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Abstract 

The QSAR models are employed to predict the anti-proliferative activity of 81 derivatives of flavonol against prostate 
cancer using the Monte Carlo algorithm based on the index of ideality of correlation (IIC) criterion. CORAL software 
is employed to design the QSAR models. The molecular structures of flavonols are demonstrated using the sim-
plified molecular input line entry system (SMILES) notation. The models are developed with the hybrid optimal 
descriptors i.e. using both SMILES and hydrogen-suppressed molecular graph (HSG). The QSAR model developed 
for split 3 is selected as a prominent model ( R2

Validation
 = 0.727, IICvalidation = 0.628, Q2

Validation
 = 0.642, and r2m=0.615). The 

model is interpreted mechanistically by identifying the characteristics responsible for the promoter of the increase 
or decrease. The structural attributes as promoters of increase of pIC50 were aliphatic carbon atom connected 
to double-bound (C…=…, aliphatic oxygen atom connected to aliphatic carbon (O…C…), branching on aromatic 
ring (c…(…), and aliphatic nitrogen (N…). The pIC50 of eight natural flavonols with pIC50 more than 4.0, were pre-
dicted by the best model. The molecular docking is also performed for natural flavonols on the PC-3 cell line using 
the protein (PDB: 3RUK).
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Introduction
Flavonoids are a class of polyphenolic compounds which 
possess a phenyl benzopyrone structure (C6–C3–C6) 
and are present in all vascular plants. These are produced 

as secondary plant metabolites, which are known to dem-
onstrate broad-spectrum pharmacological activities, but 
the human body is unable to produce them [1–3]. These 
compounds according to saturation level subdivided into 
flavanols, flavonols, flavones, flavanones, isoflavones, fla-
vanonols, and chalcones [4, 5].

The CYP17A1 has an important role in the biosynthesis 
of dehydroepiandrosterone (DHEA) as the precursor of 
androgens and overexpression of this enzyme can cause 
prostate cancer. Abiraterone as an approved anti-pros-
tate cancer drug is a CYP17A1 inhibitor [6, 7]. Flavonols 
are characterized by a hydroxyl group present at C-3 of 
the flavone skeleton and there are some reports about 
the CYP17A1 inhibitory activity of flavonoids like rutin, 
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morusflavone, quercetin, kaempferol and isorhamnetin 
[8–10].

These have also been attracted by medicinal chemists 
because of their effective anti-prostate cancer properties. 
Prostate cancer is the most common type of diagnosed 
cancer among males worldwide with the incidence of 28 
cases per 100,000 and mortality being 7 per 100,000 [11–
13]. Normal growth and maintenance of the prostate is 
dependent on androgen hormones that act through the 
androgen receptor. Activation of the androgen receptor 
drives the development of prostate cancer. It has been 
reported that the agents such as flavonols that down-reg-
ulate androgen receptors can inhibit the development of 
prostate cancer cells [14–16].

The influence of chemical structures of flavonols over 
their anticancer activities has been investigated experi-
mentally and shown that structural modification can 
further increase its anti-cancer activity and ability to acti-
vate PC-3 cell apoptosis. However, the structure–activity 
relationship for flavonols as anti-prostate cancer agents 
has captured attention by quantitatively correlating the 
molecular structures or properties with variation in 
pharmacological activity [17, 18].

The anti-prostate cancer activity is expressed typically 
with IC50 (half maximal inhibitory concentration) values. 
Quantitative structure–activity relationships (QSARs) 
are a powerful tool to predict IC50 of flavonoids in gen-
eral. Already, no study has been reported on QSAR mod-
eling for predicting the IC50 of flavonols against prostate 
cancer.

QSAR model is a mathematical equation which is 
widely employed to estimate and predict pharmacologi-
cal activity or physical, chemical properties/activities 
of chemicals using descriptors derived from chemical 
structure [19–22]. The CORAL (Correlation and Logic) 
freeware software is employed for designing the Quan-
titative structure–activity/activity relationships (QSPRs/
QSARs) models in compliance with OECD principles 
[23–26]. In CORAL software, the SMILES notations 
of the molecular structure are used as an input file and 
produce the best model based on Monte Carlo optimiza-
tion [27–30]. It can be applied to compute the optimal 
descriptor by using solely SMILES or molecular graph-
based descriptor or a combination of both descriptors 
(so-called hybrid descriptor). A literature survey reveals 
that the index of ideality of correlation (IIC) parameter of 
CORAL software can be employed to build robust QSAR 
models [31–34].

Molecular docking simulation is a computational 
methodology that purveys automatic tools to measure 
the conformation of a protein–ligand complex. The aim 
of molecular docking is to regulate the position of the 
ligand in the protein. An energy-based scoring function 

is commonly used in docking procedures to find the 
energetically most advantageous ligand conformation 
when attached to the target. Intermittently, the Monte 
Carlo computational methodologies are also applied in 
molecular docking simulation [35, 36].

Since ancient times various natural products have been 
used as traditional medicine against various human dis-
eases. Moreover, natural products are easily applicable, 
cheap, accessible and acceptable treatment method with 
minimum cytotoxicity [37]. As a results of QSAR mod-
eling, the pIC50 activity of some natural flavonols as anti-
proliferative agents were predicted and reported.

The goal of this report is to devise reliable first QSAR 
models utilizing CORAL software to predict pIC50 of 81 
flavonols against prostate cancer. In the development of 
QSAR models, a hybrid optimal descriptor, a combina-
tion of SMILES and hydrogen suppressed graph (HSG), 
is employed. The index of ideality of correlation (IIC) 
is used to improve the predictive potential of QSAR 
models. Further, the pIC50 is also calculated for a series 
of eight natural flavonols using the QSAR models of all 
splits. As mentioned above flavonols show their anti-
prostate cancer activity through different mechanism of 
actions. However, molecular docking is also performed 
for eight natural flavonol derivatives in order to evaluate 
their potential affinity to CYP17A1 (PDB: 3RUK).

Methods
Data
Experimental data on anti-prostate cancer (PC-3) activi-
ties of 86 flavonols were taken from the four literature 
reports (Additional file  1: Table  S1) [11, 38–40]. The 
numerical values of activity were converted to a negative 
logarithmic scale, pIC50 (−  logIC50) (Molar) for QSAR 
modelling. The range of pIC50 for PC-3 cell line was from 
3.39 to 6.28. The current dataset was not previously used 
for QSAR modeling. The molecular structures of the fla-
vonol derivatives were sketched by BIOVIADraw 2019 
and transferred to the SMILES code for modeling with 
the CORAL software. Three splits were made from the 
dataset and each split was further randomly divided into 
four sets i.e., training (≈ 35%), invisible training (≈ 25%), 
calibration (≈  15%), and validation (≈  25%) sets. In 
CORAL-based QSAR modeling, each set was assigned its 
specific accountability. The task of the training set (TRN) 
was to compute correlation weights and the task of the 
invisible training set (iTRN) was to control the adaptabil-
ity of the data which were not employed in the training 
set. The assignment of the calibration set (CAL) was to 
detect the overtraining whereas the final estimation of 
the predictive potential of the designed QSAR model was 
assigned to the validation set (VAL) [34, 41].
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Hybrid optimal descriptor
Herrin, the optimal hybrid optimal descriptor based on 
SMILES and HSG was employed to create QSAR models 
for pIC50 of flavonol compounds. The literature reports 
showed that the QSPR models produced through the 
‘hybrid’ optimal descriptor had better statistical param-
eters than the model designed by individually SMILES or 
HSG descriptors [42, 43].

The QSAR model employed to predict pIC50 of flavonol 
derivates is demonstrated in the following equation:

Here, C0 is the regression coefficient and C1 is the slope 
computed by the least-squares method; DCW (descriptor 

(1)pIC50 = C0 + C1 ×
HybridDCW

(

T∗, N∗
)

.

of correlation weights) is computed with correlation 
weights of molecular features extracted from HSG and 
SMILES notations. The following equation is employed 
to compute DCW:

where AK is an attribute of SMILES or HSG, the T* and 
N* define the threshold value and number of epochs of 
the Monte Carlo optimization, respectively.

The DCW of HSG and SMILES employed here are 
illustrated as Eqs. (4) and (5):

(2)DCW
(

T ∗,N ∗
)

=
∑

CW (AK ),

(3)
HybridDCW

(

T∗, N∗
)

= SMILESDCW
(

T,N∗
)

+ GraphDCW
(

T∗, N∗
)

.

(4)
SMILSDCW(T,N) =

∑

CW(Sk)+
∑

CW(SSk)+ CW(BOND)+ CW(NOSP)+ CW(HARD)+ CW(PAIR)

+ CW(Cmax)+ CW(Nmax)+ CW(Omax)

(5)

HSGDCW(T,N) =
∑

CW(e1k)+
∑

CW(e2k)

+
∑

CW(e1k + e2k)+
∑

CW(|e1k − e2k |)

+
∑

CW
(

pt2k
)

+
∑

CW
(

pt3k
)

+
∑

CW
(

pt2k + pt3k
)

+
∑

CW
(∣

∣pt2k − pt3k
∣

∣

)

+
∑

CW(S2k)+
∑

CW(S3k)+
∑

CW(S2k + S3k)

+
∑

CW
(∣

∣S2k − S3k
∣

∣

)

+ CW(C5)+ CW(C6)

Table 1  The detailed description of SMILES attributes and graph invariants for constructed models of pIC50

ID Definition

SMILES attribute Sk SMILES atom, i.e., one symbol (e.g. ‘C’, ‘N’, ‘=’, etc.) or a group of symbols that cannot be examined separately (e.g., ‘Cl’, ‘Br’, Si’, 
etc.)

SSk a mixture of two SMILES-atoms

BOND Presence or absence of chemical bonds: double (=), triple (#), and stereochemical (@) or @@)

PAIR Association two of BOND, NOSP, and HALO

HARD Association of BOND, NOSP, and HALO in the united
structural code

NOSP Presence or absence of different chemical elements:
nitrogen (N), oxygen (O), sulfur (S), and phosphorus (P);

Cmax Maximum number of rings

Nmax Maximum number of nitrogen atoms in a molecule

Omax Maximum number of oxygen atoms in a molecule structure

Graph invariant e2k Morgan extended connectivity of first order

e3k Morgan extended connectivity of second-order

pt2k Number of paths of lengths 2 and 3 starting from a given vertex in the graph

pt3k Number of paths of length 3 starting from a given vertex in the graph

S2k Valence shells of the second orders

S3k Valence shells of the third orders

C5 and C6 Codes of rings (five-member and six-member rings, with the data on the presence or absence of heteroatoms, aromatic-
ity, and the total number of given rings in the molecule)
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The SMILES attributes and HSG invariant applied in Eqs. 
(4) and (5) are depicted in Table 1.

A flowchart of a Monte Carlo optimization cycle is pre-
sented by Sokolovic et al. [44]. At first cycle, the CW(x) of 
features is randomly generated and then optimized based 
on the proposed objective function. Herein, two kinds of 
target functions consisting of the balance of correlation 
without IIC (TF1) and the balance of correlation with IIC 
(TF2) are studied.

The following mathematical equation is employed to 
compute the TF1 and TF2:

The Rtraining and RinvTraining are the correlation coeffi-
cients for the training and invisible training sets, respec-
tively. The empirical constant (Const) is usually fixed [45, 
46].

The IICCAL is calculated with data on the calibration 
(CAL) set as the following:

RCAL is the correlation coefficient for the calibration 
set. The negative and positive mean absolute errors are 
shown with −MAE and +MAE, which are computed 
using the following equations:

The ‘k’ is the index (1, 2,…N). The observedk and 
calculatedk are related to numerical values of the 
endpoint.

This IIC is obtained by using the correlation coefficient 
between the observed and predicted values of the end-
point for the calibration set, taking into account the posi-
tive and negative dispersions between the observed and 
calculated values [47].

(6)
TF1 = RTRN + RiTRN − |RTRN − RiTRN | × Const

(7)TF2 = TF1 + IICCAL × Const

(8)IIC = RCAL ×
min(−MAECAL,

+MAECAL)

max(−MAECAL,+MAECAL)

(9)
−MAECAL = −

1

N

N−
∑

y=1

|�k| �k < 0,−N is the number of �k < 0

(10)
+MAECAL = +

1

N

N+
∑

y=1

|�k| �k ≥ 0,+N is the number of �k ≥ 0

(11)�k = Observedk − Calculatedk

Applicability domain
The applicability domain (AD) is another key guideline 
that should be included in a built QSPR/QSAR model. It 
was defined by the OECD as "the response and chemical 
structure space in which the model produces predictions 
with a specified reliability" [48, 49]. The CORAL-based 
QSAR model computes AD based on the dispersion of 
SMILES features in the training and calibration sets [50]. 
The AD is defined as ‘DefectAK’, which was computed 
with the following equation:

PTRN (AK ) and PCAL(AK ) are the probability of an attrib-
ute ’Ak’ in the training and the calibration sets; NTRN (AK )  
and NCAL(AK )  are the number of times of Ak in the 
training and calibration sets, respectively.

The statistical defect is computed using the following 
equation:

NA is the number of active SMILES attributes for the 
given compounds.

(12)

DefectAK
=

∣

∣PTRN(AK)− PCAL(AK)
∣

∣

NTRN(AK)+NCAL(AK)
If AK > 0

DefectAK
= 1 If AK = 0

(13)DefectMolecule =

NA
∑

k=1

DefectAK

In CORAL, a substance is an outlier if inequality 14 is 
fulfilled:

DefectTRN is an average of statistical defect for the data-
set of the training set.

Validation of the model
It is most important to validate the predictive potential of 
a constructed QSAR model. In the present manuscript, 

(14)Defectmolecule > 2× DefectTRN
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the reliability and robustness of the QSAR models were 
verified using the following three methodologies: i) 
internal validation or cross-validation by considering 
the training dataset, ii) external validation by consid-
ering the prediction set and iii) data randomization or 
Y-scrambling.

The various standard statistical metrics such as correla-
tion coefficient (R2), cross-validated correlation coeffi-
cient (Q2), concordance correlation coefficient (CCC), 
the IIC, Q2

F1 , Q
2
F2 , and Q2

F3 , standard error of estimation 
(s), mean absolute error (MAE), Fischer ratio (F), novel 
metrics ( r2m ) and Y-scrambling ( cR2p) were employed to 
validate the developed QSAR models. The mathematical 
equations of various validation metrics are shown in 
Table 2.

R2 statistic is a metric to evaluate the goodness of fit of a 
regression analysis. It measures the variation of experi-
mental data with the predicted ones. The range of R2 is 
between 0 (no correlation) and 1 (perfect fit). R2 cross‐vali-
dated (Q2) is used for internal validation. The concordance 
correlation coefficient (CCC) is calculated to measure both 
precision and accuracy detecting how far each observation 
deviate from the best-fit. The CCC is calculated to detect 
both precision and accuracy distance of the observations 
from the fitting line and the degree of deviation of the 
regression line from that passing through the origin, 
respectively [51]. A lower value of MAE and s is desirable 
for good internal/external predictivity. Roy et al. [54] intro-
duced a new metric r2m that penalizes the r2 value of a 
model when there is large deviation between r2 and r20 val-
ues (Table 2). For a reliable QSAR model, the r2m and �r2m 
should be greater than  0.5  and  smaller  than  0.2, 

respectively. Y-scrambling or Y-randomization is an 
assessment to ensure the developed QSAR model is not 
due to chance, thereby giving an idea of model robustness 
[52]. For a robust QSAR model, Todeschini cR2p parameter 
[55] is also calculated which should be more than 0.5. One 
of the important statistical parameters to judge different 
QSAR models is r2m for test set. Here, this parameter is 
used to select best model between six proposed models.

Model interpretation
A straightforward process for the structural interpreta-
tion of QSPR/QSAR models is provided by the CORAL 
application. Three types of attributes may be identified by 
computing the correlation weights across several itera-
tions of the Monte Carlo optimization algorithm. The 
positive numerical value of CWs in every iteration is 
considered for endpoint increase, the attributes with a 
negative value of CWs in every iteration is a notation for 
endpoint decrease. The unstable numerical value in the 
different runs is not considered for predicting the pro-
moter of the increase/decrease endpoint [19, 56].

Molecular docking
Molecular docking is a method commonly employed in 
drug discovery and development to identify protein–
ligand binding configurations This approach involves 
the docking of a molecule with a specific macromolecule 
and then computing the binding free energy between 
the ligand and receptor[35]. The structure was sketched 
in ChemDraw 16.0, and the energy was minimised in 
Chem3D using the MM2 technique [57]. The crystallo-
graphic structure of Human cytochrome P450 CYP17A1 

Table 2  The mathematical equation of different statistical benchmark of the predictive potential for CORAL models

Criterion of the predictive potential Comments Refs.

R2 = 1−

∑

(Yobs−Yprd )
2

∑

(Yobs−Ytrain)
2

Yobs is the observed endpoint for the training set, and Ypred is the predicted endpoint values 
for the training set of compounds
Ytrain is the mean observed endpoint of the training set

Q2 = 1−

∑

(Yprd(train)−Yobs(train))
2

∑

(Yobs(train)−Ytrain)
2

Yobs(train) is the observed endpoint, and Ypred(train) is the predicted response of the training set com-
pounds

CCC =
2
∑

(Xi−X)(Yi−Y)
∑n

i=1
(Xi−X)

2
+
∑n

i=1
(Xi−X)

2
+n(X−Y)

n is the number of compounds, and xi and yi denote the mean of observed and predicted values, 
respectively

[51]

cR2p
= R

√

(

R2 − R2r
)

R2 is squared correlation coefficient of models and R2r  is squared mean correlation coefficient of rand-
omized models

[52]

r2m =
r2m+r′2m

2

r2 is the squared correlation coefficient value between observed and predicted endpoint values, 
and r2

0
 and r′2

0
 are the respective squared correlation coefficients when the regression line is passed 

through the origin by interchanging the axes
For the acceptable prediction, the value of all �r

2
m metrics should preferably be lower than 0.2 pro-

vided that the value of r2m is more than 0.5

[53]

�r2m =
∣

∣r2m − r′2m
∣

∣

r2m = r2 ×

(

1−

√

r2 − r2
0

)

r′2m = r2 ×

(

1−

√

r2 − r′2
0

)

MAE = 1

n
×

∑
∣

∣Yobs − Yprd
∣

∣
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in complex with abiraterone was obtained from the Pro-
tein Data Bank (PDB: 3RUK) and used for molecular 
docking [58]. AutoDock Vina was employed for docking 
studies (Molecular Graphics Lab, CA, USA) [59]. The 
value of exhaustiveness was 8 and the dimensions of the 
grid box were 20.0, 20.0, and 20.0 Å in size. The findings 
and illustration were examined visually using Discovery 
Studio visualizer 2021.

Results and discussion
QSPR modelling for pIC50
Three types of outliers affect the model quality in QSPR/
QSAR study. The first is the outliers in the dependent 
variable y, the second is the outliers in the direction of 
the independent variable X, and the third type of outli-
ers indicates a different relationship between X and y. 
[60]. Here, based on several preliminary QSAR models, 

six compounds (compounds No. 31, 32, 36, 37, 67, and 
80) identified as outliers, these molecules showed a large 
absolute error (> 3 s). These compounds fall in first type 
of outlier. The structure of these compounds is similar 
to the main body of the samples. So, they were removed 
from the data set before further data processing.

In this study, the balance of correlation approach was 
employed to generate QSAR models. A total of six QSAR 
models was generated utilizing two kinds of target func-
tions i.e. TF1 (WIIC = 0.0) and TF2 (WIIC = 0.2). To obtain 
the preferable threshold value (T*) and the number of 
epochs (N*), the range of 1–10 for threshold and 1 to 50 
for epoch were employed. In the case of TF1, the value 
of T* and N* were 1 and 10 for split 1; 1 and 3 for split 2; 
1 and 7 for split 3, respectively. However, in the case of 
TF2, the value of optimum (T*, N*) for splits 1, 2, and 3 
were (1, 10), (1, 10), and (1, 7), respectively.

Table 3  The statistical characteristics of CORAL models for pIC50 generated with TF1 and TF2

Split Target function Set n R2 CCC​ IIC Q2 s MAE Y-rand cR2p r2m �r2m F

1 TF1 TRN 29 0.813 0.897 0.551 0.779 0.234 0.189 0.033 0.797 – – 117

iTRN 20 0.813 0.866 0.607 0.773 0.275 0.229 0.050 0.788 – – 78

CAL 12 0.575 0.706 0.378 0.228 0.437 0.334 0.162 0.487 – – 14

VAL 19 0.679 0.765 0.402 0.549 0.364 0.259 – – 0.510 0.279 36

TF2 TRN 29 0.723 0.839 0.794 0.674 0.284 0.214 0.032 0.707 – – 70

iTRN 20 0.804 0.806 0.462 0.759 0.338 0.285 0.050 0.778 – – 74

CAL 12 0.688 0.802 0.828 0.552 0.313 0.267 0.064 0.655 – – 22

VAL 19 0.729 0.789 0.489 0.666 0.272 0.207 – – 0.555 0.253 46

2 TF1 TRN 30 0.881 0.937 0.821 0.864 0.185 0.133 0.033 0.865 – – 207

iTRN 19 0.854 0.896 0.492 0.820 0.226 0.165 0.079 0.813 – – 99

CAL 11 0.502 0.653 0.279 0.029 0.546 0.378 0.087 0.456 – – 9

VAL 20 0.652 0.759 0.642 0.563 0.399 0.321 – – 0.494 0.287 34

TF2 TRN 30 0.781 0.877 0.773 0.740 0.251 0.175 0.027 0.767 – – 100

iTRN 19 0.805 0.831 0.865 0.752 0.278 0.216 0.049 0.780 – – 70

CAL 11 0.939 0.863 0.968 0.923 0.319 0.263 0.040 0.919 – – 140

VAL 20 0.775 0.826 0.611 0.713 0.334 0.269 – – 0.613 0.218 62

3 TF1 TRN 30 0.736 0.848 0.751 0.674 0.288 0.204 0.043 0.714 – – 78

iTRN 18 0.754 0.853 0.856 0.704 0.277 0.231 0.077 0.714 – – 49

CAL 12 0.418 0.571 0.476 0.137 0.440 0.336 0.076 0.378 – – 7

VAL 20 0.651 0.798 0.651 0.457 0.302 0.231 – – 0.518 0.190 34

TF2 TRN 30 0.782 0.878 0.774 0.735 0.261 0.194 0.020 0.772 – – 101

iTRN 18 0.850 0.909 0.857 0.812 0.223 0.189 0.048 0.825 – – 90

CAL 12 0.777 0.807 0.881 0.697 0.300 0.246 0.100 0.725 – – 35

VAL 20 0.727 0.847 0.628 0.642 0.266 0.209 – – 0.615 0.165 48



Page 7 of 17Tajiani et al. BMC Chemistry           (2023) 17:87 	

The mathematical relationship for the developed QSAR 
model of pIC50 using TF1 and TF2 for three splits are dis-
played below:

The Monte Carlo optimization with target function TF1

The Monte Carlo optimization with target function TF2

The statistical results of designed QSAR models 
for three splits utilizing TF1 and TF2 are presented 
in Table  3. As can be seen, all developed QSAR mod-
els were acceptable statistically and agreed with the 
requirements of various validation criteria.

According to the results presented in Table 3, it was 
found that the models constructed using TF2 (with 
IIC) had better statistical results than the models con-
structed using TF1 (without IIC). The results of cali-
bration and validation sets were better for the models 
constructed by using TF2, but the inferior quality of the 
model for the training sets was obtained. Hence, it can 
be expressed that the models designed with the IIC are 
more statistically considerable and robust for the pre-
sent dataset. Based on validation metric study of QSPR/
QSAR models by Ojha et al., the r2m value of models is 
used to judge the quality of the predictions by different 
models. The QSAR model developed by TF2 for split 3 
was selected as a prominent model with highest r2m ( r2m
=0.615).

(15)

Split1 pIC50 =− 8.4912(±0.2835)

+ 0.0978(±0.0021)

× DCW(1, 10)

(16)

Split2 pIC50 =− 16.266(±0.2769)

+ 0.1309(±0.0017)

× DCW(1, 3)

(17)

Split3 pIC50 =− 4.2842(±0.2158)

+ 0.0626(±0.0015)

× DCW(1, 7)

(18)

Split1 pIC50 =− 3.1689(±0.2140)

+ 0.0272(±0.0007)

× DCW(1, 10)

(19)

Split2 pIC50 =− 9.6171(±0.3420)

+ 0.0758(±0.0017)

× DCW(1, 10)

(20)

Split3 pIC50 =− 7.0645(±0.3206)

+ 0.0482(±0.0013)

× DCW(1, 7)

The plot of observed pIC50 versus predicted pIC50 for 
three models designed with TF2 is displayed in Fig. 1. In 
the QSAR model generated by utilizing the Monte Carlo 
method, the outliers were introduced by the statistical 
defects. So, in the present QSAR model created by TF2, 
the number of outliers was found six for all splits. Table 4 
displays flavonols IDs, SMILES codes, and descriptor of 
correlation weights (DCWs) with their experimental and 
predicted pIC50.

Interpretation of the QSAR model
The mechanistic interpretation of a QSAR model is the 
fifth principle of OECD. The mechanistic interpreta-
tion of the QSAR model provides a correlation and a 

Fig. 1  Observed pIC50 versus predicted pIC50 values for three CORAL 
models constructed based on TF2
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Table 4  SMILES notation, the distribution of splits, DCWs, observed and predicted pIC50 of flavonols (+, −, #, and * show the 
componds located in the training, invisible training, calibration, and validation sets respectively)

No SMILES Split PIC50 DCW(T, N) Predicted pIC50

1 2 3 Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

1 COc1ccc(cc1OC)C2=C(O)C(= O)c3ccccc3O2 + # + 3.39 246.56 179.87 222.70 3.53 4.02 3.67

2 COC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)c3 # + + 4.52 278.73 187.60 244.01 4.40 4.61 4.70

3 CCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)c3 * * − 4.86 297.66 191.93 245.04 4.92 4.94 4.75

4 CCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)c3 # # + 5.00 282.96 190.91 246.53 4.52 4.86 4.82

5 CCCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)c3 # + * 4.78 282.49 187.51 241.89 4.51 4.60 4.60

6 CCCCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)c3 −  +  * 4.78 281.10 186.14 240.90 4.47 4.50 4.55

7 CCC​CCC​OC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)
c3

* −  +  4.85 280.45 185.60 241.36 4.45 4.46 4.57

8 CCC​CCC​COC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)
c3

 +   +  # 4.06 281.26 185.40 240.36 4.47 4.44 4.52

9 COc1ccc(cc1OC)C2=C(OC(C)C)C(= O)c3ccccc3O2  +   +  − 4.48 273.82 187.00 235.69 4.27 4.56 4.30

10 CCC(C)OC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)c3 * − * 4.35 274.98 182.68 235.54 4.30 4.24 4.29

11 CCCC(C)OC1=C(Oc2ccccc2C1=O)c3ccc(OC)c(OC)
c3

#  +  − 4.55 279.85 185.82 242.37 4.43 4.47 4.62

12 CCN(CC)CCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)
c(OC)c3

 +   +  * 4.24 286.50 188.17 243.94 4.62 4.65 4.70

13 CCN(CC)CCCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)
c(OC)c3

 +  *  +  4.22 279.62 184.40 243.02 4.43 4.37 4.65

14 CCN(CC)CCCCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)
c(OC)c3

 +  − * 4.50 281.46 184.87 242.66 4.48 4.40 4.64

15 CCCN(CCC)CCCOC1=C(Oc2ccccc2C1=O)c3ccc(OC)
c(OC)c3

− #  +  4.59 285.56 192.48 243.07 4.59 4.98 4.66

16 CCCN(CCC)CCCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

− * − 4.59 278.69 188.71 242.15 4.40 4.69 4.61

17 CCCN(CCC)CCCCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

−  +  − 4.88 280.53 189.18 241.78 4.45 4.73 4.59

18 CCCCN(CCCC)CCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

−  +   +  5.85 309.77 200.92 256.83 5.25 5.62 5.32

19 CCCCN(CCCC)CCCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

 +  − * 5.57 302.90 197.16 255.91 5.06 5.33 5.27

20 CCCCN(CCCC)CCCCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

# −  +  5.40 304.74 197.62 255.54 5.11 5.37 5.26

21 CCCCCN(CCCCC)CCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

# # # 5.62 309.50 196.79 255.03 5.24 5.31 5.23

22 CCCCCN(CCCCC)CCCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

*  +   +  5.11 302.63 193.03 254.11 5.05 5.02 5.19

23 CCCCCN(CCCCC)CCCCCOC1=C(Oc2ccccc2C1=O)
c3ccc(OC)c(OC)c3

 +  −  +  5.31 304.47 193.50 253.75 5.10 5.05 5.17

24 COc1ccc(cc1OC)C2=C(OCCCN3CCOCC3)C(= O)
c4ccccc4O2

* −  +  4.96 300.56 194.37 247.94 5.00 5.12 4.89

25 COc1ccc(cc1OC)C2=C(OCCCCN3CCOCC3)C(= O)
c4ccccc4O2

* − − 5.04 293.68 190.60 247.02 4.81 4.84 4.85

26 COc1ccc(cc1OC)C2=C(OCCCCCN3CCOCC3)C(= O)
c4ccccc4O2

*  +  * 5.35 295.52 191.07 246.66 4.86 4.87 4.83

27 COc1ccc(cc1OC)C2=C(OCCCCN3CCCCC3)C(= O)
c4ccccc4O2

 +  −  +  4.87 289.62 186.51 245.34 4.70 4.52 4.76

28 COc1ccc(cc1OC)C2=C(OCCCCCN3CCCCC3)C(= O)
c4ccccc4O2

*  +  # 4.41 291.46 186.97 244.98 4.75 4.56 4.75

29 COc1ccc(cc1OC)C2=C(OCCCN3CCN(C)CC3)C(= O)
c4ccccc4O2

 +  *  +  5.48 320.82 206.21 269.28 5.55 6.02 5.92

30 COc1ccc(cc1OC)C2=C(OCCCCN3CCN(C)CC3)C(= O)
c4ccccc4O2

*  +  − 5.96 313.95 202.44 268.36 5.36 5.73 5.87
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Table 4  (continued)

No SMILES Split PIC50 DCW(T, N) Predicted pIC50

1 2 3 Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

33 COc1ccc(cc1OC)C2=C(OCCC​CCC​CN3CCN(C)CC3)
C(= O)c4ccccc4O2

 +  * * 5.21 317.40 202.51 266.00 5.46 5.74 5.76

34 COc1ccc(cc1OC)C2=C(OCCCN3CCCC3)C(= O)
c4ccccc4O2

− * − 5.70 319.85 204.41 264.33 5.52 5.88 5.68

35 COc1ccc(cc1OC)C2=C(OCCCCN3CCCC3)C(= O)
c4ccccc4O2

− − − 5.82 312.98 200.64 263.41 5.33 5.60 5.64

38 COc1ccc(cc1OC)C2=C(OCCC​CCC​CN3CCCC3)C(= O)
c4ccccc4O2

 +   +   +  4.87 316.43 200.71 261.05 5.43 5.60 5.52

39 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)O − #  +  4.70 272.50 192.11 237.49 4.24 4.95 4.39

40 COC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)c(OC)c3 −  +   +  4.83 284.69 189.92 247.43 4.57 4.78 4.87

41 CCOC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)c(OC)c3  +   +  * 5.07 303.63 194.26 248.46 5.08 5.11 4.92

42 CCCOC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)c(OC)
c3

*  +  # 5.00 288.93 193.24 249.95 4.68 5.04 4.99

43 CCCCOC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)c(OC)
c3

* * * 4.85 288.45 189.83 245.31 4.67 4.78 4.76

44 CCCCCOC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)
c(OC)c3

*  +   +  4.69 287.07 188.46 244.33 4.63 4.67 4.72

45 CCC​CCC​OC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)
c(OC)c3

# * # 4.37 286.42 187.93 244.78 4.61 4.63 4.74

46 CCC​CCC​COC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)
c(OC)c3

 +   +   +  4.59 287.22 187.73 243.78 4.64 4.62 4.69

47 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OC(C)C

 +  * # 4.42 291.72 192.86 241.93 4.76 5.01 4.60

48 CCC(C)OC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)
c(OC)c3

#  +   +  4.66 280.94 185.01 238.96 4.46 4.41 4.46

49 CCCC(C)OC1=C(Oc2cc(OC)ccc2C1=O)c3ccc(OC)
c(OC)c3

# # * 4.41 285.82 188.15 245.80 4.60 4.65 4.79

50 CCCCN(CCCC)CCCOC1=C(Oc2cc(OC)ccc2C1=O)
c3ccc(OC)c(OC)c3

−  +  * 5.72 315.74 203.25 260.25 5.41 5.79 5.48

51 CCCCN(CCCC)CCCCOC1=C(Oc2cc(OC)ccc2C1=O)
c3ccc(OC)c(OC)c3

−  +   +  5.50 308.86 199.48 259.33 5.22 5.51 5.44

52 CCCCN(CCCC)CCCCCOC1=C(Oc2cc(OC)ccc2C1=O)
c3ccc(OC)c(OC)c3

− − # 5.28 310.70 199.95 258.97 5.27 5.54 5.42

53 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCN4CCOCC4

* *  +  4.91 305.99 197.41 248.19 5.15 5.35 4.90

54 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCN4CCOCC4

*  +  − 5.04 299.12 193.64 247.27 4.96 5.07 4.86

55 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCCN4CCOCC4

 +  # * 5.02 300.96 194.11 246.91 5.01 5.10 4.84

56 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCN4CCCCC4

#  +  − 4.61 306.52 192.08 248.94 5.16 4.95 4.94

57 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCN4CCCCC4

 +  − * 4.79 299.65 188.31 248.02 4.97 4.66 4.89

58 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCCN4CCCCC4

 +  − # 5.05 301.49 188.78 247.66 5.02 4.70 4.88

59 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCN4CCN(C)CC4

* *  +  6.10 330.85 208.01 271.96 5.82 6.16 6.05

60 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCN4CCN(C)CC4

− # * 6.21 323.98 204.24 271.04 5.63 5.87 6.00

61 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCCN4CCN(C)CC4

−  +  − 5.80 325.82 204.71 270.68 5.68 5.91 5.99

62 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCN4CCCC4

# − # 6.09 329.88 206.21 267.01 5.79 6.02 5.81

63 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCN4CCCC4

− * − 5.38 323.01 202.44 266.09 5.61 5.73 5.77
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relationship between the chemical structure of the com-
pounds and their property/activity. It also enunciates the 
molecular features which are responsible for the increase/
decrease of endpoints that can be computed from QSAR 
models. Information on the mechanistic interpretation 
of flavonols as a promoter of pIC50 increase/decrease 
may aid in the design and development of new flavonol 
derivatives.

In CORAL, correlation weights (CWs) of structural 
attributes (SAk) are calculated in three or more runs and 

the mechanistic interpretation is achieved by analysis of 
CWs. If in all probes of the optimization, the numerical 
value of CW of structural attributes is found greater than 
zero, then these attributes are considered as a promoter 
of increase. Whereas, if the numerical value of CW of 
structural attributes is found smaller than zero, then 
these attributes are defined as the promoter of decrease 
[61, 62].

The list of attributes and their correlation weights for 
three runs of all splits computed with TF2 is presented 

Table 4  (continued)

No SMILES Split PIC50 DCW(T, N) Predicted pIC50

1 2 3 Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

64 COc1ccc2C(= O)C(= C(Oc2c1)c3ccc(OC)c(OC)c3)
OCCCCCN4CCCC4

 +   +   +  6.27 324.85 202.91 265.73 5.66 5.77 5.75

65 COc1cc(cc(OC)c1OC)C2=C(O)C(= O)c3ccccc3O2 −  +  − 4.49 267.80 185.10 232.23 4.11 4.42 4.13

66 COC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)c(OC)c3 *  +   +  4.72 292.01 189.19 248.67 4.77 4.73 4.93

68 CCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)c(OC)
c3

−  +  # 4.93 288.14 191.58 248.76 4.66 4.91 4.93

69 CCCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)c(OC)
c3

 +  − # 4.89 287.66 188.18 244.11 4.65 4.65 4.71

70 CCCCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)
c(OC)c3

 +  *  +  4.65 286.28 186.81 243.13 4.61 4.55 4.66

71 CCC​CCC​OC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)
c(OC)c3

 +  −  +  4.54 285.63 186.27 243.58 4.59 4.51 4.68

72 CCC​CCC​COC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)
c(OC)c3

 +  * * 4.67 286.43 186.07 242.58 4.61 4.49 4.63

73 COc1cc(cc(OC)c1OC)C2=C(OC(C)C)C(= O)c3ccc-
cc3O2

 +  #  +  4.41 278.13 187.26 237.30 4.39 4.58 4.38

74 CCC(C)OC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)
c(OC)c3

* * * 4.31 279.29 182.94 237.15 4.42 4.25 4.37

75 CCCC(C)OC1=C(Oc2ccccc2C1=O)c3cc(OC)c(OC)
c(OC)c3

* *  +  4.87 284.16 186.08 243.98 4.55 4.49 4.70

76 CCN(CC)CCCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)
c(OC)c(OC)c3

− *  +  4.86 284.80 185.07 245.25 4.57 4.42 4.76

77 CCN(CC)CCCCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)
c(OC)c(OC)c3

+ − # 5.18 286.64 185.54 244.88 4.62 4.45 4.74

78 CCCN(CCC)CCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)
c(OC)c(OC)c3

* # * 4.77 290.74 193.15 245.29 4.73 5.03 4.76

79 CCCN(CCC)CCCCOC1=C(Oc2ccccc2C1=O)c3cc(OC)
c(OC)c(OC)c3

 +  − − 4.94 283.86 189.38 244.37 4.54 4.74 4.72

81 CCCCN(CCCC)CCCOC1=C(Oc2ccccc2C1=O)
c3cc(OC)c(OC)c(OC)c3

− * − 5.15 314.95 201.59 259.05 5.39 5.67 5.43

82 CCCCN(CCCC)CCCCOC1=C(Oc2ccccc2C1=O)
c3cc(OC)c(OC)c(OC)c3

− * − 5.28 308.07 197.83 258.13 5.20 5.38 5.38

83 CCCCN(CCCC)CCCCCOC1=C(Oc2ccccc2C1=O)
c3cc(OC)c(OC)c(OC)c3

 +  * − 5.17 309.91 198.29 257.77 5.25 5.42 5.36

84 CCCCCN(CCCCC)CCCOC1=C(Oc2ccccc2C1=O)
c3cc(OC)c(OC)c(OC)c3

 +   +  * 5.24 314.68 197.46 257.26 5.38 5.36 5.34

85 CCCCCN(CCCCC)CCCCOC1=C(Oc2ccccc2C1=O)
c3cc(OC)c(OC)c(OC)c3

# − * 5.10 307.80 193.70 256.34 5.19 5.07 5.29

86 CCCCCN(CCCCC)CCCCCOC1=C(Oc2ccccc2C1=O)
c3cc(OC)c(OC)c(OC)c3

 +  #  +  5.02 309.64 194.16 255.97 5.24 5.11 5.28
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in Table 5. The most significant structural attributes as 
the promoter of pIC50 increase were distinguished and 
extracted. The structural attributes as promoters of 
increase of pIC50 were aliphatic carbon atom connected 
to double-bound (C…=…, aliphatic oxygen atom con-
nected to aliphatic carbon (O…C…), branching on aro-
matic ring (c…(…), and aliphatic nitrogen (N…). The 
good fingerprints obtained from Monte Carlo optimi-
zation method are indicated in Fig. 2. These attributes 
for two compounds with the highest pIC50 are shown in 
Fig. 2 (compound no. 60 and 64).

A series of natural flavonols with unknown pIC50 was 
selected and their pIC50 was calculated from the QSAR 
models of best split (split 3). Names, chemical structure 

and corresponding predicted pIC50 of selected natu-
ral flavonol derivatives with pIC50 more than 4, are 
depicted in Table  6. These compounds were also con-
sidered for molecular docking studies.

Molecular docking studies
The docking for abiraterone was performed into the 
active site of Human Cytochrome P450 CYP17A1 (PDB: 
3RUK) to validate the binding energy of ligand–protein 
interactions. The validation results showed a binding 
energy of −  10.3  kcal/mol for abiraterone and a root-
mean-square deviation (RMSD) value 1.172  Å (Fig.  3). 
The active pocket consisted of amino acid residues such 
as Val366, Val483, Val482, Ala367, Glu305, Gly301, 

Table 5  Important features interpretation for increasing of pIC50 values of three splits

a No. of attributes in the training set
b No. of attributes in the invisible training set
c No. of attributes in the calibration set

No Attributes Split CW (MFk) in run 1 CW (MFk) in run 2 CW (MFk) in run 3 NT
a NiT

b NC
c Defect (MFk) Interpretation

1 C…=… 1 1.080 1.495 0.261 29 20 12 0.000 Aliphatic carbon 
atom connected 
to double-bound

2 0.810 1.103 0.681 29 21 12 0.000

3 1.978 1.006 0.076 28 20 12 0.000

2 O…C… 1 1.216 1.517 0.893 29 20 12 0.000 Aliphatic oxygen 
atom connected 
to aliphatic 
carbon

2 0.014 0.254 0.380 29 21 12 0.000

3 0.150 0.019 1.054 28 20 12 0.000

3 c…(… 1 0.329 0.003 0.560 29 20 12 0.000 Branching on ring

2 0.271 0.054 0.161 29 21 12 0.000

3 0.263 0.073 0.644 28 20 12 0.000

4 N… 1 2.197 3.253 3.130 19 10 6 0.0062 Aliphatic nitrogen

2 0.050 0.207 0.170 18 11 7 0.0015

3 0.728 2.431 2.322 16 15 6 0.0032

2 -0.718 -0.708 − 0.854 22 16 10 0.0023

3 -0.285 -0.784 − 1.012 22 16 9 0.0012

Fig. 2  Good fingerprints obtained from Monte Carlo optimization method
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Table 6  The chemical structure of some natural flavonols with predicted pIC50 using leading model (split 3), docking scores (Kcal 
mol−1) and amino acid interacted with 3RUK

Structure pIC50 (prd) Free binding 
energy (kcal/
mol)

Amio acid interacted

Abiraterone

– − 10.3 Ala113, Gly301, Arg239, Asn202, Ile206, 
Glu305, Ala302, Val482, Val483, Ile371, Ile205, 
Phe114, Thr306, Cys442, Val366, Ala367, 
Leu209, Tyr201

 
Compound no. 60 with highest Activity

6.03 − 8.1 Ala113, Gly301, Asp298, Gly444, Val483, 
Val366, Ala302, Ala367, Ile299, Ile443, Ile371, 
Glu305, Phe435, Cys442, Gly303, Ile371, 
Pro434, Leu447, Ile112, Phe114, Thr306

 
Azaleatin

4.36 − 8.1 Ile205, Val482, Asp298, Ala302, Ala113, 
Asn202, Gly297

Gossypetin

4.59 − 8.5 Asn202, Arg239
Ile205, Ala105, Ala302, Ala113

Isorhamnetin

4.68 − 8.0 Ala113, Gly301, Asp298, Gly297, Arg239, 
Val236, Ala105, Ile205, Tyr201, Asn202, 
Ile206, Glu305, Ala302, Val482, Val483, Ile371
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Leu209, Asn220, Tyr201, Ile206, Ile205, Arg239, Phe114, 
ala302, Ile371, Ala113, Thr306, and Cys442, which play 
fundamental roles by hydrophobic interactions and form-
ing H-bond (Fig. 4).

In addition, the docking studies for eight natural fla-
vonols with predicted pIC50 more than 4.0 based on the 
best model (split 3), were conducted along with com-
pound number 60, which has high experimental activity. 

Table 6  (continued)

Structure pIC50 (prd) Free binding 
energy (kcal/
mol)

Amio acid interacted

Myricetin

4.21 − 8.2 Ala113, Gly301, Asp298, Gly297, Arg239, 
Phe114, Phe300, Ile205, Tyr201, Asn202, 
Ile206, Glu305, Ala302, Val482, Val483, Ile371

Pachypodol

4.35 − 7.9 Ala113, Ala105, Gly301, Arg239, Ile205, 
Asn202, Ile206, Glu305, Ala302, Val482, 
Val483, Ile371, Val236, Thr306

Quercetin

4.25 − 8.4 Ala113, Ala105, Gly301, Arg239, Ile205, 
Asn202, Ile206, Glu305, Ala302, Val482, 
Val483, Il371, Val236, Thr306, Phe114, Tyr201

Rhamnazin

4.66 -8.3 Ala113, Ala105, Gly301, Arg239, Ile205, 
Asn202, Ile206, Glu305, Ala302, Val482, 
Val483, Ile371, Val236, Tyr201, Asp298, 
Gly297, Ala367, Ala105, Val366

Rhamnetin

4.45 − 8.2 Ala113, Gly301, Arg239, Ile205, Asn202, 
Ile206, Ala302, Val482, Val483, Ile371, 
Asp298, Gly297, Ala367, Tyr201
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Natural flavonols azaleatin, gossypetin, isorhamnetin, 
myricetin, pachypodol, quercetin, rhamnazin, and rham-
netin exhibited binding energies of −  8.1, −  8.5, −  8.0, 
−  8.2, −  7.9, −  8.4, −  8.3, and −  8.2  kcal/mol, respec-
tively (Table 6). The docking outcomes matched the cal-
culated pIC50 of flavonols. The superimposition image of 
the optimum binding pose for each suggested flavonol is 
displayed in Fig. 5. Figure 6 shows the 3D docking mode 
and 2D schematic depiction of interactions for some 
natural flavonols and the active ligand. The oxygen atom 

was involved in hydrogen bond interactions with the 
active site amino acid residues, and so the oxygen of fla-
vonols was particularly significant for the anti-prostate 
cancer effect of flavonols. The positive contribution of 
oxygen atom on pIC50 of flavonol derivatives was seen in 
the mechanistic interpretation of the above-mentioned 
QSAR models. So, the present QSAR models are accept-
able for a wide range of flavonols derivatives.

Conclusion
In the present study, a reliable QSAR model was 
described to predict the anti-prostate cancer activities 
of 81 flavonol derivatives using the Monte Carlo opti-
mization technique of CORAL software. To date, the 

Fig. 3  Superposition of the abiraterone output docked ligand (blue) 
and the co-crystallized ligand (green) of 3RUKA

Fig. 4  3D docking mode and 2D schematic interaction diagram for the best pose of abiraterone redocked into 3RUK crystal structure

Fig. 5  Superimposed poses of docked molecules 
and the co-crystallized abiraterone (violet) into the active site 
of 3RUKA
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Fig. 6  3D docking mode and 2D schematic interaction diagram for the best pose of some natural flavonols against 3RUK crystal structure (for 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)
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QSAR models to predict the pIC50 of this dataset were 
not previously reported. Six QSAR models were con-
structed utilizing the balance of correlation method 
with two target functions TF1 (WIIC = 0.0) and TF2 
(WIIC = 0.2). The IIC was employed to improve the 
reliability and robustness of the models. The QSAR 
models developed by using TF2 were found better than 
the models developed by TF1. The predictability and 
robustness of designed models were evaluated by the 
various statistical parameters such as R2, Q2, IIC, CCC, 
MAE, s, r2m , Δ r2m , CR2p

 , F and Y-test. Based on ‘statistical 
defect’, d(A) for a SMILES attribute, the AD was also 
analysed and the outliers were extracted. The structural 
attributes as promoters of increase/decrease of pIC50 
were identified and used to predict the pIC50 of natural 
flavonols. The mechanistic interpretation was also con-
firmed by molecular docking of natural flavonols into 
the active site of Human Cytochrome P450 CYP17A1 
(PDB: 3RUK).
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