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Abstract 

The multivariate models that are used for spectral data analysis have many beneficial applications, and one 
of the important applications is the analysis of drugs and their impurities. Three Chemometrically‑assisted spectro‑
photometric models have been proposed and validated. The proposed models are Partial Least Squares (PLS), Artificial 
Neural Networks (ANN), and Multivariate Curve Resolution‑Alternating Least Squares (MCR‑ALS). The advanced che‑
mometric models were applied to resolve the significantly overlapping spectra of Etoricoxib (ETO) and Paracetamol 
(PCM), along with impurities of PCM namely; P‑aminophenol (PAP) and P‑hydroxy acetophenone (PHA). The proposed 
models succeeded in simultaneously analyzing the mixture of ETO and PCM along with the impurities of PCM. So, 
the proposed techniques can be used without requiring a separation step in the analysis of pharmaceutical formula‑
tion. Moreover, no significant differences were found when the results of the suggested and published chemometric 
models were compared statistically with the reported HPLC method.
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Introduction
The reactions of the body’s organs to the wound, and tis-
sue damage are inflammation, pain, rash, osteoarthritis, 
and other illnesses [1]. The most common medications 
that are prescribed to treat chronic inflammation such as 
rheumatoid arthritis, and gout, and acute inflammation 

such as headache and postoperative pain conditions are 
nonsteroidal anti-inflammatory drugs (NSAIDs) [2].

Etoricoxib (ETO) and Paracetamol (PCM) are new 
combinations frequently used as NSAIDs. Etoricoxib 
(ETO) is 5-chloro-3-(4-methanesulfonylphenyl)-2-(6-
methylpyridin-3-yl) pyridine (Fig.  1a). ETO is a selec-
tive COX-2 inhibitor [3], used to decrease swelling and 
joint stiffness caused by osteoarthritis, rheumatoid 
arthritis, and gout [4], as well as to treat COVID-19 by 
overpowering a cytokine storm [5]. Paracetamol (PCM), 
N-(4-hydroxyphenyl) acetamide (Fig.  1b) considered 
a common antipyretic and analgesic drug [6], used in 
various pharmaceutical formulations to relieve pain and 
fever. It is approved in both British and United States 
pharmacopeias [7, 8], and it has been introduced as a 
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supplementary treatment to reduce the fever brought on 
by COVID-19 infection [9]. Paracetamol is susceptible to 
degradation during storage like many other pharmaceu-
tical compounds. In addition, during the manufacturing 
process, several impurities are produced. This makes it a 
challenging task to develop analytical techniques to eval-
uate active constituents in the presence of impurities.

P-aminophenol (PAP) (Fig. 1c) is a major PCM impu-
rity, with nephrotoxic effects [10, 11] and teratogenic 
potential [12]. Figure  1d shows para-hydroxy acetophe-
none (PHA), a toxic impurity named in the British Phar-
macopoeia as impurity E of PCM [7].

Several analytical techniques have been described in 
the literature to assay PCM such as HPLC [13–15], spec-
trophotometric [16–18], chemometric [19–21], and elec-
trochemical analytical techniques [22, 23]. Furthermore, 
numerous techniques for determining ETO, including 
HPLC techniques, have been reported [24–26], HPTLC 
[27], spectrophotometric techniques [28], LC–MS/MS 
[29], and ion-selective [30]. A comprehensive litera-
ture review reveals only a few techniques for determin-
ing mixtures of ETO and PCM, such as HPLC [31–36], 
HPTLC [37], and spectrophotometric technique [38].

The reported HPLC method has some limitations, 
such as the time-consuming separation procedure and 

the reliance on toxic organic solvents like acetonitrile in 
the mobile phase. Additionally, suitable stationary and 
mobile phase selection for optimal peak resolution is a 
crucial parameter that requires fine-tuning. Alternatively, 
due to their simplicity of use and ability to beats the 
above-mentioned drawbacks, spectrophotometric meth-
ods are utilized as a powerful substitute for the analysis 
of the drugs. However, one of the challenges faced while 
analyzing multiple drugs simultaneously is undoubt-
edly spectral overlaps. So, one of the most potent tools 
for resolving this spectral overlapping problem is che-
mometrics. Chemometrics is the application of statisti-
cal and mathematical techniques used to build the most 
effective processes and to offer the most chemical knowl-
edge via the analysis of data [39]. As a result, chemomet-
rics has attracted much attention in recent years as an 
excellent processing technique for the spectral analysis of 
multicomponent mixtures in pharmaceuticals because of 
its ability to use multiple spectral intensities, which has a 
great impact on precision [40].

In the current study, several chemometric models, 
such as Partial Least Squares (PLS), Artificial Neural 
Networks (ANN), and Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS), were applied to 
determine multicomponent mixture consist of PCM, and 
PCM impurities. To date, there is no chemometric mod-
els reported to resolve the spectra of both drugs together 
with the PCM impurities.

The aim of this work is to propose simple and smart 
chemometric models for the quantitative determination 
of ETO, and PCM in the presence of PCM impurities.

Experimental
Reagents and materials
Etoricoxib and Paracetamol, with purity of 99.5% and 
99.94%, respectively, were provided by SIGMA Phar-
maceutical Industries (Cairo, Egypt). The purity of the 
PAP and PHA that were obtained from Sigma-Aldrich 
was 99.73% and 99.61%, respectively. Methanol of HPLC 
grade was obtained from Sigma-Aldrich (Germany).

Pharmaceutical formulation: Intacoxia-P® tablets 
(Batch no: 5/UA/2017) obtained from Aagya Biotech Pvt 
Ltd (Manglaur Roorkee, Uttarakhand, India), labeled to 
contain 60 mg and 325 mg per tablet for ETO and PCM, 
respectively.

Instrumentation
A Shimadzu UV–Visible dual-beam spectrophotom-
eter, model UV-1800, equipped with a 1  cm quartz cell 
and UV-Probe 2.32 software was used to perform all 
spectrophotometric measurements (Shimadzu Scientific 
Instruments Inc., Kyoto, Japan). The PLS toolbox (version 
2.1), ANN toolbox carried out in MATLAB® 8.1.0.604 

Fig. 1 Structure of a Etoricoxib, b Paracetamol, c Para‑aminophenol 
and d Para‑hydroxy acetophenone
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(R2013a), and MCR-ALS toolbox [41] were used to 
implement all chemometric models.

Standard solutions
An amount of ETO and PCM, equals to 15 mg and 20 mg, 
respectively, was transferred into two separate 100  mL 
volumetric flasks. After completing the volume of each 
flask to 100 mL with methanol, ETO and PCM concen-
trations were 150 μg  mL−1 and 200 μg  mL−1, respectively. 
Working solutions were prepared from stock solutions to 
reach final concentrations of 75 and 100 μg  mL−1 for ETO 
and PCM, respectively. Ten mg of each PAP and PHA 
were accurately weighed into a volumetric flask (100 mL), 
and the volume was completed using methanol to give a 
final concentration of 100 μg  mL−1.

Procedure
Spectral characteristics
The absorption spectra of ETO, PCM, PAP, and PHA 
have been recorded over 200–400  nm utilizing metha-
nol as blank. For further data analysis, the spectral data 
points with a wavelength range of 220–300  nm were 
imported into MATLAB®.

Construction of calibration and validation sets
The prediction performance of each calibration model 
was assessed using 18 samples as the calibration (train-
ing) set and 7 samples as the validation set. The calibra-
tion and validation sets’ compositions contain various 
concentrations of ETO, PCM, PAP, and PHA ranging 
from 1.5–7.5, 2–10, 2–6, and 2–6 μg  mL−1, respectively, 
as shown in Table  1. The solutions were prepared by 
mixing different volumes of each component from their 
respective working solutions in a 25 mL volumetric flask 
and then diluted them with methanol. PLS, ANN, and 
MCR-ALS are the multivariate calibration models used 
over the selected spectral range 220–300 nm with 0.1 nm 
intervals. Then we investigated and optimized all param-
eters of the models, before using them for simultaneous 
determinations of ETO and PCM, along with PCM impu-
rities, in the validation set.

Wavelength range selection
Various wavelength ranges were sought, but noisy and 
uninformative wavelength ranges were avoided in order 
to choose the best range for the proposed models that 
achieve higher selectivity and sensitivity.

Optimization of calibration regressions
For the PLS calibration model, mean centering algorithm 
as a preprocessing step and leave-one-out cross valida-
tion were adopted, and the root mean square error of 

cross-validation (RMSECV) was calculated to reach the 
optimal number of latent variables.

Artificial neural networks are computerized systems 
that mimic the way the human brain analyzes and pro-
cesses data. A feed-forward model was trained to opti-
mize the calibration model of ANN. We also tried to 
optimize the  neuron’s number in the hidden layer as 
eight neurons were selected using the Purelin-to-Purelin 
transfer function. Additionally, the epochs number has 
been optimized.

In MCR-ALS calibration, applied constraints were 
the key parameter for optimization. A non-negativity 
constraint [non-negative least squares (nnl)] to both 
concentration and spectral profiles were used to reach 
the suitable parameters with the minimum number of 
iterations.

Assay of pharmaceutical formulation
The mean weight of ten tablets was determined, and 
finely powdered. An accurate weight equivalent to 

Table 1 Concentrations of ETO, PCM, PAP and PHA in the 
calibration and validation sets for the multivariate calibrations

a The italic emphasis rows represent the validation set

Mix no Concentration (μg  mL−1)

ETO PCM PAP PHA

1 4.5 6 4 4

2 4.5 2 3 2

3 1.5 4 2 6

4 3 2 6 6

5 1.5 10 6 4

6 7.5 10 4 3

7 7.5 6 3 6

8 4.5 4 6 3

9a 3 10 3 5

10a 7.5 4 5 5

11a 3 8 5 4

12a 6 8 4 6

13 6 6 6 5

14a 4.5 10 5 6

15 7.5 2 6 2

16a 6 10 2 2

17 7.5 2 2 4

18 1.5 2 4 5

19 1.5 6 5 2

20 4.5 8 2 5

21 6 2 5 3

22 1.5 8 3 3

23 6 4 3 4

24a 3 6 2 3

25 3 4 2 4
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18.5 mg of ETO and 100 mg of PCM from the crushed 
powder was weighed out, and dissolved in 50 mL meth-
anol in a 100  mL volumetric flask. After sonicating for 
15  min, methanol was added to adjust the volume, and 
solution was filtered to yield an initial stock solution 

claimed to contain 0.18 μg   mL−1 ETO and 1.0 μg   mL−1 
PCM. For determination of ETO and PCM, the solution 
was further diluted where, 2 mL and 1 mL, respectively 
were transferred to two different 100  mL volumetric 
flasks from the previous filtrate and methanol was used 

Fig. 2 First‑order absorption spectra of 10 µg  mL−1 for ETO, PCM, PAP, and PHA using methanol as blank

Fig. 3 RMSEC plot of the cross validation results of the calibration set as a function of the number of latent variables used to PLS calibration
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to increase the volume to mark, resulting in a final con-
centration of 3.6  μg   mL−1 ETO and 10  μg   mL−1 PCM. 
Aliquots of the working solution were used for the quan-
tification of ETO and PCM in the dosage form by the 
developed models.

Results and discussion
Impurities arise through the synthesis process or from 
incorrect storage of drug products. PCM was prone to 
degradation and had impurities such as PAP and PHA. 
A few techniques only have been described for deter-
mining ETO/PCM in pharmaceutical formulations, but 
no one has described a chemometric models for the 
determination of ETO/PCM mixtures in the presence 
of PCM impurities. Therefore, it was of great impor-
tance to develop an accurate method for simultaneous 
determination of active ingredients and impurities that 
may be found in pharmaceutical dosage forms parallel 
advances in chemometrics, along with advances in ana-
lytical instrumentation and computational power, afford 
numerous beneficial tools that aid in the resolution and 
display of complex chemical information. Multivariate 
calibration models rely on the simultaneous inclusion of 
multiple spectral wavelengths and thus can resolve highly 
overlapping spectra. This provides better accuracy and 
precision than relying on a single wavelength.

Chemometric models can be used for the fast predic-
tion of analyte concentrations using the multifactorial 
prediction analysis of the spectra of unknown samples. In 
quality control laboratories, multivariate calibrations are 
utilized for impurity profiling [42]. Additionally, chemo-
metrics have several biomedical applications and used to 
generate metabolic profiling [43].

Spectral characteristics and wavelength selection
The components’ UV spectra were recorded over the 
wavelength range of 200–400  nm. After a quick look at 
these spectra, a significant overlap was seen (Fig.  2). 

Using multivariate data analysis, we resolved the strongly 
overlapping spectra of the investigated active substance 
and the PCM impurity for the analysis of ETO, PCM, 
PAP, and PHA, three multivariate calibration techniques 
were developed. To obtain the best predictions, multivar-
iate calibrations require a comprehensive experimental 
design to configure the calibration set.

The proposed models showed the best performance 
when the spectra were digitally scanned at 0.1 nm within 
the selected range of 220–300 nm. The other wavelengths 
were ignored due to noise that appeared within the range 
of 200–210 nm and poor absorption within the range of 
300–400 nm.

Construction of the models
A set of 25 laboratory prepared mixtures of the com-
ponents under study includes calibration, and vali-
dation sets with concentration levels ranging from 
1.5–7.5 μg   mL−1 for ETO, 2–10 μg   mL−1 for PCM, and 
2–6  μg   mL−1 for PAP and PHA were constructed using 
the four-factor five level design [44], where 18 samples 
serve as the calibrations set and the remaining 7 samples 
applied as a validation set (Table 1).

Partial least squares (PLS)
In quantitative analysis, PLS models are frequently uti-
lized to obtain specific data from the spectrum of unse-
lective data [45]. The PLS model, usually applied as a 
regression model to the spectral matrix of the calibration 
data to translate it into new spaces’ dimensions known as 
latent variables (LVs). It was necessary to prudently deter-
mination of the optimal number of LVs to prevent losing 
important information and any overfitting of the model 
owing to insufficient or excess LVs. Therefore, leave-
one-out cross validation method was utilized to reach 
the optimal number of the LVs, the calibration spec-
tra remaining were modeled, and the root mean square 
error of calibration (RMSEC) was recalculated after the 

Fig. 4 ANN Architecture for the prediction of the concentrations of the four component using different layer
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gradual addition of various LVs to the model according to 
criteria of Haaland and Thomas [46]. Before building the 
models, the data were either used as raw data or pre-pro-
cessed using auto scaling or mean centering algorithms. 
Mean centering was the best pre-processing algorithm 
displaying good recoveries, RMSE and RSD. For all com-
ponents his study, the optimal number of latent variables 
was revealed to be 6, as displayed in Fig. 3.

Artificial neural networks (ANN)
Artificial neural networks operate via a network of struc-
tures based on neurons. The layers of the neurons are 
input, hidden, and output. A feed-forward networks are 
the networks used in this study. After the input layer 
receives the data, weights are created based on the input 
values and then transformed through transfer functions 
into output values. Network learning is accomplished 
by backpropagation. The estimates produced by the net-
works are then compared to the desired outputs. Errors 
are then calculated and returned backward via the net-
work. This process of learning will continue until the net-
works are trained properly [47].

Through a trial-and-error method, various parameters 
for the networks were adjusted; to achieve the highest 
predicting abilities for them. These parameters impli-
cate the number of neurons in the hidden layer, training 
functions, and transfer function pairs. The choice of the 
transfer function based on the characteristics of the ana-
lyzed data.

In this work, the Purelin–Purelin transfer function 
was appropriate for all analytes as predicted with the 
linear relationship between absorbance and concentra-
tion of analytes under investigation. The networks had 
been trained on a variety of training functions, it was 
found that there is no difference between them regard-
ing RMSEP. As a training function, the TRAINLM-Lev-
enberg–Marquardt backpropagation (TRAINLM) was 
preferred and selected to save time. Matching to the 
number of spectrum data points utilized, 801 neurons 
were applied in input layer, and 4 neurons were applied as 
an output layer, corresponding to the number of compo-
nents that were computed to be determined in each sam-
ple. Several numbers of hidden neurons were examined 
to adopt the ideal number of neurons that enhanced the 
ANN’s ability for prediction, 8 hidden neurons, and 500 
epochs were found to be optimal.

Fig. 5 ANN diagrams of prediction for the training, test and validation
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The ANN architecture revealed different layers applied 
to predict the concentration of the four components 
(Fig. 4). Figure 5 shows prediction diagrams for the train-
ing, and validation series of the chosen layers and neu-
rons, r close to 1 for the training, and validation sets.

Multivariate curve resolution‑alternating least squares 
(MCR‑ALS)
The key aim of MCR is to obtain pure response profiles of 
unresolved mixed constituents when no previous knowl-
edge is accessible. It works by applying a bilinear model 

Fig. 6 Original spectra ( ) and estimated spectra ( ) by MCR‑ALS of a ETO, b PCM, c PAP, d PHA

Table 2 Performance parameters of the calibration calculated for each proposed model

a Data of the straight line plotted between predicted concentrations of each component versus actual concentrations of calibration set
b Root Mean Square Error of Calibration

Parameter PLS ANN MCR‑ALS

ETO PCM PAP PHA ETO PCM PAP PHA ETO PCM PAP PHA

Slopea 0.9996 0.9997 0.9991 0.9993 0.9937 1.0012 0.09961 1.0103 1 1 1 1

Intercepta 0.0016 0.0015 0.0037 0.0028 0.03 − 0.0088 0.0054 − 0.0375 1.4787 ×  10–17 − 2.334 ×  10–16 − 2.3734 ×  10–16 0

Correlation 
Coefficient 
(r)a

0.9996 0.9997 0.9991 0.9993 0.9995 1.00 0.9992 0.9982 0.9992 0.9996 0.9995 0.9996

RMSECb 0.0430 0.0458 0.0446 0.0359 0.0550 0.0178 0.0439 0.0590 0.0224 0.0403 0.0424 0.0304
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Table 3 Prediction of validation set samples using the proposed chemometric models

a Root mean square error of prediction

Concentration (µg  mL−1) PLS ANN MCR‑ALS

Recovery % Recovery % Recovery %

ETO PCM PAP PHA ETO PCM PAP PHA ETO PCM PAP PHA ETO PCM PAP PHA

3 10 3 5 99.76 98.83 98.92 99.18 98.59 98.02 98.81 99.12 100.68 99.47 98.77 98.91

7.5 4 5 5 101.01 99.08 99.54 98.27 99.28 100.20 99.12 98.90 98.44 100.35 99.98 99.45

3 8 5 4 99.98 100.44 100.88 98.66 98.22 98.43 100.57 99.97 100.26 99.11 98.49 99.62

6 8 4 6 100.06 98.91 99.73 100.94 99.72 98.50 98.62 100.37 100.67 99.76 98.88 100.06

4.5 10 5 6 99.25 100.18 101.45 100.39 99.50 98.83 100.56 101.60 99.22 99.90 101.30 100.02

6 10 2 2 99.99 99.76 102.62 98.48 100.90 99.44 99.04 98.45 99.86 100.70 98.14 98.83

3 6 2 3 100.82 99.11 101.81 98.56 99.67 99.43 98.69 98.30 100.33 98.77 99.65 98.92

Mean 100.12 99.49 100.71 99.21 99.41 98.98 99.34 99.53 99.92 99.72 99.32 99.40

RSD% 0.604 0.626 1.343 1.050 0.869 0.757 0.850 1.184 0.829 0.675 1.089 0.530

RMSEPa 0.0555 0.1110 0.0540 0.0513 0.0937 0.1353 0.1080 0.0849 0.0495 0.0715 0.0420 0.0440

Fig. 7 The calculated (a) RMSEC for each component achieved by the proposed calibration models and b RMSEP calculated by the corresponding 
validation model
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to break down the data matrix. At first, the initial estima-
tion of the compounds, then followed by ALS optimiza-
tions of specific constraints applied to concentrations of 
the components and spectra profiles. The non-negativity 
constrains were applied to the concentration and spectral 
profiles, as well as to correlation constraints in concen-
tration profiles [48]. The requirement for non-negativity 
constraints the concentration and spectra exist equal to 
or higher than zero. The optimization process of ALS was 
finished when a specific convergence criterion reached 
20%. Convergence is often terminated when there are 
relative differences in the SD of residuals between ALS 
results and experimental data is smaller than a threshold 
value in two successive iterative procedures (often set to 
0.1%).

In this study, evolving factor analysis was used to obtain 
a preliminary assessment with a log eigenvalue of − 2, this 
resulted in the creation of a five-factor model. Iterations 
continue until an ideal solution was found that satisfies 
both the predefined convergence criteria and the hypoth-
esized limitations. The convergence ended up occurring 
after 10. The computed variance percentages  (R2) and 
lack of fit (% lof ) were 0.66154 and 99.9954, respectively, 
which were sufficient to support the goodness of the sug-
gested MCR-ALS model.

The MCR-ALS model was used to estimate the spec-
trum profiles of the drugs and PCM impurities, as it 
provides qualitative significance in their algorithms. 
We observe that the estimated spectrum is similar to 
the original spectrum for each component (Fig.  6). The 
MCR-ALS model has the advantage of qualitative detec-
tion of components in addition to the ability of quantita-
tive determination.

We constructed the three models to determine each 
analyte’s concentration in the calibration sets, then calcu-
lated the correlation coefficient (r) and root mean square 
error of calibration (RMSEC), and good results were 
obtained as shown in Table 2.

Validation of the models
The concentrations of four components in the valida-
tion set mixtures were determined using the developed 
models, the recovery %, RSD %, and root mean square 
error of prediction (RMSEP) were calculated with sat-
isfactory results (Table  3). Column charts show the 
calculated RMSEC and RMSEP of the calibration and 
validation models for each component (Fig. 7). Finally, 
it was determined that MCR-ALS is the best model 
for quantitative analysis of the components because 
the findings showed that it has the lowest RMSEC and 
RMSEP.

Assay of pharmaceutical formulations
Etoricoxib and PCM in Intacoxia-P tablet® tablets were 
successfully determined using the suggested chemomet-
ric models. The results showed excellent consistency 
with labeled concentrations. It was confirmed by good 
accuracy and a standard deviation of less than 2 that the 
pharmaceutical product’s excipients did not interfere the 
measurement of these drugs (Table 4).

Table 4 Quantitative determination of ETO and PCM in the 
dosage form by the proposed chemometric models

a Average of three determinations of 3.6 µg  mL−1 for ETO, and 10 µg  mL−1 for 
PCM

Drug PLS ANN MCR‑ALS

Intacoxia‑P tablet Found % ±  SDa

ETO 99.39 ± 1.070 98.14 ± 0.837 100.33 ± 1.039

PCM 100.55 ± 0.817 100.84 ± 0.370 100.10 ± 1.016

Table 5 Statistical comparison for the results obtained by the proposed chemometric models and the reported HPLC method for the 
determination of ETO and PCM in their pure powdered form

a HPLC method using a  C18 column as the stationary phase and a mixture consisting of (methanol: water) in ratio (70:30 v/v) as a mobile phase. The mobile phase was 
pumped at a flow rate of 1.0 mL  min−1. UV detection was carried out at 235.0 nm
b The values in parentheses are the corresponding tabulated two-tailed values at p = 0.05

Parameter PLS ANN MCR‑ALS Reported HPLC 
 methoda

ETO PCM ETO PCM ETO PCM ETO PCM

Mean 100.21 99.49 99.13 98.98 99.92 99.42 99.98 99.89

S.D 0.605 0.626 0.746 0.749 0.828 0.645 0.992 1.102

Variance 0.366 0.391 0.556 0.562 0.685 0.416 0.984 1.214

n 7 7 7 7 7 7 9 9

Student t  testb (2.145) 0.327 0.854 1.884 1.868 0.593 0.998

F  valueb (4.15) 2.688 3.098 1.768 2.164 1.435 2.919
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Statistical analysis
The results of the proposed chemometric models for 
determining ETO and PCM were statistically compared 
to those of the reported HPLC [31]. There was no sig-
nificant difference between the proposed and reported 
method, judging by the calculated t and F values being 
lower than the tabulated ones (Table 5).

Conclusion
Multivariate calibration strategy based on a variety of 
chemometric models applied to a set of spectrum (all 
signal) is regarded as an effective alternative to the uni-
variate calibration strategy relied on a set of datum (a 
single value corresponding to the maximum of UV–Vis 
spectrum) for complex mixture analysis. It has impor-
tant applications and can extract important data from 
supplied datasets. In this study, an uncomplicated, 
accurate, easily accessible, and reasonably priced UV 
spectrophotometry was used to resolve the samples, 
interfering components, and severely overlapped spec-
tra. Chemometrically aided UV spectrophotometric 
models, including PLS, ANN, and MCR-ALS, have 
been described with promising results for the quanti-
fication of ETO/PCM in their pharmaceutical dosage 
forms without any prior separation. Additionally, the 
suggested models succeeded in analyzing PCM impuri-
ties (PAP and PHA) quantitatively. The MCR-ALS was 
determined to be the most precise model. Additionally, 
it is the only model that can extract the spectrum pro-
files of the four components, so used for both quantita-
tive and qualitative analysis.

Acknowledgements
The authors express their gratitude to SIGMA Pharmaceutical Industries for 
donating us the pure Etoricoxib and Paracetamol samples

Author contributions
MAA: Data curation, validation, investigation, resources, writing—original 
draft. SSE‑M: Validation, formal analysis, investigation, data curation, supervi‑
sion, writing—review & editing, visualization. MRE: Conceptualization, 
methodology, validation, formal analysis, investigation, data curation, supervi‑
sion, review & editing, visualization. HEZ: Conceptualization, methodology, 
validation, formal analysis, investigation, data curation, supervision, review & 
editing, visualization.

Funding
Open access funding provided by The Science, Technology & Innovation 
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank 
(EKB). This work wasn’t funded by any third party.

Availability of data and materials
Datasets generated and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no known competing financial interests 
or personal relationships that could have appeared to influence the work 
reported in this paper.

Received: 25 March 2023   Accepted: 24 November 2023

References
 1. Sulaiman S, Ahmad S, Naz SS, Qaisar S, Muhammad S, Ullah R, Al‑Sadoon 

MK, Gulnaz A. Synthesis of zinc oxide based etoricoxib and montelukast 
nanoformulations and their evaluation through analgesic, anti‑inflam‑
matory, anti‑pyretic and acute toxicity activities. J King Saud Univ Sci. 
2022;34(4): 101938.

 2. Mccarberg B, Gibofsky A. Need to develop new nonsteroidal anti‑inflam‑
matory drug formulations. Clin Ther. 2012;34(9):1954–63.

 3. Cochrane DJ, Jarvis B, Keating GM. Etoricoxib. Drugs. 2002;62(18):2637–51.
 4. Dallob A, Hawkey CJ, Greenberg H, Wight N, De Schepper P, Waldman S, 

Wong P, DeTora L, Gertz B, Agrawal N. Characterization of etoricoxib, a 
novel, selective COX‑2 inhibitor. J Clin Pharmacol. 2003;43(6):573–85.

 5. Wang R. Etoricoxib may inhibit cytokine storm to treat COVID‑19. Med 
Hypotheses. 2021;2021(150): 110557.

 6. Gordon RM. Case studies in geriatric primary care & multimorbidity 
management. 1st ed. Elsevier: Amsterdam; 2019.

 7. Stationary Office Medicines and Health Care Products Regulatory. British 
pharmacopeia, vol. 2. 6th ed. London: Stationary Office Medicines and 
Health Care Products Regulatory Agencies; 2009.

 8. The United States Pharmacopoeia. National formulary (NF27). The United 
State Pharmacopoeia Convention; 2009.

 9. Pandolfi S, Simonetti V, Ricevuti G, Chirumbolo S. Paracetamol in the 
home treatment of early COVID‑19 symptoms: a possible foe rather than 
a friend for elderly patients? J Med Virol. 2021;93(10):5704–6.

 10. Fowler LM, Moore RB, Foster JR, Lock EA. Nephrotoxicity of 4‑aminophe‑
nol glutathione conjugate. Hum Exp Toxicol. 1991;10(6):451–9.

 11. Braimah HY, Tijjani AB, Amos SC. Impurity profiling of paracetamol 
dosage forms used in maiduguri metropolis. World J Pharm Res. 
2019;8(9):1659–85.

 12. El Sherbiny D, Wahba ME. Analysis of some pharmaceuticals in the 
presence of their synthetic impurities by applying hybrid micelle liquid 
chromatography. Open Chem. 2020;18(1):377–90.

 13. Ibrahim H, Hamdy AM, Merey HA, Saad AS. Simultaneous determination 
of paracetamol, propyphenazone and caffeine in presence of paraceta‑
mol impurities using dual‑mode gradient HPLC and TLC densitometry 
methods. J Chromatogr Sci. 2021;59(2):140–7.

 14. Pereira FJ, Rodríguez‑Cordero A, López R, Robles LC, Aller AJ. Develop‑
ment and validation of an RP‑HPLC‑PDA method for determination of 
paracetamol, caffeine and tramadol hydrochloride in pharmaceutical 
formulations. Pharmaceuticals. 2021;14(5):466.

 15. Ibrahim H, Hamdy AM, Merey HA, Saad AS. Dual‑mode gradient HPLC 
and TLC densitometry methods for the simultaneous determination of 
paracetamol and methionine in the presence of paracetamol impurities. 
J AOAC Int. 2021;104(4):975–82.

 16. Pasha C. Determination of paracetamol in pharmaceutical samples by 
spectrophotometric method. Eclética Química. 2020;45(3):37–46.

 17. Farid JF, Mostafa NM, Fayez YM, Essam HM, ElTanany BM. Chemometric 
quality assessment of Paracetamol and Phenylephrine Hydrochloride 
with Paracetamol impurities; comparative UV‑spectrophotometric 
implementation of four predictive models. Spectrochim Acta Part A Mol 
Biomol Spectrosc. 2022;265: 120308.

 18. Kokilambigai K, Lakshmi K. Utilization of green analytical chemistry 
principles for the simultaneous estimation of paracetamol, aceclofenac 
and thiocolchicoside by UV spectrophotometry. Green Chem Lett Rev. 
2021;14(1):99–107.



Page 11 of 11Rahman et al. BMC Chemistry          (2023) 17:176  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 19. Palur K, Archakam SC, Koganti B. Chemometric assisted UV spectro‑
photometric and RP‑HPLC methods for simultaneous determination of 
paracetamol, diphenhydramine, caffeine and phenylephrine in tablet 
dosage form. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;243: 
118801.

 20. Uddin M, Mondol A, Karim M, Jahan R, Rana A. Chemometrics assisted 
spectrophotometric method for simultaneous determination of par‑
acetamol and caffeine in pharmaceutical formulations. Bangladesh J Sci 
Ind Res. 2019;54(3):215–22.

 21. Saad AS, Abou AlAlamein AM, Galal MM, Zaazaa HE. Traditional versus 
advanced chemometric models for the impurity profiling of paracetamol 
and chlorzoxazone: application to pure and pharmaceutical dosage 
forms. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;205:376–80.

 22. Niedziałkowski P, Cebula Z, Malinowska N, Białobrzeska W, Sobaszek M, 
Ficek M, Bogdanowicz R, Anand JS, Ossowski T. Comparison of the par‑
acetamol electrochemical determination using boron‑doped diamond 
electrode and boron‑doped carbon nanowalls. Biosens Bioelectron. 
2019;126:308–14.

 23. Wong A, Santos AM, Fatibello‑Filho O. Simultaneous determination of 
paracetamol and levofloxacin using a glassy carbon electrode modified 
with carbon black, silver nanoparticles and PEDOT: PSS film. Sens Actua‑
tors B Chem. 2018;255:2264–73.

 24. Singh B, Santhakumar R, Bala I, Prasad SB, Verma S. Development and 
validation of RP‑HPLC method for the dissolution and assay of Etoricoxib 
in pharmaceutical dosage forms. Int J Pharm Qual Assur. 2015;6(01):1–7.

 25. Andraws G, Trefi S. Ionisable substances chromatography: a new 
approach for the determination of Ketoprofen, Etoricoxib, and Diclofenac 
sodium in pharmaceuticals using ion–pair HPLC. Heliyon. 2020;6(8): 
e04613.

 26. Gangane P, Bagde S, Mujbaile S, Niranjane K, Gangane P. Development 
and validation of HPLC assay method for etoricoxib in bulk drug and 
tablet formulation. Indian J Nat Sci. 2014;4(24):1565–625.

 27. Rajmane VS, Gandhi SV, Patil UP, Sengar MR. High‑performance thin‑layer 
chromatographic determination of etoricoxib and thiocolchicoside in 
combined tablet dosage form. J AOAC Int. 2010;93(3):783–6.

 28. Singh S, Mishra A, Verma A, Ghosh AK, Mishra AK. A simple Ultraviolet 
spectrophotometric method for the determination of Etoricoxib in dos‑
age formulations. J Adv Pharm Technol Res. 2012;3(4):237–40.

 29. Jalakam SP, Waghmode J, Pawar P, Mane G. Development of sim‑
ple and rapid LC‑MS/MS method for determination of etoricoxib in 
human plasma and its application to bioequivalence study. Biomirror. 
2016;7:11–6.

 30. Rassi S. Novel PVC membrane selective electrode for the determina‑
tion of etoricoxib in pharmaceutical preparations. Jordan J Chem. 
2011;6(4):423–37.

 31. Narajji C, Karvekar MD. Method development and validation for simul‑
taneous estimation of Paracetamol and Etoricoxib in pharmaceutical 
dosage form by RP‑HPLC method. Der Pharma Chem. 2011;3(4):7–12.

 32. Pattan S, Jamdar S, Godge R, Dighe N, Daithankar A, Nirmal S, Pai M. RP‑
HPLC method for simultaneous estimation of Paracetamol and Etoricoxib 
from bulk and tablets. J Chem Pharm Res. 2009;1(1):329–35.

 33. Gupta KR, Likhar AD, Wadodkar SG. Application of stability indicat‑
ing HPLC Method for quantitative determination of Etoricoxib and 
Paracetamol in pharmaceutical dosage form. Eurasian J Anal Chem. 
2011;5(3):218–26.

 34. Zaveri M, Khandhar A. Quantitative determination of Etoricoxib and 
Paracetamol in pharmaceutical dosage form and in‑vitro comparison 
by reversed‑phase high performance liquid chromatography (RP‑HPLC). 
Asian J Pharm Res Health Care. 2010;2(4):1–14.

 35. Rao KP, Ramana GV. Cost effective isocratic RP‑HPLC method for simulta‑
neous determination of Etoricoxib and Paracetamol in pure and in tablet 
formulation. J Adv Stud Agric Biol Environ Sci. 2014;1(2):201–9.

 36. Abdel Rahman MA, Elghobashy MR, Zaazaa HE, Atty SA, El‑Mosallamy SS. 
Validated HPLC–PDA methodology utilized for simultaneous determina‑
tion of Etoricoxib and Paracetamol in the presence of Paracetamol toxic 
impurities. BMC chemistry. 2022;16(1):1–11.

 37. Chaube PH, Gandhi SV, Deshpande PB, Kulkarni VG. High performance 
thin layer chromatographic analysis of Paracetamol and Etoricoxib in 
spiked human plasma. Res J Pharm Technol. 2011;4(8):1303–6.

 38. Patel AB, Vaghasiya E, Vyas AJ, Patel AI, Patel NK. Spectrophotometric first 
order derivative method for simultaneous determination of etoricoxib 
and paracetamol in tablet dosage form. J Med Chem Sci. 2020;3(3):300–7.

 39. Brown SD, Blank TB, Sum ST, Weyer LG. Chemometrics. Anal Chem. 
1994;66(12):315–59.

 40. Mark H, Workman J. Chemometrics in spectroscopy. Elsevier; 2010.
 41. http:// www. mcrals. info. Accessed 26 Dec 2022.
 42. Eltanany BM, Mouhamed AA, Lamie NT, Mostafa NM. Smart multivariate 

spectrophotometric assisted techniques for simultaneous determination 
of ephedrine hydrochloride and naphazoline nitrate in the presence of 
interfering parabens. Curr Pharm Anal. 2021;17(8):1104–12.

 43. Saber FR, Mohsen E, El‑Hawary S, Eltanany BM, Elimam H, Sobeh M, Elmo‑
tayam AK. Chemometric‑enhanced metabolic profiling of five Pinus spe‑
cies using HPLC‑MS/MS spectrometry: Correlation to in vitro anti‑aging, 
anti‑Alzheimer and antidiabetic activities. J Chromatogr B. 2021;1177: 
122759.

 44. Brereton RG. Multilevel multifactor designs for multivariate calibration. 
Analyst. 1997;122(12):1521–9.

 45. Kramer R. Chemometric techniques for quantitative analysis. Boca Raton: 
CRC Press; 1998.

 46. Haaland DM, Thomas EV. Partial least‑squares methods for spectral 
analyses. 1. Relation to other quantitative calibration methods and the 
extraction of qualitative information. Anal Chem. 1988;60(11):1193–202.

 47. Dawson CW, Wilby R. An artificial neural network approach to rainfall‑
runoff modelling. Hydrol Sci J. 1998;43(1):47–66.

 48. Ruckebusch C, Blanchet L. Multivariate curve resolution: a review of 
advanced and tailored applications and challenges. Anal Chim Acta. 
2013;765:28–36.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://www.mcrals.info

	Novel analytical method based on chemometric models applied to UV–Vis spectrophotometric data for simultaneous determination of Etoricoxib and Paracetamol in presence of Paracetamol impurities
	Abstract 
	Introduction
	Experimental
	Reagents and materials
	Instrumentation
	Standard solutions
	Procedure
	Spectral characteristics
	Construction of calibration and validation sets
	Wavelength range selection
	Optimization of calibration regressions
	Assay of pharmaceutical formulation


	Results and discussion
	Spectral characteristics and wavelength selection
	Construction of the models
	Partial least squares (PLS)
	Artificial neural networks (ANN)
	Multivariate curve resolution-alternating least squares (MCR-ALS)
	Validation of the models
	Assay of pharmaceutical formulations
	Statistical analysis

	Conclusion
	Acknowledgements
	References


