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Abstract 

LaFeO3 perovskite is prepared by the cellulose‑modified microwave‑assisted citrate method using two different 
biomasses as a cellulose source; rice straw (RS) and banana peel (BP). The prepared samples are assigned as  LaFeO3/
cellulose‑RS and as  LaFeO3/cellulose‑BP, respectively. Raman Spectra prove the presence of perovskite and cellulose 
phases, as well as biochar resulted from the thermal treatment of the cellulose.  LaFeO3/cellulose‑RS has a cauliflower 
morphology while, two phases are observed for  LaFeO3/cellulose‑BP, mesoporous cellulose phase and octahedral 
 LaFeO3 nanoparticles as shown by scanning electron microscope (SEM) images.  LaFeO3/cellulose‑BP has higher 
porosity and larger BET surface area than  LaFeO3/cellulose‑RS. Both samples are applied for the removal of Pb(II) ions 
from aqueous solution by adsorption. The adsorption follows Langmuir isotherm, with maximum adsorption capaci‑
ties of 524 and 730 mg/g for  LaFeO3/cellulose‑RS and  LaFeO3/cellulose‑BP, respectively. Cellulose precursors from dif‑
ferent biomasses affect structural and morphological properties of  LaFeO3/cellulose samples as well as the sorption 
performance for Pb(II) ions. BP is more recommended than RS, as a biomass, in the present study.

Keywords LaFeO3 perovskite, Cellulose‑modified synthesis method, Biomass type, Adsorption, Water 
decontamination

Introduction
A considerable amount of toxic Pb(II) ion is released 
to the environment and pollutes water as an industrial 
effluent of many processes such as battery and chemi-
cals manufacture, refining, and automobile maintenance 
[1]. Pb(II) ion is toxic and has the most global abun-
dance among heavy metal ions [2]. It accumulates in the 

human body, causing dangerous diseases such as, kidneys 
and brain damage, anemia, cancer, and many others [3]. 
The removal of Pb(II) ions, and other toxic metal ions, 
from wastewater is an essential and critical issue [4, 5]. 
There are several methods that can be applied for exam-
ple, adsorption [6], coagulation [7], membrane filtration 
[8], chemical precipitation [9], electrodialysis [10], etc. 
The method used in this work is adsorption, not only 
because it is simple and cost-effective method but also, 
due to the progress in materials science, which permits 
researchers to prepare novel and efficient sorbents mate-
rials. An economically trend, that has been recently and 
extensively applied, is the use of waste for waste, i.e. the 
use of agricultural waste or biomass to prepare sorbents 
for the removal of toxic pollutants from wastewater. Due 
to simplicity, availability, and low cost, raw and modified 
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biomasses are highly recommended as efficient sorbents, 
for example, Banana and orange peels, rice straw, potato, 
cucumber, watermelon and tea waste [11]. A modifica-
tion or a pretreatment step of the cellulose-containing 
agricultural waste is advisable in sorption applications, 
to enrich the functional groups and increase the sur-
face area and porosity [12]. The pretreatment step can 
be performed by several ways such as alkalization [13], 
acidification [14], esterification [15], etherification [16], 
carbonization [17], magnetization [18], and grafting [19]. 
The performance is expected to be better by using com-
posites of the biomass with nanomaterials.

Perovskites nanomaterials are mixed metal oxides of 
the general formula  ABO3, where A is a lanthanide and B 
is a transition metal. Due to the highly stabilized B metal 
in the perovskite matrix, perovskites possess many inter-
esting structural, electrical, magnetic, optical properties 
[20–22]. Perovskites are highly recommended candidates 
in several important application, such as catalysis [23], 
sensors [24], capacitors [25], energy-storage [26], optical 
[27], and electrical devices [28], etc. The use of perovs-
kites as sorbents for the removal of organic and inor-
ganic pollutants is recently, but not too many, reported 
[29–31]. In our previous work, we used lanthanum-iron 
based-perovskite, prepared by the cellulose-modified 
method, for the removal of organic congo red dye [32], 
and inorganic toxic heavy metal ions; Pb(II), Cd(II), and 
Cu(II) ions [33]. The cellulose-modified method is per-
formed by adding a raw or modified agricultural waste 
containing cellulose during the early stage of the perovs-
kite synthesis. The product is perovskite-cellulose/bio-
char composite, rather than a pure perovskite [32].

In this work,  LaFeO3 perovskite is prepared by the 
cellulose-modified microwave-assisted citrate method 
using two types of pretreated biomasses; rice straw (RS) 
and banana peel (BP). The effect of changing the biomass 
type on structural and surface properties of the prepared 
materials;  LaFeO3/cellulose-RS and as  LaFeO3/cellulose-
BP are examined. Both samples are applied as sorbents 
for the removal of Pb(II) ion, the effect of the pretreat-
ment step as well as changing the biomass type on the 
adsorption efficiency is investigated. The possibility of 
the sorbent regeneration and reuse, as well as, the perfor-
mance in the real sample is studied.

Experimental
Chemicals
Ferric nitrate nonahydrate (98%), lanthanum (III) nitrate 
hexahydrate (99%), citric acid (98%), nitric acid (69%), 
acetic acid glacial ≥ 99%, ammonium hydroxide solu-
tion (30–33%), sodium hydroxide ≥ 98%, sodium chlo-
rite (80%), lead nitrate (99%), cadmium chloride hydrate 
(98%), and copper sulfate pentahydrate (98%) are bought 

from Sigma-Aldrich. Bromocresol green is bought from 
Qualikems.

Pretreatment of biomass
Cellulose is isolated by pretreatment of two different bio-
masses, rice straw (RS) and banana peel (BP) as reported 
[34]. Briefly, biomass is washed, dried, and grounded into 
a powder. The biomass powder is heated with 12 wt% of 
NaOH at 120 °C for 1 h to purify cellulose from lignin and 
hemicellulose. The solution is centrifuged and washed 
with distilled water. The residual is dried and added to 
acidified 5 wt% sodium chlorite at 75 °C for 90 min. The 
residual, α-cellulose, is washed with distilled water and 
dried at 40 °C overnight.

Synthesis of LaFeO3 by the cellulose‑modified citrate 
microwave‑assisted method
Ferric nitrate nonahydrate and lanthanum (III) nitrate 
hexahydrate are weighed in an equal molar ratio and dis-
solved in distilled water. Cellulose from either RS or BP 
is added to the mixed metals ions solution, and shaken 
for 24  h. The pH value is adjusted at 8 by 1  mmol   L−1 
nitric acid and 1mmol/L−1 ammonia solution, then citric 
acid is added in a molar amount equals to the total molar 
amount of metal ions. The mixed complex/cellulose 
suspension is heated till evaporation then placed in the 
microwave oven (720 W) for 30 min (20-s on and 10-s 
off). After dryness, the residual is ignited and finally cal-
cinated at 450  °C for 3 h to obtain  LaFeO3/cellulose-RS 
and  LaFeO3/cellulose-BP materials [32, 33].

Adsorption experiment
50 mg of  LaFeO3/cellulose material is added to 25 mL of 
Pb(II) ion solution with an adjusted pH value at 7. The 
solution is shaken for 24  h, then it is filtered through 
0.45 μm nylon syringe filter. The concentration of unad-
sorbed Pb(II) ions is determined by the atomic absorp-
tion spectroscopy (NovAA 350).

The removal % and the amount of adsorbed Pb(II) ions, 
qe, are determined from Eqs. (1) and (2), respectively [35]:

where, Co, Ce, and Cads are initial, remaining, and 
adsorbed concentrations of Pb(II) ions (mg/g), respec-
tively. VL is the volume of the solution (L), and m is the 
mass of the adsorbent (g).

(1)Removal % =
Co − Ce

Co
× 100

(2)qe =
Cads×VL

m
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Characterization techniques
Raman spectroscopy, Horiba labRAM HR evolution vis-
ible single spectrometer is used for structural identifica-
tion. The particle size distribution is determined by the 
zeta seizer instrument (NanoSight NS500, Malvern Pana-
lytical) by dynamic light scattering (DLS) method. Scan-
ning electron microscope (SEM), (JEOL JXA-840A) is 
used for the morphological characterization. Brunauer–
Emmett–Teller (BET) surface area is calculated using  N2 
gas as an adsorbate at 77 K, and done by Nova Touch, 
Quanta Chrome.

Results and discussion
Structural and surface characterizations
Raman spectroscopy
Raman spectroscopy is used for the structure identifica-
tion of prepared samples, Fig.  1 shows Raman spectra 
of  LaFeO3/cellulose-RS (A), and  LaFeO3/cellulose-BP 
(B). The formation of the octahedral  LaFeO3 perovskite 
phase is ascertained by the appearance of bands at 292, 
415, and 686  cm−1, which correspond to oxygen octahe-
dral tilt, bending, and stretching vibration, respectively 
[36]. Characteristic cellulose bands are located around 
1030   cm−1, and are assigned for symmetric and asym-
metric stretching vibration of β-(1,4)-glycosidic linkage. 
Bands located at 1390 and 2896   cm−1 are assigned for 
 CH2 bending and stretching modes, respectively [37]. The 
intensities of these band can be correlated to the crystal-
linity arrangement as well as the cellulose chain length. 
It can be noticed that cellulose sample prepared by using 
banana peel shows a longer chain length and a compa-
rable crystallinity to that prepared by using straw rice. 

The appearance of the biochar phase, due to the thermal 
treatment of cellulose, is also detected by bands located 
at 1260  cm−1, 1502  cm−1, and band located between 2400 
to 3050  cm−1. These bands correspond to D-, G-, and 
2D-bands, respectively [38].

Scanning electron microscope (SEM) and particle size 
distribution
Figure 2 shows SEM images of  LaFeO3/cellulose-RS (A), 
and  LaFeO3/cellulose-BP (B). The insets represent the 
corresponding particle size distribution, estimated by 
DLS method.  LaFeO3/cellulose-RS has a cauliflower-
like morphology, Fig.  2A. While  LaFeO3/cellulose-BP 
has a different morphology, in which two phases can be 
assigned; mesoporous phase of cellulose and biochar, and 
nanoparticle of octahedral  LaFeO3 perovskite, Fig.  2B. 
The average particle size values are 32 and 38 nm for 
 LaFeO3/cellulose-RS and  LaFeO3/cellulose-BP, respec-
tively, insets of Fig. 2.

Fig. 1 Raman spectra of  LaFeO3/cellulose‑RS (A), and  LaFeO3/
cellulose‑BP (B)
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Fig. 2 SEM images of  LaFeO3/cellulose‑RS (A), and  LaFeO3/
cellulose‑BP (B). The insets are the corresponding particle size 
distribution, estimated by DLS method
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BET surface area measurements
Nitrogen adsorption/desorption hysteresis loops for 
the prepared samples are shown in Fig.  3. Both loops 
are H3 types, which means that both samples;  LaFeO3/
cellulose-RS, and  LaFeO3/cellulose-BP have pores of 
a slit-like shape [39, 40]. The pore size and pore vol-
ume as well as the surface area are calculated by the 
BET method and listed in Table  1. It can be shown 
 LaFeO3/cellulose-RS sample has smaller pore size and 
pore volume than  LaFeO3/cellulose-BP sample, which 
indicated the decreased sample porosity by using cel-
lulose prepared from RS. The calculated BET surface 
areas are 20.99 and 24.58  m2/g for  LaFeO3/cellulose-
RS and  LaFeO3/cellulose-BP, respectively. According 
to the particle size distribution profiles of the two sam-
ples, insets of Fig.  2,  LaFeO3/cellulose-RS sample has 
a smaller particle size of 32 nm as compared to that 
of  LaFeO3/cellulose-BP sample, 38 nm. It can be con-
cluded that the former has a lower porosity as indi-
cated by its smaller particle size and decreased surface 
area with respect to the banana peel-based perovskite 
sample.

Application of cellulose‑modified LaFeO3 samples as 
sorbents for the removal of Pb(II) ions from aqueous 
solutions
Effect of the initial Pb(II) ion concentration
The adsorption experiments of Pb(II) ion on each of the 
prepared samples,  LaFeO3/cellulose-RS, and  LaFeO3/
cellulose-BP, are conducted at different initial Pb(II) ion 
concentration, ranging from 5 to 200 ppm, at pH = 7 and 
room temperature. Figure  4 shows the dependence of 
the removal % of Pb(II) ions by perovskite/cellulose sam-
ples on the initial metal ion concentration. The removal 
% is high, > 90% and increases with increasing the initial 

Fig. 3 BET hysteresis loops for nitrogen adsorption/desorption on  LaFeO3/cellulose‑RS (A), and  LaFeO3/cellulose‑BP (B)

Table 1 Average pore size and volume as well as measured 
surface area calculated by BET method for the prepared samples

Sample BET surface  m2/g Total pore 
volume 
(cc/g)

Average 
pore size 
(nm)

LaFeO3/cellulose‑RS 20.99 0.0366 3.49

LaFeO3/cellulose‑BP 24.58 0.0460 3.74

Fig. 4 The variation of the removal % of  LaFeO3/cellulose‑RS 
and  LaFeO3/cellulose‑BP for Pb(II) ions at pH = 7 for a shaking time = 2 
h at room temperature
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metal ion concentration, which indicates the availability 
of active adsorption sites [41].  LaFeO3/cellulose-RS offers 
a better removal performance for Pb(II) ions at low ini-
tial metal ion concentration with respect to  LaFeO3/cel-
lulose-BP, while at high concentration ≥ 100 ppm, both 
samples exhibit a comparable sorption ability.

Adsorption isotherms
For a better elucidation of the adsorption mechanism, 
the adsorption data of Pb(II) ions, on perovskites sam-
ples modified with cellulose from different biomasses; 
RS and BP, are fitted to different isotherms; Langmuir, 
Freundlich, and Temkin isotherms. While Langmuir and 
Freundlich isotherms suppose that there is no lateral 
interaction, Temkin isotherm assumes the existence of 
adsorbate-sorbent interaction. Linear forms of Langmuir, 
Freundlich, and Temkin isotherms can be expressed by 
the following equations, respectively [42]:

where qm is the maximum adsorption capacity (mg/g), 
KL, (. KF and n), and (KT and b) are Langmuir, Freun-
dlich, and Temkin constants, respectively. Figure 5 shows 
the different adsorption isotherms for the adsorption of 
Pb(II) ions on perovskites samples modified with cel-
lulose prepared from RS and BP. Table  2 summarizes 
the calculated parameters from the different isotherms 
for the adsorption of Pb(II) ions on the two proposed 
sorbents.

Based on the correlation coefficient, r2, values, the 
adsorption data fits better Langmuir isotherm for both, 
 LaFeO3/cellulose-RS and  LaFeO3/cellulose-BP. This 
means that the adsorption of Pb(II) ions on perovskite 
modified-cellulose samples is a monolayer adsorption 
in which adsorbed Pb(II) ions form coordination bonds 
with the functional groups at the sorbent surface [43]. 
The same mechanism is verified, irrespective to the bio-
mass type used as a source for the cellulose precursor. 
However, the calculated maximum adsorption capaci-
ties, qm, are 523.6 and 729.9 mg/g for  LaFeO3/cellulose-
RS and  LaFeO3/cellulose-BP, respectively. BP is more 
recommended as a biomass for cellulose preparation in 
this work. This is due to longer chains, and increased 
porosity and surface area offered by  LaFeO3/cellulose-
BP as compared to  LaFeO3/cellulose-RS. It was reported 

(3)
1

qe
=

1

qm
+

1

qm KLCe

(4)ln qe = ln KF +
1

n
ln Ce

(5)qe =
RT

b
lnKT +

RT

b
lnCe

that the adsorption of Pb(II) ions on biochar prepared 
from RS is based on chemical complexation mechanism 
with qm value of 176.1 mg/g [44], while for biochar pre-
pared from BP, the qm value is 247.1 mg/g [45]. This find-
ing agrees well with the sorption performance reported 
in this work. In a previous work, we used BP during the 
perovskite synthesis without the pretreatment step [32]. 
The calculated qm value for the adsorption of Pb(II) ions, 
is 606.1  mg/g, which is smaller than that reported in 
this work. Therefore, it is recommended to perform the 
pretreatment step of the biomass before the perovskite 
synthesis.

Regeneration and reuse
The possibility of the sorbent regeneration and reuse for 
the remove of Pb(II) ions are checked for the two pre-
pared samples  LaFeO3/cellulose-RS and  LaFeO3/cellu-
lose-BP. Sorbents are regenerated by being shaken in 1% 
 HNO3 solution for 24 h, then samples are washed with 
distilled water and dried at 40  °C for 24 h, before reuse 
[32]. Figure 6A shows the variation of the removal % of 
Pb(II) ions by  LaFeO3/cellulose-RS and  LaFeO3/cellu-
lose-BP, with repeated regeneration and reuse cycles.

Both sorbents can be regenerated and reused succes-
sively for 3 cycles, the decrease of the removal % by per-
forming three successive usage cycles are 3.6 and 2.3% for 
 LaFeO3/cellulose-RS and  LaFeO3/cellulose-BP, respec-
tively. Starting from the 4th cycle, the sorption efficiency 
is decreased to about 20%, of the value calculated for 
the fresh  LaFeO3/cellulose-RS sample, and decreased to 
about 40% of the value calculated for the fresh  LaFeO3/
cellulose-BP sample. This reflects that the latter is a bet-
ter sorbent. The decrease in the adsorption ability by suc-
cessive cycles of adsorption and desorption can be due to 
the accumulation of impurities or contaminants on the 
surface that block the active sites or pores of the adsor-
bent or the degradation or deterioration of the adsorbent 
structure due to thermal, chemical, or mechanical stress.

Interferences study
The sorption performance of  LaFeO3/cellulose-RS and 
 LaFeO3/cellulose-BP for Pb(II) ion is checked firstly, in 
the presence of other heavy metal ions; 30 ppm Cu(II) 
and 30 ppm Cd(II) ions, as inorganic pollutants. Secondly, 
in the presence of 30 ppm bromocresol green dye, as an 
organic pollutant. The removal % of the two proposed 
sorbents, for Pb(II) ion, is compared for the three cases; 
when Pb(II) ions present individually, in the presence of 
inorganic pollutants, and in the presence of organic pol-
lutants, as shown in Fig. 6B. The removal % of  LaFeO3/
cellulose-RS for Pb(II) ions is slightly decreased by the 
presence of inorganic and organic pollutants (decreased 
by about 3% as compared to the individual case). While, 
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Fig. 5 Langmuir (A, A’), Freundlich (B, B’), and Temkin (C, C’) isotherms for the adsorption of Pb(II) ions of  LaFeO3/cellulose‑RS and  LaFeO3/
cellulose‑BP, respectively
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The removal % of  LaFeO3/cellulose-BP for Pb(II) ions is 
not affected by the presence of inorganic and organic pol-
lutants. Therefore, both sorbents can be used effectively 
for the removal of Pb(II) ions without being affected by 
the matrix of the real sample, and highly recommended 
for the field applications.

Conclusion

• LaFeO3 perovskite can be successively prepared by 
the cellulose-modified microwave-assisted citrate 
method. The product is a composite of  LaFeO3, cel-
lulose, and biochar, as confirmed by Raman spectros-
copy. The appearance of oxygen octahedral bands, 
vibration of β-(1,4)-glycosidic linkage, and D-, G-, 
and 2D-bands, respectively.

• Changing the biomass used as a cellulose source, 
either RS or BP, affect the structure, morphol-
ogy, and surface area of the prepared perovskite. 

 LaFeO3/cellulose-RS (20.99  m2/g) has a cauliflower-
like morphology, while  LaFeO3/cellulose-BP (24.58 
 m2/g) has two phases; mesoporous cellulose and 
biochar, and perovskite nanoparticles.

• The prepared  LaFeO3/cellulose-RS and  LaFeO3/cel-
lulose-BP are applied as sorbents for the removal of 
Pb(II) ions from aqueous solution. Adsorption fol-
lows Langmuir isotherm, and calculated qm values 
are 523.6 and 729.9 mg/g for  LaFeO3/cellulose-RS 
and  LaFeO3/cellulose-BP, respectively.

• Proposed sorbents can be effectively regenerated 
and reused for successive three cycles, and can per-
form efficiently in the real sample matrix.

• Both sorbents exhibit an excellent sorption perfor-
mance with a preferred direction to use of BP as a 
cellulose source during the sorbent synthesis due to 
the better adsorption efficiency and higher selectiv-
ity.

Table 2 Adsorption parameters calculated by fitting Langmuir, Freundlich, and Temkin isotherms to the adsorption data of Pb(II) ions 
on  LaFeO3/cellulose‑RS and  LaFeO3/cellulose‑BP

Sorbent Langmuir isotherm Freundlich isotherm Temkin isotherm

qm (mg/g) KL (L/mg) r2 n KF  (mg1−

(1/n)  L1/n/g)

r2 b (kJ/mol) KT (L/mg) r2

LaFeO3/cellulose‑RS 523.56 0.096 0.9730 1.01 51.94 0.8487 338.82 27.94 0.6469

LaFeO3/cellulose‑BP 729.93 0.007 0.9580 0.94 5.31 0.9072 496.67 3.39 0.7871

Fig. 6 The variation of the removal % of Pb(II) ions by  LaFeO3/cellulose‑RS and  LaFeO3/cellulose‑BP, with successive regeneration and reuse cycles 
(A), In the absence and presence of inorganic or organic pollutants (B)
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