by interfering with the 
signaling cascades driven by VEGFR-2 activation.

In addition, the toxicity of VEGFR-2 inhibitors is 
an important consideration in drug development and 
therapeutic applications. VEGFR-2 is a receptor involved 
in angiogenesis, the process of forming new blood vessels. 
Inhibiting VEGFR-2 can have both therapeutic benefits 
and potential adverse effects. While VEGFR-2 inhibitors 
have shown promise in anti-cancer therapies and the 
treatment of other diseases, they can also be associated 
with certain toxicities including cardiovascular toxicity, 
wound healing impairment, gastrointestinal toxicity and 
hepatotoxicity. While the toxicity of VEGFR-2 inhibitors 
can be influenced by various factors, including the overall 
molecular structure and pharmacokinetic properties, 

there are certain substructures that have been associated 
with potential toxicity such as electrophilic functional 
groups, aromatic or heterocyclic rings with high 
lipophilicity, quinone-like structures and nitro-aromatic 
compounds. However, in this study, these substructures 
also may increase the activity of the inhibitors. As 
the overall toxicity of a compound is influenced by 
multiple factors and can be context-dependent, careful 
consideration of these substructures during the design 
and optimization of VEGFR-2 inhibitors can help guide 
the identification and modification of potentially toxic 
elements in the molecule. Additionally, it is crucial 
to perform comprehensive toxicity assessments and 
preclinical studies to evaluate the safety profile of 
VEGFR-2 inhibitors and identify potential adverse effects 
during the drug development process. Hence, more 
QSPR prediction models should be developed to further 
assist the molecule design for VEGFR-2 inhibitors.

In contrast to previous modeling techniques applied 
to VEGFR-2 inhibitors, our study distinguishes itself 
by employing a dataset of 600 compounds with 
diverse structures. Unlike previous studies that often 
focused on a smaller set of compounds with similar 
structures, our approach encompasses a broad range 
of chemical diversityFor instance, Fariba et  al. utilized 
naïve ANN methods to discover VEGFR2 inhibitors 
for 33 compounds [89]. Similarly, Sobhy et  al., Merve 
et  al., El-Gazzar et  al., Sun et  al. employed 3D-QSAR 
pharmacophore and docking modeling to identify 
a novel scaffold for inhibiting VEGFR2 based on 
seriouses compounds [90–93].

Our study’s emphasis on utilizing a diverse 
compound set allows for a comprehensive exploration 
of chemical space and a broader coverage of potential 
VEGFR-2 inhibitors. This approach enhances the 
generalizability and applicability of our findings, as 
it encompasses a wider range of structural motifs 
and chemical properties. Our study’s utilization of a 
diverse compound set represents a departure from 
previous methodologies, offering innovative insights 
into the structural activity relationships of VEGFR-2 
inhibitors. By encompassing a broad spectrum of 
chemical structures, our approach expands the scope 
of VEGFR-2 inhibitor discovery and holds promise for 
the development of novel therapeutics with improved 
efficacy and safety profiles.

Conclusions
QSAR research plays an important and widely used 
modern drug design methods. SAR studies can quickly 
screen target compounds, thus saving a lot of time 
and money. In this study, we established 2D-SAR and 
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3D-QSAR predictive models for designing potential 
VEGFR-2 inhibitors. Several modeling methods based 
on the molecular descriptor and three-dimensional 
structure of novel compounds were used. Five 
potentially useful compounds were obtained and these 
will aid in the search for novel VEGFR-2 inhibitors for 
the treatment of patients with liver cancer.
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