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Abstract 

Various sets of thiazole, thiophene, and 2‑pyridone ring structures containing a dimethylaniline component were 
synthesized. Substituted thiazoles 2–3 and thiophenes 5–7 were produced by reacting thiocarbamoyl compound 
4 with α‑halogenated reagents in different basic conditions. Also, a series of 2‑pyridone derivatives 9a–f substituted 
with dimethylaniline was synthesized through Michael addition of malononitrile to α,β‑unsaturated nitrile derivatives 
8a–f. The synthesized products were structurally proven by spectroscopic methods such as IR, 1H NMR, 13C NMR, 
and MS data. Furthermore, the anti‑cancer efficacy of the compounds was assessed using the MTT assay on two cell 
lines: hepatocellular carcinoma (HepG-2) and breast cancer (MDA-MB-231). The results showed the highest growth 
inhibition for derivatives 2, 6, 7, and 9c, which were further examined for their  IC50 values. The  IC50 for compound 
2 showed equipotent activity  (IC50 = 1.2 µM) against the HepG‑2 cell line compared to Doxorubicin  (IC50 = 1.1 µM). 
Compounds 2, 6, 7 and 9c showed very good ADME assessments for further drug administration. Moreover, the PASS 
theoretical prediction for the compounds showed high antimitotic and antineoplastic activities for compounds 2, 
6, 7, and 9c, as well as potent inhibition activity for the insulysin enzyme (IDE). Molecular docking stimulations were 
performed on CDK1/CyclinB1/CKS2 (PDB ID: 4y72) and BPTI (PDB ID: 2ra3). When docked into (PDB ID: 4y72), all 
of the tested compounds showed considerable inhibition, and the 2‑pyridone derivative 9d had the maximum bind‑
ing affinity (− 8.1223 kcal/mol). While thiophene derivative 6 offered the maximum binding affinity (− 7.5094 kcal/mol) 
when docked into (PDB ID: 2ra3).
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Graphical Abstract

Introduction
Human death leading cause in the world is attributed 
to cancer [1]. Breast cancer is the most common can-
cer in women and the main cause of death. In Egypt, 
breast cancer constitutes 33% of female cancer cases, 
and a high frequency rate counts for hepatocellular car-
cinoma [2]. Moreover, two main problems in searching 
for a new anti-tumor drug are serious side effects and 
the rapid development of drug resistance [3]. Several 
studies have been carried out using various sulfur and/
or nitrogen-containing heterocyclic compounds, includ-
ing thiophene, thiazole, and pyridine, directed towards 
different pathologies. These thiophene, thiazole, and 
pyridine-containing compounds show anticancer [4–8], 
anti-inflammatory [9–11], antibacterial [12–14], antioxi-
dant [15], anti-oxidant [16], anti-fungal [17, 18], anti-cor-
onavirus [19, 20] properties. Thiazoles were also found 
to act as anti-Alzheimer [21], anti-tubercular [22], and 
anti-diabetic [23]. While pyridone as well exhibits anti-
malarial [24], anti-hepatitis B [25], cardiotonic [26], and 
anti-fibrosis [27] properties. Some of these thiophene, 
thiazole, and pyridone-containing compounds have been 
transferred into clinical trials and cancer therapy, act-
ing via multiple pathways [28]. Dabrafenib and Dasat-
inib are examples of thiazole-containing selective drugs 
with tyrosine kinase inhibitory activity (Fig.  1) [29, 30]. 
OSI-930 is a thiophene-containing orally specific inhibi-
tor of Kit and kinase insert domain receptor tyrosine 
kinases (Fig.  1) [31]. Topotecan and Tazemetostat are 

2-pyridone-containing cancer drugs that act as potent 
topoisomerase 1 inhibitors and selective EZH2 inhibi-
tors, respectively (Fig.  1) [32]. The cyclin-dependent 
kinases (CDKs) are essential proteins that play an impor-
tant role in cell-cycle control [33]. CDK1 inhibition has 
been found to effectively break cancer cell prolifera-
tion [34]. Some studies reveal thiazole-containing com-
pounds as potent CDK inhibitors [35]. One of the most 
efficient synthetic strategies for thiophenes and thiazoles 
is the use of α-halogenated reagents to cyclize generous 
thiocarbamoyl derivatives. This method creates a varied 
substitution at all possible sites and an easy workup [36]. 
Cyanoacetanilide derivative cyclization with active meth-
ylene is one of the best methods for 2-pyridone synthe-
sis [37]. The current work is centered on the synthesis of 
bioactive substituted thiazoles, thiophenes, and 2-pyri-
done molecules substituted with dimethylaniline. The 
biological evaluation included anticancer activity testing 
and ADME assessment for future medication delivery. 
Furthermore, theoretical predictions for the new com-
pounds and molecular docking studies were performed 
to examine their anticancer inhibition activity.

Results and discussion
Chemistry
The synthetic strategy is based on the precur-
sor 2-cyano-N-(4-(dimethylamino)phenyl)aceta-
mide (1). It was synthesized in good yield through 
the well-known cyanoacetylation reaction of 
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N,N-dimethylbenzene-1,4-diamine with 1-(cyanoacetyl)-
3,5-dimethylpyrazole in dioxane (Scheme 1). The chemi-
cal structure and conformation of cyanoacetamide 
compound 1 were determined through spectral analy-
sis. The IR absorption bands detected at 3280, 2221, and 
1690   cm−1 correspond to the functional groups N–H, –
C≡N, and –C=O, respectively. The 1H NMR spectrum 
indicated a singlet for six protons (dimethylamino group) 
at δ 2.83  ppm, a singlet for two protons (–CH2–) at δ 
3.80 ppm, two doublet signals for the para-disubstituted 
benzene ring at δ 6.68 and 7.34 ppm, and singlet signal 
for the amidic proton at δ 9.98 ppm (N–H).

The addition of 2-cyanoacetamide compound 1 to 
phenyl isothiocyanate was accomplished by stirring in 

DMF and potassium hydroxide to generate the non-iso-
lated sulphide salt (intermediate A) (Scheme 2). This salt 
underwent in  situ addition with chloroacetone to fur-
nish the corresponding substituted thiazoline derivative 
2. The 1H NMR spectrum demonstrated the presence of 
two singlets at δ 1.28 and 6.87 ppm for the protons of the 
methyl group and thiazole-C5, respectively. Meanwhile, 
the thiazolidine-4-one compound 3 was obtained by 
in situ treatment of non-isolable sulfide salt (A) with ethyl 
bromoacetate. 1H NMR displayed four singlet signals at δ 
2.82, 3.97, and 9.34 ppm, matching six protons (dimethyl-
amino-NMe2), two protons (thiazolidine-CH2) and N–H 
functions. To get the notably rich thiocarbamoyl inter-
mediate 4 (Scheme 2), the non-isolated sulphide salt was 

Fig. 1 Anticancer marketed‑drugs containing thiazole, thiophene and 2‑pyridone

Scheme 1 Preparation of 2‑cyano‑N‑(4‑(dimethylamino)phenyl)acetamide (1)
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treated with water and then neutralized with diluted HCl. 
The structure was validated by spectral measurements 
(c.f. “Experimental”).

The reactivity of thiocarbamoyl 4 towards different 
α-halo-ketones was investigated. Thus, nucleophilic 
substitution of thiocarbamoyl 4 on chloroacetone was 
achieved in refluxing ethanol and triethylamine. Fol-
lowing this, the nitrile group underwent intramolecular 
nucleophilic addition to produce 5-acetyl-4-aminothio-
phene derivative 5 (Scheme  3). Elemental studies and 
spectrum data confirmed the chemical structure of the 
newly created thiophene 5. The formation of amino func-
tionality was confirmed in both IR and 1H NMR spectra 
through strong absorptions at 3443 and 3282  cm−1 in the 
IR spectrum and a broad singlet signal at δ 7.47 ppm in 
the 1H NMR spectrum. Also, the 1H NMR spectrum indi-
cated the lack of any signal related to the protons of the 
methylene group.

Similarly, the synthesis of 4-amino-5-benzoylthiophene 
derivative 6 and 4-amino-5-ethoxycarbonyl-thiophene 
derivative 7 was successful by treating thiocarbamoyl 
scaffold 4 with phenacyl bromide and ethyl bromoacetate 
in ethanol and triethylamine. The 1H NMR spectrum of 

derivative 6 indicates a characteristic singlet signal at δ 
6.70 ppm and extra multiplet peaks in the region from δ 
7.05 to 7.88 ppm for the protons of –NH2 group, which 
corresponds to phenyl rings. These new peaks appear 
next to the singlet signal at δ 2.84  ppm for six protons 
of two methyl groups (–N(CH3)2), two singlet signals at 
δ 9.62 and 9.82 ppm for two NH functions, and doublet 
signals at δ 7.04 to 7.88 ppm for the aromatic protons. In 
thiophene derivative 7, strong absorptions at 3352, 3293, 
1740, and 1663  cm−1 verified the presence of N–H,  NH2 
groups, and two carbonyl groups in the IR spectrum. 
While the 1H NMR spectrum indicated notable triplet 
and quartet signals at δ 1.34 and 4.28  ppm for protons 
of the ethoxy group (–OCH2CH3), besides singlet at δ 
2.94 ppm for six protons (–N(CH3)2), and two singlet sig-
nals at δ 8.35 and 10.83 ppm corresponding to the pro-
tons of two (N–H) groups.

The synthetic strategy of 6-amino-4-aryl-1-(4-
dimethylaminophenyl)-3,5-dicyano-2-oxo-2H-pyridine 
derivatives 9a–f is explained in Scheme  4. Initially, the 
Knoevenagel condensation reaction between 2-cyanoac-
etanilide compound 1 and electronically different aro-
matic aldehydes in ethanol and piperidine offered 

Scheme 2 Synthesis of substituted thiazole derivatives 2 and 3 
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α,β-unsaturated nitrile derivatives 8a–f. Next, the 
cyclized targets 3,5-dicyanopyridone derivatives 9a–f 
were achieved via Michael’s addition reaction of malo-
nonitrile to α,β-unsaturated nitrile compounds 8a–f in 
refluxing dioxane and piperidine. The cyclization occurs 
through the formation of the suggested intermediates B 
and C. The nucleophilic addition of malononitrile to the 
beta-carbon of α,β-unsaturated functionality yields the 
intermediate Michael adduct B, which then undergoes 
intramolecular cyclization to give intermediate C. The 
last step is tetrahydropyridine intermediate C oxida-
tion to furnish the final pyridine derivatives 9a–f, whose 
structures were confirmed by spectroscopic examina-
tions. We suggested that air (or the oxygen it contains) 
initiates the oxidation process.

Selected examples of formed structures are explored 
below using IR and 1H NMR spectra to prove the syn-
thesized structures. For α,β-unsaturated nitrile 8d, 
new absorption bands for carbonyl (C=O) and NH 
functions appear next to 2-cyanoacetanilide functions 

at 3407, 3338, 1696, and 1670   cm−1, respectively. Also 
distinguished singlet signals for the protons of methyl 
group (Ar–CH3), methylene group (CO–CH2–O), and 
olefinic proton (C=CH) were observed in the 1H NMR 
spectrum at 2.24, 4.81, and 8.15  ppm, respectively. In 
the same spectrum, twelve aromatic protons resonated 
as six doublet signals at 6.71–8.00  ppm, and a singlet 
signal was observed at 2.86 ppm corresponding to the 
–N(CH3)2. The protons of two NH functions appeared 
as two singlet signals at 10.00 and 10.08  ppm. For 
the 2-pyridone scaffold 9d, the IR spectrum showed 
absorption at 3340, 3278, and 3183   cm−1 for the  NH2 
and N–H groups, 2213   cm−1 due to the nitrile group, 
and 1693 and 1659  cm−1 due to the carbonyl groups of 
the ester and amidic carbonyl groups, respectively. The 
1H NMR spectrum recorded the singlet signals at 2.25, 
2.97, and 4.78  ppm for the protons of the methyl and 
methylene groups (Ar–CH3, –N(CH3)2 and CO–CH2–
O, respectively). Twelve aromatic protons appeared as 

Scheme 3 Synthesis of 4‑amino‑5‑substititedthiophene derivatives 5, 6 and 7 
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doublet and multiplet signals at 6.83–7.50  ppm, while 
the N–H proton resonated at 10.07 ppm.

Anticancer activity
The cytotoxic effect of all compounds 1–9 on hepato-
cellular carcinoma (HepG-2) and breast cancer (MDA-
MB-231) was examined using the MTT technique. The 
outcomes are presented in (Additional file  1: Table  S4), 
while graphic plots of the growth inhibition curve against 
the compounds enable us to compare the inhibition activ-
ity for the tested compounds (Fig. 2). The results revealed 
that the tested drugs suppress cancer cells to varying 
degrees. At a 25 µM concentration after 48 h, compounds 
2, 6, 7, and 9c had the most cytotoxic effect against the 

HepG-2 and the MDA-MB-231 cell lines. Compounds 2, 
6, 7, and 9c were selected for the  IC50 experiment using 
doxorubicin as a reference (Table  1, Additional file  1: 
Figs. S41–S43). The  IC50 evaluation against the HepG-2 
cell line showed that compound 2 containing the thiazole 
moiety acts as a potent anticancer with an  IC50 value of 
1.2 µM, which is equivalent to the doxorubicin  IC50 value 
of 1.1 µM.

Compounds 6 and 7 showed  IC50 values of 28.7 and 
6.4 µM, respectively. The highest inhibitory activity was 
observed for compound 9c, which contains a pyridine 
moiety with an  IC50 value of 33.08 µM.

IC50 evaluation against the MDA-MB-231 cell line 
shows the lowest  IC50 values for compounds 6, 7, and 9c 

Scheme 4 Synthesis of different α,β-unsaturated nitrile derivatives 8a–f and their corresponding 2‑pyridone derivatives 9a–f 
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(14.1, 21.9, and 21.73 µM), respectively. While the highest 
 IC50 value (26.8 µM) is for compound 2. The derivative 2 
showed superiority as a possible anticancer agent due to 
its low toxicity to normal cells (PBMC human peripheral 
blood mononuclear cells).  (IC50 < 30  µM) compared to 
Doxorubicin  IC50 (2 µM).

Structure activity relationship (SAR) studies
By analyzing the outcomes, we uncovered important 
structure–activity relationship facts (Fig.  3). Thiazole 
derivative 2 with a substituted methyl group at position 
4 of the thiazole ring markedly recorded the strong-
est inhibitory effect against tested HepG2 and MDA-
MB-231 cell lines (80 and 54%) with  IC50 values of 1.2 
and 26.8  µM, respectively. The effect of changing the 
methyl group at position 4 of the thiazole ring for com-
pound 2 with the carbonyl group for compound 3 caused 
a decrease in inhibitory effect against tested cell lines (15 
and 36%). It is clear that the cyanoacetamide derivative 1 
and mercaptocrylamide derivative 4 displayed the weak-
est activity (14 and 6%) against the liver cell line and (32 
and 28%) against the breast cell line. Also, the absence of 
the thiazole moiety in derivatives 1 and 4 may lead to the 

loss of inhibitory activity. Among the 3-amino thiophene 
derivatives 5–7, it was found that the presence of ben-
zoyl and ester groups at position 2 in compounds 6 and 
7 led to an increase in inhibition activity (55 and 64%) 
with  IC50 values (28.7 and 14.1 µM) against the liver cell 
lines and (69 and 57%) with  IC50 values (6.4 and 21.9 µM) 
against breast cell lines. The replacement of these groups 
with an acyl group at position 2 of the thiophene ring led 
to a decrease in the inhibitory activity. Likewise, acryla-
mide derivatives 8a–f showed moderate to low inhibition 
potency against cell lines 19–40%. Moreover, pyridine 
derivatives 9a–f showed moderate to high inhibition 
potency against cell lines 24–58%. Pyridine derivative 
9c with a substituted Cl group at position 4 of the phe-
nyl ring exhibited the strongest activity among the pyri-
dine series (52 and 58%) against liver and breast cell lines 
with  IC50 values of 33.08 and 21.73 µM, respectively. The 
effect of exchanging the chlorine atom for compounds 
9c with methyl and methoxy groups for compounds 9a 
and 9b resulted in a decrease in inhibition growth val-
ues (37 and 34%) and (50 and 30%), respectively, towards 
the examined cell lines. Also, the addition of a linker (–
OCH2CONHAr–) in pyridine derivatives 9d–f resulted 
in reduced activity compared to their direct 4-substituted 
phenyl ring pyridine counterparts 9a–c.

Computational analysis
Prediction of in‑silico ADME and oral bioavailability
During the drug discovery work, a lot of attention goes 
to the pharmacodynamics of the newly synthesized small 

Fig. 2 Cytotoxic activity against all compounds 1–9(a–f) against HepG‑2 and MDA‑MB‑231 cell lines

Table 1 IC50 (µM) against HepG2, and MDA‑MB‑231

2 6 7 9c Doxorubicin

HepG2 (A2780CP) 1.2 28.7 6.4 33.08 1.1

MDA‑MB‑231 (A2780) 26.8 14.1 21.9 21.73 3.16
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molecules. While the promotion of a drug candidate 
focuses on the pharmacokinetics behavior of such mol-
ecules [38]. In-silico ADME screening was applied to the 
synthesized compounds to calculate the putative absorp-
tion, distribution, metabolism, and excretion proper-
ties [39]. Predictions for compounds 1–9 were listed in 
(Table 2, Additional file 1: Table S1) and processed using 
the SwissADME webtool provided through the Swiss 
Institute of Bioinformatics (SIB) (https:// www. swiss 
adme. ch) and AdmetSAR-2 online software predictors.

Generally, all the investigated compounds 1–9 possess 
acceptable physicochemical and pharmacokinetic prop-
erties with zero violation of Lipinski’s rule of five, except 
for derivatives 9d, 9e, and 9f. Regarding the parameters 
associated with Lipinski’s rule of five, all compounds have 
4 to 10 rotatable bonds, 2 to 6 hydrogen bond acceptors, 
1 to 3 hydrogen bond donors, molar refractivity (MR) 
59.52 to 150.85, topological polar surface area (TPSA) 
between 56.13 and 137.17, and a predicted logPo/w in the 
range of 0.89 to 2.88 [40]. Moreover, they displayed mod-
erate water solubility and high GIT absorption, except for 
derivatives 6, 7, 9d, 9e, 9f and one PAINS. These results 
support the oral bioavailability of the compounds [41]. 
Consequently, any compound showing two or more vio-
lations must be excluded from further study.

The correlation between the WLOGP and TPSA 
(topological polar surface area) for the newly synthe-
sized compounds is presented in the BOILED-EGG 
graph [42]. Figure  4 categorizes the compounds in 
regions, most of them located in the region of human 

intestinal absorption (HIA), except 5, 6, 7, 9d, 9e, and 
9f. The HIA region has no BBB permeability except 
for 1, 8a–8c, located in the yolk of the BOILED-EGG, 
which is expected to be BBB permeant. These results 
reflect good oral absorption for our compounds, along 
with poor penetration of the BBB, and hence no pos-
sible side effects on the CNS. Much more, a promising 
character for the compounds as they do not support 
a substrate for P-glycoprotein (Pgp), which is consid-
ered a drug efflux transporter [43]. In other words, all 
compounds can exist in the target cancer cells, simulat-
ing their cytotoxic effect. To conclude, the most active 
derivatives 2, 6, 7, and 9c fulfil the ADME profiles 
required for good distribution in the body and oral bio-
availability, avoiding cancer cell resistance mediated by 
Pgp.

Prediction of activity spectra using PASS online predictor
With the aid of Prediction of Activity Spectra for Sub-
stances (PASS) online software, we were able to assess 
the putative anticancer activity, which is presented 
in (Table  3, Additional file  1: Table  S2) The results of 
the PASS prediction are based on the available bio-
logical activity of compound fragments in the database 
through the correlation between Pa and Pi (probability 
to be active or inactive) [44]. The results displayed high 
antimitotic and antineoplastic activities for compounds 
2, 6, 7 and 9c (Table  3) in addition to other activities 
(Additional file  1: Table  S2). Interestingly, almost all 

Fig. 3 Structure–activity relationship (SAR) of thiazole, thiophene, pyrindone derivatives

https://www.swissadme.ch
https://www.swissadme.ch
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compounds displayed potent inhibition activity for 
the insulysin enzyme, also called the insulin-degrading 
enzyme (IDE).

Molecular docking
In this study, the biological targets in the studied cancer 
cell lines were predicted in order to define the mecha-
nism of anticancer activities for all synthesized deriva-
tives. The interaction of the derivatives with two different 
targets was inspected through molecular docking stud-
ies in order to predict their binding sites and modes on 
enzymes. The molecular docking study was performed 
using MOE “v10.2015.10 software”. The choice of targets 
was based on the interaction of ATP-competitive inhibi-
tors complexed with the cyclin-dependent kinase human 
CDK1/CyclinB1/CKS2 (PDB ID: 4y72) [45, 46]. Also, the 
PASS-Online software predicts inhibition activity for the 
insulysin enzyme, and based on that, different related 
PDB codes were tested. The best interaction was found to 
be with Human cationic trypsin complexed with bovine 

pancreatic trypsin inhibitor (BPTI) (PDB ID: 2ra3). The 
crystallographic coordinates of the proteins were down-
loaded from the Protein Data Bank [47]. Markedly, all of 
the compounds showed significant inhibition activities 
against 4y72 and were higher than previously prepared 
compounds (Table  4, Additional file  1: Table  S3) [45]. 
A docking study of compounds 1–9(a–d) showed that 
they can fit well in the ATP binding sites of CDK1 and 
BPTI (Additional file 1: Figs. S1–S40). The highest bind-
ing affinities for the prepared compounds with the tar-
geted proteins 2ra3 and 4y72 are listed in (Table 4), while 
the binding affinities for the rest of the compounds are 
listed in (Additional file  1: Table  S3). The compound 5 
has a docking score of − 7.9160 kcal/mol. It forms strong 
hydrogen bonds with Asp 86. It also exhibits interac-
tions with Gly 193, Lys 60, and Phe 41 through H-donor, 
H-acceptor, and π–H interactions, respectively (Fig.  5). 
Compound 8f has a docking score of − 7.9504  kcal/
mol, which is slightly more favorable than compound 5. 
It forms potential strong binding interactions through 

Fig. 4 Swiss ADME boiled‑egg plot for compounds 1–9(a–d)
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hydrogen bonds with Lys 130 and Glu 12. Addition-
ally, it shows interactions with Ile 10 through π–H, and 
H-acceptor interactions with benzene rings. Compound 
9d exhibits the highest docking score among the three 
compounds, with a score of − 8.1223  kcal/mol, indicat-
ing strong binding affinity. It forms hydrogen bonds with 
Gln 132, Ser 84, and Lys 130 with various functional 
groups of the compound, including N-Amino, N-Amide, 
and N-dimethylamino groups. Gly 11 also interacts with 
compound 9d through a π–H interaction. The several 
hydrogen bonds and π–H interaction contribute to the 
strong binding affinity of compound 9d. Compound 9f 
has a docking score of − 8.0945 kcal/mol, which is quite 
favorable. It forms with Ile 10, Thr 14, and Lys 130 π–H 
interactions. Compound 9f primarily interacts with the 
protein through its benzene ring, and these π–H interac-
tions contribute to its binding affinity. To summarize, the 
docking results suggest that four compounds (5, 8f, 9d, 
and 9f) strongly bind to the target protein due to various 
types of interactions. Compound 9d stands out with the 
highest docking score, indicating the strongest predicted 
binding affinity. These findings provide valuable insights 
into the potential of these compounds as drug candidates 
that could target a specific protein of interest.

Conclusion
The study aimed to synthesize thiazole, thiophene, and 
2-pyridone incorporating a dimethylaniline moiety and 
investigate their potential for biological activity. A library 
of compounds 1–9(a–f) with varying structures to assess 
their potential as drug candidates. The cyclization reac-
tion strategy for the thiocarbamoyl derivative using 
α-halogenated reagents in different reaction conditions 
serves to modify the chemical structures (thiazoles and 
thiophenes). Also, the Michael addition of malononitrile 
to α,β-unsaturated nitrile derivatives introduces func-
tional groups into 2-pyridone derivatives. Anti-cancer 
activity evaluation on two different cancer cell lines 
(hepatocellular carcinoma and breast cancer) indicates 
potential anti-cancer properties. Compound 2 has equi-
potent activity for the Doxorubicin  IC50 value (1.2 µM), 
while compounds 6, 7, and 9c had the highest cytotoxic 
effect. Compounds 2, 6, 7, and 9c also have favorable 
ADME profiles. Compounds 2, 6, 7, and 9c are identi-
fied as particularly promising anticancer agents based on 
PASS predictions. Molecular docking stimulations with 
specific biological targets (CDK1/CyclinB1/CKS2 and 
BPTI) demonstrated that the synthesized compounds 
exhibited strong binding affinities with the protein resi-
dues. Meanwhile, 2-pyridone derivatives 9d recorded 
an eminent docking score (-8.1223  kcal/mol) with the 

Table 3 A mitotic inhibitor, anticancer activity assessment using PASS online software

Compound no. Antimitotic Antineoplastic (non-small cell lung cancer) Insulysin inhibitor

Pa Pi Pa Pi Pa Pi

1 NA NA 0.225 0.054 0.683 0.011

2 0.595 0.005 0.203 0.076 0.680 0.011

3 0.392 0.014 NA NA 0.675 0.012

4 NA NA NA NA 0.751 0.004

5 0.216 0.048 NA NA 0.427 0.076

6 0.454 0.010 0.153 0.153 0.428 0.076

7 0.195 0.060 0.175 0.114 0.397 0.089

8a NA NA 0.197 0.083 0.874 0.003

8b 0.145 0.092 0.241 0.043 0.832 0.003

8c NA NA 0.170 0.122 0.820 0.003

8d NA NA 0.160 0.140 0.829 0.003

8e NA NA 0.200 0.079 0.805 0.003

8f NA NA NA NA 0.788 0.004

9a NA NA NA NA 0.292 0.145

9b NA NA 0.298 0.024 0.239 0.201

9c NA NA 0.234 0.048 NA NA

9d NA NA 0.207 0.071 0.263 0.173

9e NA NA 0.238 0.045 0.226 0.219

9f NA NA 0.193 0.088 NA NA
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(PDB ID: 4y72)

2D 3D Surface map

9d

9f

(PDB ID: 2ra3)

6

8f

Fig. 5. 2D, 3D and surface map interaction between drugs 1–9(a–f) and target proteins (4y72 and 2ra3)
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protein 4y72 and the thiophene 6 provided a great energy 
score (− 7.5094 kcal/mol) with 2ra3.

Experimental
Experimental general remarks: melting points were 
determined with Gallenkamp melting point appara-
tus and are uncorrected. The infrared (IR) spectra were 
recorded on Thermo Scientific Nicolet iS10 FTIR. 1H 
NMR and 13C NMR spectra were recorded DMSO-d6 as 
a solvent using JEOL’s spectrometer at 500  MHz using 
tetramethylsilane (TMS) as internal standard. Chemical 
shifts are expressed in δ, ppm. 1H NMR data are reported 
in order: multiplicity (br, broad; s, singlet; d, doublet; t, 
triplet; dd, doublet of doublet; m, multiplet), approximate 
coupling constant in Hertz, number of protons and type 
of protons. The purity of the compounds was checked 
by 1H NMR and thin layer chromatography (TLC) on 
silica gel plates using a mixture of dichloromethane and 
methanol or petroleum ether and ethyl acetate as eluent. 
UV lamp was used as a visualizing agent. Mass analyses 
and elemental analyses were recorded on Thermo DSQ 
II spectrometer at Faculty of Science, Alazhar University. 
The 13C NMR spectra of compounds 9b, 9c, 9d, 9e, and 
9d are not recorded due to insufficient solubility in most 
of NMR solvents.

Preparation of 2-cyano-N‑(4-(dimethylamino)phenyl)
acetamide (1)
A suspension of N,N-dimethylbenzene-1,4-diamine 
(0.04  mol, 4.32  g) and 1-cyanoacetyl-3,5-dimethylpyra-
zole (0.04  mol, 6.52  g) was refluxed in dioxane for 6  h. 
The precipitate that obtained was collected and dried to 
produce cyanoacetamide compound 1.

Pale blue crystal; yield (65%); m.p. 189–191  °C. IR (ν/
cm−1): 3280 (N–H), 2221 (C≡N), 1690 (C=O). 1H NMR 
(δ/ppm): 2.83 (s, 6H, –N(Me)2), 3.80 (s, 2H,  CH2), 6.68 (d, 
J = 8.50 Hz, 2H, Ar–H), 7.34 (d, J = 8.50 Hz, 2H, Ar–H), 
9.98 (s, 1H, NH). 13C NMR (δ/ppm): 30.94, 40.25, 40.61, 
112.53 (2C), 116.87, 122.44 (2C), 128.76, 147.26, 165.38. 
Analysis Calcd. for  C11H13N3O (203.11): C, 65.01; H, 6.45; 
N, 20.68%; found: C, 64.94; H, 6.40; N, 20.61%.

Preparation of 2-cyano-N-(4-(dimethylamino)
phenyl)-2-(4-methyl-3-phenylthiazol-2(3H)-ylidene)aceta-
mide (2)
Stirring of cyanoacetamide compound 1 (0.005  mol, 
1.02 g) with phenyl isothiocyanate (0.005 mol, 0.61 ml) in 
20 ml DMF containing KOH (0.005 mol, 0.28 g) was con-
tinued for 6 h. Then chloroacetone (0.002 mol, 0.164 ml) 
was added and continue stirring overnight. Pouring the 
mixture into ice-cold water. Finally, the solid underwent 
filtration, drying, and recrystallized by heating in ethanol.

Gray solid; yield (43%); m.p. 168–170  °C. IR ( ν/cm−1): 
3405 (N–H), 2176 (C≡N), 1634(C=O). 1H NMR (δ/
ppm): 1.28 (s, 3H,  CH3), 2.81 (s, 6H, –N(Me)2), 6.62 (d, 
J = 8.50  Hz, 2H, Ar–H), 6.87 (s, 1H, CH), 7.23–7.32 (m, 
3H, Ar–H), 7.35–7.41 (m, 1H, Ar–H), 7.41–7.50 (m, 3H, 
Ar–H), 8.56 (s, 1H, NH). 13C NMR (δ/ppm): 25.76, 40.38, 
40.55, 70.89, 95.53, 112.46 (2C), 116.02, 122.13 (2C), 
128.58, 128.90 (2C), 129.13 (2C), 130.28 (2C), 137.52, 
147.13, 163.89, 169.80. Analysis Calcd. for  C21H20N4OS 
(376.14): C, 67.00; H, 5.35; N, 14.88%; found: C, 66.87; H, 
5.30; N, 14.96%.

Synthesis 2-cyano-N-(4-(dimethylamino)
phenyl)-2-(4-oxo-3-phenylthiazolidin-2-ylidene)acetamide 
(3)
Stirring of cyanoacetamide compound 1 (0.005  mol, 
1.02  g) with phenyl isothiocyanate (0.005  mol, 0.60  ml) 
in 20  ml DMF containing KOH (0.005  mol, 0.28  g) was 
continued for 6  h. Then ethyl bromoacetate (0.002  mol, 
0.84 ml) was added and continue stirring overnight. For 
precipitation, pouring the mixture into ice-cold water, 
then filtrated, and recrystallized by heating in ethanol.

Yellow crystals; yield (33%); m.p. 138–140  °C. IR ( ν
/cm−1): 3368 (N–H), 2191 (C≡N), 1714, 1622 (C=O). 
1H NMR (δ/ppm): 2.82 (s, 6H, –N(Me)2), 3.97 (s, 2H, 
 CH2), 6.63 (d, J = 9.00 Hz, 2H, Ar–H), 7.19 (t, J = 7.50 Hz, 
1H, Ar–H), 7.24 (d, J = 9.00  Hz, 2H, Ar–H), 7.30 (d, 
J = 9.00  Hz, 2H, Ar–H), 7.33–7.39 (m, 2H, Ar–H), 9.34 
(s, 1H, NH). 13C NMR (δ/ppm): 33.25, 40.47 (2C), 77.54, 
112.67 (2C), 114.81, 122.06 (2C), 127.84 (2C), 128.29, 
128.93, 129.75 (2C), 138.17, 148.94, 162.18, 169.33, 
170.69. Analysis Calcd. for  C20H18N4O2S (378.12): C, 
63.47; H, 4.79; N, 14.80%; found: C, 63.68; H, 4.72; N, 
14.91%.

Synthesis of 2-cyano-N‑(4-(dimethylamino)phenyl)-3-mer-
capto-3-(phenylamino)acrylamide (4)
A suspension of cyanoacetamide compound 1 (0.005 mol, 
1.02  g) and phenyl isothiocyanate (0.005  mol, 0.60  ml) 
was stirred in 20  ml DMF containing KOH (0.005  mol, 
0.28 g) for 6 h. Firstly, the mixture was diluted with cold 
water, then acidified with diluted hydrochloric acid. 
The precipitate was filtered and washed with cold ethyl 
alcohol.

Pale green solid; yield (79%); m.p. 208–210  °C. IR (ν/
cm−1): 3411 (N–H), 2169 (C≡N), 1641 (C=O). 1H NMR 
(δ/ppm): 2.98 (s, 6H, –N(Me)2), 6.85 (d, J = 8.50 Hz, 2H, 
Ar–H), 6.93 (t, J = 7.50 Hz, 1H, Ar–H), 7.16–7.22 (m, 4H, 
Ar–H), 7.45 (d, J = 8.50 Hz, 2H, Ar–H), 10.06 (s, 1H, NH), 
10.75 (s, 1H, NH). 13C NMR (δ/ppm): 40.64 (2C), 83.96, 
113.21 (2C), 114.42, 122.45 (2C), 124.46 (2C), 125.33, 
127.36, 129.60 (2C), 136.79, 150.08, 164.80, 167.28. Mass 
analysis (m/z, %): 338  (M+, 32.7%). Analysis Calcd. for 
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 C18H18N4OS (338.12): C, 63.88; H, 5.36; N, 16.56%; found: 
C, 64.94; H, 6.41; N, 16.51%.

Preparation of 5-acetyl-4-amino-N-(4-(dimethylamino)
phenyl)-2-(phenylamino)thiophene-3-carboxamide (5)
A suspension of acrylamide compound 4 (0.002  mol, 
0.67  g), chloroacetone (0.002  mol, 0.16  ml), and 0.5  ml 
triethylamine was refluxed in ethanol for 2  h. The solid 
that formed was collected to produce the targeted 
5-acetyl-4-aminothiophene compound 5.

Off white powder; yield (38%); m.p. 218–220 °C. IR (ν/
cm−1): 3443, 3282  (NH2, N–H), 1698, 1639 (C=O). 1H 
NMR (δ/ppm): 2.09 (s, 3H,  CH3), 2.83 (s, 6H, –N(Me)2), 
6.68 (d, J = 8.50 Hz, 2H), 7.08 (t, J = 7.50 Hz, 1H), 7.30–
7.45 (m, 4H), 7.43 (d, J = 9.00  Hz, 2H), 7.47 (br. s, 2H, 
 NH2), 9.51 (s, 1H, NH), 9.77 (s, 1H, NH). 13C NMR (δ/
ppm): 28.05, 40.52 (2C), 96.27, 106.40, 112.36 (2C), 
119.97 (2C), 121.88 (2C), 123.74, 128.38, 129.38 (2C), 
141.00, 147.33, 154.38, 156.80, 161.86, 186.70. Analysis 
Calcd. for  C21H22N4O2S (394.15): C, 63.94; H, 5.62; N, 
14.20%; found: C, 63.89; H, 5.58; N, 14.18%.

Synthesis of 4-amino-5-benzoyl-N-(4-(dimethylamino)
phenyl)-2-(phenyl amino)thiophene -3-carboxamide (6)
A solution of acrylamide compound 4 (0.002 mol, 0.67 g) 
was refluxed with phenacyl bromide (0.002 mol, 0.39 g) 
and triethylamine (0.5  ml) in ethanol for 2  h. The solid 
that formed upon cooling was collected and dried to fur-
nish the targeted aminothiophene compound 6.

Yellow powder; yield (89%); m.p. 198–200  °C. IR ( ν
/cm−1): 3405, 3284  (NH2 and N–H), 1650, 1616 (C=O). 
1H NMR (δ/ppm): 2.84 (s, 6H, –N(Me)2), 6.70 (br. s, 
2H,  NH2), 7.05–7.08 (m, 1H, Ar–H), 7.28–7.35 (m, 4H, 
Ar–H), 7.42–7.47 (m, 5H, Ar–H), 7.56–7.58 (dd, J1 = 8.00, 
J2 = 2.50  Hz, 2H, Ar–H), 7.88 (s, 2H,  NH2), 8.07 (s, 2H, 
Ar–H), 9.62 (s, 1H, NH), 9.82 (s, 1H, NH). 13C NMR 
(δ/ppm): 40.65 (2C), 95.83, 106.22, 112.51 (2C), 119.95 
(2C), 122.10 (2C), 123.58, 128.26, 128.76 (2C), 129.40 
(2C), 129.64 (2C), 132.16, 137.20, 139.94, 146.03, 153.98, 
157.18, 161.78, 185.17. Analysis Calcd. for  C26H24N4O2S 
(456.16): C, 68.40; H, 5.30; N, 12.27%; found: C, 68.25; H, 
5.36; N, 12.20%.

Preparation of ethyl 4-amino-3-((4-(dimethylamino)phe-
nyl)carbamoyl)-2-(phenylamino)thiophene-5-carboxylate 
(7)
Acrylamide compound 4 (0.002 mol, 0.67 g) was refluxed 
with ethyl bromoacetate (0.002 mol, 0.22 ml) and triethyl-
amine (0.5 ml) in ethanol for 2 h. The formed precipitate 
underwent filtration, was left to dry, then recrystallized 
from ethyl alcohol.

Gray powder; yield (89%); m.p. 158–160  °C. IR ( ν
/cm−1): 3352, 3293  (NH2, N–H), 1740 (C=O), 1663 
(C=O). 1H NMR (δ/ppm): 1.34 (t, J = 7.00 Hz, 3H,  CH3), 
2.94 (s, 6H, –N(Me)2), 4.28 (q, J = 7.00  Hz, 2H,  CH2), 
5.67 (s, 2H,  NH2), 6.74 (d, J = 9.00 Hz, 2H, Ar–H), 7.10 
(t, J = 7.50  Hz, 1H, Ar–H), 7.28–7.31 (m, 2H, Ar–H), 
7.35–7.38 (m, 4H, Ar–H), 8.35 (s,1H, NH), 10.83 (s, 
1H, NH). 13C NMR (δ/ppm): 14.58, 40.63 (2C), 59.05, 
106.10, 112.46 (2C), 118.54, 119.92 (2C), 121.90 (2C), 
123.67, 128.30, 129.36 (2C), 137.86, 140.98, 154.04, 
157.15, 162.83, 163.51. Analysis Calcd. for  C22H24N4O3S 
(424.16): C, 62.25; H, 5.70; N, 13.20%; found: C, 62.38; 
H, 5.74; N, 13.15%.

General procedure for the synthesis of α,β-unsaturated 
nitrile derivatives 8a–f
A suspension of cyanoacetamide scaf-
fold 1 (0.001  mol, 0.203  g) and the appropri-
ate aromatic aldehyde (0.001  mol) [namely; 
4-methylbenzaldehyde, 4-methoxybenzaldehyde, 
4-chlorobenzaldehyde, 2-(4-formylphenoxy)-N-(p-tolyl)
acetamide, 2-(4-formylphenoxy)-N-(4-methoxyphenyl)
acetamide, N-(4-chlorophenyl)-2-(4-formylphenoxy)
acetamide] was refluxed for 2 h in absolute ethanol con-
taining drops of piperidine. The precipitate was filtered 
and dried to produce the corresponding unsaturated 
nitriles 8a–f.

2‑Cyano‑N‑(4‑(dimethylamino)phenyl)‑3‑(p‑tolyl)acrylamide 
(8a)
Red crystals; yield (81%); m.p. 198–200  °C. IR ( ν/cm−1): 
3381 (N–H), 2206 (C≡N), 1673 (C=O). 1H NMR (δ/
ppm): 2.38 (s, 3H,  CH3), 2.86 (s, 6H, –N(Me)2), 6.71 (d, 
J = 8.50 Hz, 2H, Ar–H), 7.39 (d, J = 8.50 Hz, 2H, Ar–H), 
7.46 (d, J = 8.50 Hz, 2H, Ar–H), 7.88 (d, J = 8.00 Hz, 2H, 
Ar–H), 8.17 (s, 1H, C=CH), 10.07 (s, 1H, NH). 13C NMR 
(δ/ppm): 21.17, 40.48 (2C), 106.81, 112.41 (2C), 116.23, 
122.13 (2C), 127.56, 128.96 (2C), 129.52 (2C), 131.63, 
138.39, 147.88, 150.70, 165.08. Mass analysis (m/z, %): 
305.25  (M+, 36.05%), 68.78 (69.89), 59.91 (100.0), 47.92 
(51.88), 45.94 (49.28), 43.98 (51.08), 43.01 (87.65), 40.24 
(71.48). Analysis Calcd. for  C19H19N3O (305.15): C, 74.73; 
H, 6.27; N, 13.76%; found: C, 74.59; H, 6.20; N, 13.64%.

3‑(p‑Anisyl)‑2‑cyano‑N‑(4‑(dimethylamino)phenyl)acryla‑
mide (8b)
Orange crystals; yield (85%); m.p. 205–206  °C. IR ( ν/
cm−1): 3354 (N–H), 2206 (C≡N), 1672 (C=O). 1H NMR 
(δ/ppm): 2.86 (s, 6H, –N(Me)2), 3.85 (s, 3H,  OCH3), 
6.71 (d, J = 9.00  Hz, 2H, Ar–H), 7.15 (d, J = 9.00  Hz, 
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2H, Ar–H), 7.45 (d, J = 9.00  Hz, 2H, Ar–H), 7.99 (d, 
J = 9.00  Hz, 2H, Ar–H), 8.14 (s, 1H, C=CH), 9.99 (s, 
1H, NH). 13C NMR (δ/ppm): 40.54 (2C), 56.02, 106.90, 
112.63 (2C), 114.33 (2C), 116.18, 122.29 (2C), 124.92, 
127.65, 130.48 (2C), 148.14, 150.58, 159.72, 164.87. Mass 
analysis (m/z, %): 321.20  (M+, 23.58%), 292.29 (100.0), 
285.97 (97.91), 256.37 (79.44), 145.25 (75.57), 125.68 
(68.39), 109.92 (73.09), 59.86 (77.72). Analysis Calcd. for 
 C19H19N3O2 (321.15): C, 71.01; H, 5.96; N, 13.08%; found: 
C, C, 70.90; H, 5.89; N, 12.85%.

3‑(4‑Chlorophenyl)‑2‑cyano‑N‑(4‑(dimethylamino)phenyl)
acrylamide (8c)
Yellow powder; yield (87%); m.p. 248–250  °C. IR ( ν/
cm−1): 3321 (N–H), 2224 (C≡N), 1670 (C=O). 1H NMR 
(δ/ppm): 2.86 (s, 6H, –N(Me)2), 6.71 (d, J = 8.50  Hz, 
2H, Ar–H), 7.46 (d, J = 9.00  Hz, 2H, Ar–H), 7.67 (d, 
J = 9.00 Hz, 2H, Ar–H), 7.98 (d, J = 8.50 Hz, 2H, Ar–H), 
8.21 (s, 1H, C=CH), 10.14 (s, 1H, NH). 13C NMR (δ/
ppm): 40.57 (2C), 106.83, 112.74 (2C), 116.09, 122.35 
(2C), 127.57, 128.78 (2C), 131.11 (2C), 132.40, 133.73, 
147.96, 150.64, 164.90. Mass analysis (m/z, %): 326.15 
 (M+, 30.94%), 324.05 (79.78), 309.90 (93.05), 268.94 
(64.34), 252.80 (80.02), 142.10 (83.88), 73.07 (71.04), 
71.13 (100.0). Analysis Calcd. for  C18H16ClN3O (325.10): 
C, 66.36; H, 4.95; N, 12.90%; found: C, 66.24; H, 4.89; N, 
12.81%.

2‑Cyano‑N‑(4‑(dimethylamino)phenyl)‑3‑(4‑(2‑oxo‑2‑(p‑tol‑
ylamino)ethoxy)‑phenyl)acrylamide (8d)
Orange powder; yield (95%); m.p. 258–260  °C. IR ( ν
/cm−1): 3407, 3338 (N–H), 2213 (C≡N), 1696, 1670 
(C=O). 1H NMR (δ/ppm): 2.24 (s, 3H,  CH3), 2.86 (s, 
6H, –N(Me)2), 4.81 (s, 2H,  CH2), 6.71 (d, J = 9.00  Hz, 
2H, Ar–H), 7.12 (d, J = 8.50  Hz, 2H, Ar–H), 7.19 (d, 
J = 9.00 Hz, 2H, Ar–H), 7.45 (d, J = 9.00 Hz, 2H, Ar–H), 
7.50 (d, J = 9.00 Hz, 2H, Ar–H), 8.00 (d, J = 8.50 Hz, 2H, 
Ar–H), 8.15 (s, 1H, C=CH), 10.00 (s, 1H, NH), 10.08 (s, 
1H, NH). 13C NMR (δ/ppm): 21.15, 40.51 (2C), 66.79, 
105.63, 112.51 (2C), 115.61 (2C), 116.44, 120.32 (2C), 
122.17 (2C), 124.97, 127.38, 129.55 (2C), 130.25 (2C), 
134.77, 136.49, 147.70, 149.88, 159.84, 161.67, 166.01. 
Mass analysis (m/z, %): 454.45  (M+, 6.32%), 387.22 
(62.14), 212.14 (100.00), 125.09 (51.07), 118.12 (45.58), 
91.12 (50.40), 77.10 (46.57), 65.11 (46.64). Analysis Calcd. 
for  C27H26N4O3 (454.20): C, 71.35; H, 5.77; N, 12.33%; 
found: C, 71.30; H, 5.74; N, 12.70%.

2‑Cyano‑N‑(4‑(dimethylamino)phenyl)‑3‑(4‑(2‑((4‑methoxy 
phenyl)amino)‑2‑oxoethoxy)phenyl) acrylamide (8e)
Red powder; yield (93%); m.p. 238–240  °C. IR ( ν/cm−1): 
3398 (N–H), 2199 (C≡N), 1685, 1665 (C=O). 1H NMR 
(δ/ppm): 2.86 (s, 6H, –N(Me)2), 3.71 (s, 3H,  OCH3), 4.80 

(s, 2H,  CH2), 6.71 (d, J = 9.50  Hz, 2H, Ar–H), 6.89 (d, 
J = 9.50 Hz, 2H, Ar–H), 7.19 (d, J = 9.00 Hz, 2H, Ar–H), 
7.45 (d, J = 9.50  Hz, 2H, Ar–H), 7.53 (d, J = 9.00  Hz, 
2H, Ar–H), 8.00 (d, J = 9.00 Hz, 2H, Ar–H), 8.15 (s, 1H, 
C=CH), 10.00 (s, 1H, NH), 10.03 (s, 1H, NH). 13C NMR 
(δ/ppm): 40.57 (2C), 55.96, 66.87, 105.53, 112.44 (2C), 
114.48 (2C), 115.54 (2C), 116.60, 122.11 (2C), 122.97 
(2C), 125.05, 127.35, 130.19 (2C), 131.82, 147.76, 149.79, 
159.08, 159.92, 161.84, 166.23. Mass analysis (m/z, %): 
470.12  (M+, 18.62%), 374.51 (79.57), 276.61 (58.38), 
256.62 (100.00), 248.14 (43.70), 213.40 (49.57), 83.70 
(31.43), 75.55 (64.69). Analysis Calcd. for  C27H26N4O4 
(454.20): C, 68.92; H, 5.57; N, 11.91%; found: C, 68.82; H, 
5.49; N, 11.87%.

3‑(4‑(2‑((4‑Chlorophenyl)amino)‑2‑oxoethoxy)phenyl)‑2‑cya
no‑N‑(4‑(dimethylamino)phenyl)acrylamide (8f)
Orange powder; yield (88%); m.p. 258–260  °C. IR ( ν/
cm−1): 3407, 3347(N–H), 2211 (C≡N), 1702, 1668 (C=O). 
1H NMR (δ/ppm): 2.86 (s, 6H, –N(Me)2), 4.84 (s, 2H, 
 CH2), 6.70 (d, J = 9.00 Hz, 2H, Ar–H), 7.19 (d, J = 8.50 Hz, 
2H, Ar–H), 7.39 (d, J = 9.00  Hz, 2H, Ar–H), 7.45 (d, 
J = 9.50 Hz, 2H, Ar–H), 7.65 (d, J = 9.50 Hz, 2H, Ar–H), 
8.00 (d, J = 9.50 Hz, 2H, Ar–H), 8.15 (s, 1H, C=CH), 10.01 
(s, 1H, NH), 10.32 (s, 1H, NH). 13C NMR (δ/ppm): 40.36 
(2C), 66.98, 104.28, 112.37 (2C), 115.50 (2C), 116.93, 
121.22 (2C), 122.06 (2C), 125.13, 127.34, 127.76, 128.74 
(2C), 132.34 (2C), 137.33, 147.64, 149.66, 160.04, 161.04, 
166.15. Analysis Calcd. for  C26H23ClN4O3 (474.15): C, 
65.75; H, 4.88; N, 11.80%; found: C, 65.75; H, 4.88; N, 
11.87%.

General procedure for the synthesis of 3,5-dicyanopyri-
done derivatives 9a–f
To a solution of each α,β-unsaturated nitrile deriva-
tive 8a–f (0.001  mol) in 10  ml dioxane, malononitrile 
(0.001  mol, 0.07  g) and two drops of piperidine were 
added. The mixture was refluxed for 4–6 h. The solid that 
produced was filtered to obtain the corresponding pyri-
dine derivatives 9a–f.

6‑Amino‑3,5‑dicyano‑1‑(4‑(dimethylamino)
phenyl)‑2‑oxo‑4‑(p‑tolyl)‑1,2‑dihydropyridine (9a)
Yellow powder; yield (39%); m.p. over 300  °C. IR ( ν/
cm−1): 3272, 3184  (NH2), 2216 (C≡N), 1664 (C=O). 1H 
NMR (δ/ppm): 2.39 (s, 3H,  CH3), 2.97 (s, 6H, –N(Me)2), 
6.83 (d, J = 9.00  Hz, 2H, Ar–H), 7.11 (d, J = 9.00  Hz, 
2H, Ar–H), 7.36 (d, J = 8.00  Hz, 2H, Ar–H), 7.41 (d, 
J = 8.00  Hz, 2H, Ar–H). 13C NMR (δ/ppm): 20.99, 39.50 
(2C), 66.36, 74.91, 88.05, 113.17 (2C), 115.90, 116.66, 
121.40, 127.95 (2C), 128.73 (2C), 129.19 (2C), 131.82, 
140.13, 150.94, 157.72, 159.96, 161.00. Analysis Calcd. for 
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 C22H19N5O (369.16): C, 71.53; H, 5.18; N, 18.96%; found: 
C, 71.73; H, 5.10; N, 18.1%.

6‑Amino‑4‑(p‑anisyl)‑3,5‑dicyano‑1‑(4‑(dimethylamino)
phenyl)‑2‑oxo‑1,2‑dihydropyridine (9b)
Yellow powder; yield (46%); m.p. over 300 °C. IR ( ν/cm−1): 
3263, 3181  (NH2), 2214 (C≡N), 1661 (C=O). 1H NMR (δ/
ppm): 2.97 (s, 6H, –N(Me)2), 3.83 (s, 3H,  OCH3), 6.84 (d, 
J = 13 Hz, 2H, Ar–H), 7.09 (d, J = 5.5 Hz, 2H, Ar–H), 7.11 (d, 
J = 4.5 Hz, 2H, Ar–H), 7.49 (d, J = 12 Hz, 2H, Ar–H). Mass 
analysis (m/z, %): 385.83  (M+, 23.74%), 369.93 (100.00), 
340.98 (65.94), 320.02 (38.82), 239.72 (41.35), 146.69 
(92.94), 121.34 (44.15), 81.69 (35.74). Analysis Calcd. for 
 C22H19N5O2 (385.15): C, 68.56; H, 4.97; N, 18.17%; found: 
C, 68.43; H, 4.88; N, 18.04%.

6‑Amino‑3,5‑dicyano‑4‑(4‑chlorophenyl)‑1‑(4‑(dimethylam
ino)phenyl)‑2‑oxo‑1,2‑dihydropyridine (9c)
Yellow powder; yield (42%); m.p. over 300 °C. IR ( ν/cm−1): 
3268, 3180  (NH2), 2219 (C≡N), 1661 (C=O). 1H NMR 
(δ/ppm): 2.97 (s, 6H, –N(Me)2), 6.84 (d, J = 9.00  Hz, 2H, 
Ar–H), 7.09 (d, J = 9.00 Hz, 2H, Ar–H), 7.56 (d, J = 9.00 Hz, 
2H, Ar–H), 7.65 (d, J = 9.00 Hz, 2H, Ar–H). Mass analysis 
(m/z, %): 391.39  (M+, 6.25%), 211.16 (36.82), 185.14 (39.83), 
78.12 (42.31), 69.11 (100.00), 57.13 (55.89), 44.08 (81.77), 
43.12 (54.55). Analysis Calcd. for  C21H16ClN5O (389.10): 
C, 64.70; H, 4.14; N, 17.96%; found: C, 64.86; H, 4.21; N, 
17.86%.

2‑((5′‑Amino‑2′,6′‑dicyano‑4″‑(dimethylamino)‑3′‑oxo‑
3′,4′‑dihydro‑[1,1′:4′,1″‑terphenyl]‑4‑yl)oxy)‑N‑(p‑tolyl)
acetamide (9d)
Yellow powder; yield (48%); m.p. over 300 °C. IR ( ν/cm−1): 
3340, 3278, 3183  (NH2 and N–H), 2213 (C≡N), 1693, 
1659 (C=O). 1H NMR (δ/ppm): 2.25 (s, 3H,  CH3) 2.97 
(s, 6H, –N(Me)2), 4.78 (s, 2H,  CH2), 6.83 (d, J = 9.00  Hz, 
2H, Ar–H), 7.16–7.09 (m, 6H, Ar–H), 7.54–7.50 (m, 4H, 
Ar–H), 10.07 (s, 1H, NH). Mass analysis (m/z, %): 518.20 
 (M+, 24.25%), 216.88 (60.94), 200.02 (62.47), 195.92 (65.18), 
190.34 (100.00), 155.28 (80.86), 118.20 (76.35), 58.91 
(53.19). Analysis Calcd. for  C31H27N5O3 (517.21): C, 71.94; 
H, 5.26; N, 13.53%; found: C, 71.86; H, 5.20; N, 13.48%.

2‑((5′‑Amino‑2′,6′‑dicyano‑4″‑(dimethylamino)‑3′‑oxo‑3
′,4′‑dihydro‑[1,1′:4′,1″‑terphenyl]‑4‑yl)oxy)‑N‑(p‑anisyl)
acetamide (9e)
Yellow powder; yield (47%); m.p. over 300 °C. IR ( ν/cm−1): 
3337, 3285, 3191  (NH2 and N–H), 2212(C≡N), 1661 
(C=O). 1H NMR (δ/ppm): 2.97 (s, 6H, –N(Me)2), 3.71 (s, 
3H,  OCH3), 4.76 (s, 2H,  CH2), 6.83 (d, J = 9.00  Hz, 2H, 
Ar–H), 6.89 (d, J = 9.00 Hz, 2H, Ar–H), 7.11 (d, J = 8.50 Hz, 
2H, Ar–H), 7.16 (d, J = 9.00  Hz, 2H, Ar–H), 7.51 (d, 
J = 9.00  Hz, 2H, Ar–H), 7.55 (d, J = 8.50  Hz, 2H, Ar–H), 

10.02 (s, 1H, NH). Mass analysis (m/z, %): 534.85  (M+, 
11.25%), 208.33 (100.00), 154.20 (83.73), 125.14 (65.09), 
112.28 (75.16), 106.20 (93.18), 79.56 (49.87), 45.42 (60.04). 
Analysis Calcd. for  C31H27N5O4 (533.21): C, 69.78; H, 5.10; 
N, 13.13%; found: C, 69.67; H, 5.02; N, 13.01%.

2‑((5′‑Amino‑2′,6′‑dicyano‑4″‑(dimethylamino)‑3′‑oxo‑3′,
4′‑dihydro‑[1,1′:4′,1″‑terphenyl]‑4‑yl)oxy)‑N‑(4‑chlorophe‑
nyl)acetamide (9f)
Yellow powder; yield (54%); m.p. over 300  °C. IR ( ν/
cm−1): 3407, 3346  (NH2 and N–H), 2212 (C≡N), 1702, 
1664 (C=O). 1H NMR (δ/ppm): 2.97 (s, 6H, –N(Me)2), 
4.81 (s, 2H,  CH2), 6.83 (d, J = 9.00 Hz, 2H, Ar–H), 7.10 (d, 
J = 9.00 Hz, 2H, Ar–H), 7.15 (d, J = 9.00 Hz, 2H, Ar–H), 
7.38 (d, J = 9.00 Hz, 2H, Ar–H), 7.51 (d, J = 8.50 Hz, 2H, 
Ar–H), 7.69 (d, J = 8.50  Hz, 2H, Ar–H), 10.31 (s, 1H, 
NH). Mass analysis (m/z, %): 538.58  (M+, 23.63%), 277.49 
(80.64), 266.16 (75.22), 177.04 (66.62), 145.70 (92.77), 
79.77 (97.11), 79.26 (100.00), 69.49 (65.21). Analysis 
Calcd. for  C30H24ClN5O3 (537.16): C, 66.98; H, 4.50; N, 
13.02%; found: C, 66.90; H, 4.53; N, 13.11%.

Biological activity assays
Cell lines and reagents
HepG2 and MDA-MB-231 cell lines were purchased 
from Nawah Scientific Company, Egypt. Cells were 
grown in DMEM medium (BioWhittaker™) supple-
mented with bovine serum albumin (10%, Life Science 
Group L, UK, Cat No: S-001B-BR) and with 100  IU/ml 
penicillin/streptomycin (100  µg/ml) (Lonza, 17-602E). 
Doxorubicin was obtained from Sigma-Aldrich, solubi-
lized in DMSO and kept at − 20  °C as a stock solution. 
The tested compounds were prepared in dimethyl sulfox-
ide (10 mM stock) (DMSO Cat. No. 20385.02, Serva, Hei-
delberg, Germany) and stored at − 20 °C.

Cytotoxic assay
Using the MTT assay to determine the cytotoxicity of 
tested compounds 1–9(a–d). MTT or 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was 
purchased from SERVA, Germany. The cell lines were 
introduced into 96-well plates at a density of 4 ×  104 cells/
well in 100  μl of complete medium (tests were done in 
duplicates). These plates were incubated for 24  h, 5% 
 CO2, at 37  °C for settle down and adhesion. The drug 
(Doxorubicin) solutions were earlier produced in DMSO 
(control) at 5 and 50  μM concentrations, these medica-
tion solutions were administered to the line cells for 48 h 
after adhesion. MTT (3-(4,5-dimethylthiazoyl)-2,5-di-
phenyl-tetrazolium bromide (MTT) (5  mg/ml (PBS) 
Phosphate Buffered Saline) was added, and the plate was 
incubated for 4 h. After that, acidified via sodium dodecyl 
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sulfate (SDS) solution (10% SDS containing 0.01N HCl in 
1× PBS) was used to solubilize formazan crystals. The 
absorbance was measured after 14  h of incubation at 
λ570–630 nm by a Biotek plate reader (Gen5™) [48, 49]. 
According to the initial screening, the cells underwent 
incubation with serial dilutions (25, 12.5, 6.25, 3.125, 
1.56, and 0.78 µM) of compounds 1–9(a–d) for 48 h, then 
the viability was determined by using MTT reagent. The 
 IC50% of the compounds 2, 6, 7, and 9c were calculated 
by using Prism 8.0 Software. The results were shown as 
percentage of control group (DMSO). Inhibition of cell 
growth was assessed using the equation:

The concentration that kills 50% of cells was identified 
after incubating the cells with six-point serial dilutions 
(50, 25, and 12.5 µM) of compounds 2, 6, 7, and 9c. Dox-
orubicin was used as reference. The  IC50 was calculated 
by Prism Software.

Estimation of the pharmacokinetic parameters
The pharmacokinetics and drug-likeness properties were 
predicted for the synthesized compounds were predicted 
by online tool SwissADME predictor software (http:// 
swiss adme. ch/ index. php) made by Swiss Institute of Bio-
informatics. The 2D chemical structures of the tested 
compounds was copied into SMILEY mode from chem-
draw program. The boiled-egg was generated based on 
the properties of each compound.

PASS online predictor for anticancer activity
The tool used for prediction is (PASS) (http:// www. way2d 
rug. com/ passo nline/ predi ct. php). Prediction of activity 
spectra for substance. The 2D chemical structures of the 
tested compounds was copied into SMILEY mode from 
chemdraw program. Pa (probability to be active) and Pi 
(probability to be inactive) values were given by PASS 
online software for different anti-cancer activities and 
IDE inhibition.

Molecular docking study
All the molecular modeling studies were carried out 
using Molecular Operating Environment (MOE, 2015.01) 
software. The three-dimensional structure (3D) of the 
selected proteins (PDB ID 4y72), (PDB ID 2ra3) were 
downloaded from the PDB website. The water molecules 
and repeated chains were removed. Protons were added 
and the energy of the protein was minimized. The prep-
aration of compounds for docking were carried out by 

%inhibition =

Acontrol − Asample

Acontrol
× 100.

energy minimization and potential energy calculation 
inside MOE program. MOE conducted the docking of 
the newly synthesized compounds, calculated the bind-
ing energies, and provided their binding modes.
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