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Abstract 

Lactate dehydrogenase (LDH) is a tetramer enzyme that converts pyruvate to lactate reversibly. This enzyme becomes 
important because it is associated with diseases such as cancers, heart disease, liver problems, and most importantly, 
corona disease. As a system-based method, proteochemometrics does not require knowledge of the protein’s three-
dimensional structure, but rather depends on the amino acid sequence and protein descriptors. Here, we applied this 
methodology to model a set of LDHA and LDHB isoenzyme inhibitors. To implement the proteochemetrics method, 
the camb package in the R Studio Server programming environment was used. The activity of 312 compounds of 
LDHA and LDHB isoenzyme inhibitors from the valid Binding DB database was retrieved. The proteochemometrics 
method was applied to three machine learning algorithms gradient amplification model, random forest, and support 
vector machine as regression methods to find the best model. Through the combination of different models into an 
ensemble (greedy and stacking optimization), we explored the possibility of improving the performance of models. 
For the RF best ensemble model of inhibitors of LDHA and LDHB isoenzymes, and were 0.66 and 0.62, respectively. 
LDH inhibitory activation is influenced by Morgan fingerprints and topological structure descriptors.

Keywords  Proteochemometrics, Machine learning algorithm, Isoenzyme, Camb package, Morgan fingerprints

Introduction
Cancer is one of the leading causes of death worldwide. 
Mutations in genes lead to the development of can-
cer when these mutations affect how cells function [1]. 
Tumor cells depend on glycolysis for ATP synthesis, even 
when oxygen is present to support oxidative phospho-
rylation, a process referred to as aerobic glycolysis or the 
Warburg effect [2]. This implies that cancer cells neces-
sitate a greater quantity of glucose compared to healthy 
cells in order to sustain an adequate ATP supply for 
energy generation [3, 4]. Lactic acid fermentation, cata-
lyzed by lactate dehydrogenase (LDH), is the predomi-
nant method by which numerous cancer cells produce 
ATP. This process involves the conversion of pyruvic 
acid into lactic acid as the end product. Also, aerobic 
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glycolysis way was used to produce essential building 
blocks such as amino acids, lipids, and nucleotide synthe-
sis [5]. Moreover, a number of studies have shown that 
LDH can be a powerful biomarker for early recognition 
of lung injury and severe COVID-19 cases. There were 
significant differences in LDH levels between patients 
and those without severe disease in early COVID-19 data 
[6].

Lactate Dehydrogenase (LDH) is a tetrameric enzyme 
critical for anaerobic respiration. Anaerobic respiration 
occurs when pyruvate is converted into lactate acid in 
the absence of oxygen. There are two known isoforms of 
LDH; LDHA and LDHB. The LDHB catalyzes the revers-
ible conversion of lactate to pyruvate with the reduc-
tion of NAD + to NADH, while the LDHA catalyzes the 
reverse reaction. Scientists have discovered that LDHB is 
consistently expressed in different types of cancer cells, 
whereas LDHA may play an important role in tumor ini-
tiation since it is frequently overexpressed in cancer. The 
reduction of LDHA levels was associated with fewer cel-
lular transformations and delayed tumor formation [7, 8].

A small molecule inhibitor that inhibits LDH proteins 
is required in cancer cells, lung tissue, and coronary 
arteries where high levels of LDH are present. There is 
a correlation between lymphocyte levels and LDH lev-
els in the blood of COVID-19 patients, which is associ-
ated with the severity of the disease. Higher leukocyte 
count and LDH levels are indicative of an increased risk 
of mortality [9]. LDH levels in COVID-19 patients expe-
riencing severe illness showed a significant up to sixfold 
elevation, which corresponded to a staggering 16-fold 
increase in mortality [6]. Granchi et al. provided a com-
prehensive review of inhibitors of lactate dehydrogenase 
(LDH) isoforms and their therapeutic potential. They 
described the various chemical classes of LDH inhibitors, 
including oxamic acid derivatives, pyrazole derivatives, 
quinoline derivatives, phenylpyruvic acid derivatives, 
and pyridine derivatives. They also highlighted recent 
advances in the development of LDH inhibitors and their 
potential applications in the treatment of cancer, infec-
tious diseases, and other pathologies. Various factors can 
influence LDH inhibitory activity including the chemical 
structure of the inhibitor, the type and location of func-
tional groups, the size and shape of the inhibitor mole-
cule, and the interaction of the inhibitor with the active 
site of the LDH enzyme. It is noted that the potency of 
LDH inhibitors can be affected by the concentration of 
the enzyme, the pH and temperature of the reaction, and 
the presence of other substrates or cofactors. They also 
emphasized the importance of isoform selectivity in the 
design of LDH inhibitors, as different isoforms of LDH 
have different tissue distributions and may play differ-
ent roles in disease [10]. Miskimins et  al. propose that 

oxamate and phenformin exhibit synergistic anti-cancer 
effects by concurrently inhibiting complex I in mitochon-
dria and LDH in the cytosol [11]. LDHA can be inhib-
ited by galloflavin, a synthetic chemical that selectively 
binds to free enzymes without interfering with substrates 
or cofactors, and without causing any changes to mito-
chondrial respiration [12]. It has been attempted to treat 
COVID-19 with hydroxychloroquine, a medication com-
monly used to treat arthritis. Selenobenzene compounds 
exhibit LDHA inhibitory properties, according to Kim 
et  al. [13]. New LDH inhibitors such as phthalimide 
and dibenzofuran selectively inhibit LDHA isoenzyme 
[14, 15]. Quinoline-3-sulfonamides, when compared to 
LDHB, exhibit higher selectivity for LDHA by competing 
with NADH [16]. Additionally, QSAR studies were per-
formed on flavoalkaloids and flavonoids [17], quinoline-
based derivatives [18], and tricyclic guanidine analogues 
of batzelladine K [19] as LDH inhibitors.

New strategies have been developed to improve the 
efficiency of the discovery and development of drugs 
due to the increased energy, time, and costs associated 
with this process. Drug discovery and optimization are 
becoming substantially more efficient by using com-
puter-aided drug design (CADD). Drug design meth-
ods can be divided into three categories: ligand-based 
(LBDD); structure-based (SBDD); and system-based 
methods [20]. As with QSAR, LBDD is focused only on 
inferring relationships between structural and phys-
icochemical attributes of ligands, as well as their cor-
responding biological properties [21]. SBDD elucidates 
the characteristics of current ligands or forecasts their 
attributes for novel ligands by utilizing experimen-
tal structures of protein targets, including receptors, 
enzymes, and proteins [22]. Systems-based drug devel-
opment is based on genomic and proteomic informa-
tion, their relationships, and how chemicals positively 
or adversely affect their expression. System-based drug 
design moves from a one drug–one target paradigm 
to a more systematic multidrug-multitarget paradigm, 
and the methods are inherently capable of unraveling 
complex networks of protein interactions with a library 
of compounds. Proteochemometrics modeling (PCM) 
is a systems-based approach that describes the inter-
action space of a series of compounds with a series of 
proteins [20, 23–25]. PCM combines descriptors of 
ligands and targets using machine learning algorithms 
to predict the bioactivity of compounds. This approach 
has the advantage of not requiring knowledge of the 
three-dimensional structure of the protein but instead 
relies on the amino acid sequence in order to gener-
ate descriptors. By integrating chemical and biological 
data, taking into account the available information in 
the model, it becomes possible to interpolate between 
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the chemical and target spaces. This enables the pre-
diction of the efficacy of (new) compounds on a range 
of (new) targets. Thus, it is possible to predict the bio-
activity of new compounds on targets that have not yet 
been tested. Due to these features, PCM distinguishes 
itself from chemogenomics and QSAR by offering sev-
eral advantages, including (i) the capability to incor-
porate bioactivity data from orthologous targets, (ii) 
the ability to forecast bioactivity for emerging viral 
mutations, and (iii) the potential for designing per-
sonalized medicine, such as tailored cancer therapies 
[26, 27]. PCM was introduced by Lapinsh et al. in 2001 
[25], and since then, it has been successfully applied 
to a wide range of drug targets including proteases, 
kinases, cytochrome P450s, G protein-coupled recep-
tors, and transport proteins [26, 28]. The advancement 
of robust machine learning techniques has resulted 
in their growing utilization for data-centric machine 
learning in Computer-Aided Drug Design (CADD) in 
recent times [29, 30]. It is likely that these methods 
will radically change the landscape of new molecules 
discovery and repurposing old drugs. Based on the 
PCM principles, we modeled the potency of 372 com-
pounds on two isoforms of LDHA and LDHB. Various 
machine learning algorithms are used to train PCM 
models on public IC50 values from BindingDB. Ensem-
ble modeling is then used to improve the performance 
models. An overview of the steps of the present study 
is shown in Fig. 1.

Materials and methods
Dataset
The dataset used to generate the PCM models was down-
loaded from the bindingBD [31] source. We accessed the 
data set by browsing by target name for LDH, which is 
the easiest way to access specific protein targets (www.​
bindi​ngdb.​org/​bind/​ByTar​getNa​mes.​jsp). Once the data 
had been curated (data on human activity reported in 
IC50), 372 compounds were prepared to build models. 
To get more spread data points for biological activities 
(pIC50), the negative logarithmic transformation has been 
applied (− log IC50 × 10–9).

Compound descriptors
The function StandardiseMolecules from the R package 
camb [32, 33], can be employed to standardize chemical 
structures in SMILES format according to the following 
procedure: (i) By comparing the structure of the entries, 
duplicates were removed from the dataset, (ii) remov-
ing all inorganic molecules, (iii) molecules were selected 
without requiring consideration of how many fluorines, 
chlorines, bromines or iodines were present in their 
structure or what their molecular mass was.

Morgan fingerprints [34] were calculated from Rdkit 
[35]. For the calculation of unhashed Morgan finger-
prints, the dataset’s compound substructures, with a 
maximum diameter of four bonds, were assigned distinct 
identifiers. The length of the fingerprints was specifically 
chosen as 512 in this case. Afterward, the substructures 

Fig. 1  Flowchart process of proteochemometrics modeling

http://www.bindingdb.org/bind/ByTargetNames.jsp
http://www.bindingdb.org/bind/ByTargetNames.jsp
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were transformed and organized into an unhashed array 
of counts. Physical descriptors were derived from the 
PaDEL [36] software by using the GeneratePadelDescrip-
tors function in the R package camb.

Protein descriptors
For the alignment, the crystal structure of LDHA, iden-
tified by the 5W8J identifier, was used as a reference 
structure to identify the cavity of the enzyme. Clustal 
Omega web server [37] was used to align sequences 
with PDB ID of 1I0Z representing isoform LDHB. The 
conserved positions are shown by asterisks (Fig.  2a). 
A number of important residues involved in protein–
ligand interactions have been identified by a previous 
X-ray study [38]. In order not to miss any of these criti-
cal residues, we used a cutoff 10  Å from the center of 
2-{3-(3,4-difluorophenyl)-5-hydroxy-4-[(4-sulfamoylphe-
nyl)methyl]-1H-pyrazol-1-yl}-1,3 thiazole-4-carboxylic 
acid inhibitor to determine ligand‐interacting residues 
[39]. Some of the residues located in the cavity and used 
for descriptor generation are shown in bold in Fig.  2b. 
The functions AADescs from the R package camb were 
used to calculate 5 Z-scales descriptors [40] for binding 
site amino acids of Lactate dehydrogenase.

Some of the residues located in the cavity and applied 
for descriptor generation are represented.

Generation of PCM models by machine learning 
approaches
A matrix was constructed by concatenating compound 
and target descriptors and then compressing it using a 
preprocessing method. We removed highly correlated 
and near-zero variance descriptors using the functions 
RemoveHighlyCorrelatedFeatures (cut-off 0.95) and 
RemoveNearZeroVarianceFeatures (cut-off 30/1), respec-
tively. Using the function PreProcess from the R package 
camb, the remaining descriptors were then centered to 
zero mean and scaled to unit variance. Based on strati-
fied sampling according to bioactivity labels, the whole 
dataset was split into 70/30 training to test ratio ran-
domly in camb. By applying Machine Learning models, 
descriptors were correlated with biological activities. We 
used gradient-boosting machines (GBMs) [41], Random 
Forests (RFs) [42], and Support Vector Machines (SVMs) 
[43] to train our models by using the GBM, RF, and SVM-
Radial methods respectively. Gradient boosting machines 
are an effective method for capturing complex functions 
with non-linear dependencies. SVM is a machine learn-
ing method used for classification and regression tasks. It 
utilizes kernel functions to transform data into a higher-
dimensional space, enabling the identification of an opti-
mal separating hyperplane that effectively distinguishes 
samples into distinct classes [44–46]. Random Forest is 

an approach that merges the forecasts of numerous unre-
lated decision trees. These trees are built using randomly 
selected independent vectors and are employed to make 
predictions for new inputs in classification or regression 
tasks. Decision trees, also referred to as regression trees, 
are constructed hierarchically, repeatedly dividing the 
dataset into different branches that maximize the infor-
mation obtained from each division [47].

Principal component analysis
PCA is a multivariate data analysis method that is com-
monly used to determine the similarities and differences 
between the sample and variables, thereby leading to 
data classification, outlier detection, and data reduction 
[48]. In PCA, multivariate data are transformed linearly 
into a smaller set of new orthogonal variables called 
principal components (PCs). The PCs contain consider-
able information regarding the original dataset. Samples 
are plotted using new axes and the resulting graphic is 
called Score Plot. The loading plot shows the relationship 
between the variables and how much each one affects 
the system. A PCA is performed on compound or pro-
tein descriptors using the camb function PCA. The out-
put can be directly sent to PCAPlot, a tool that visualizes 
the first two principal components. This visualization 
includes the representation of the user-specified class, 
such as compound class or protein isoform, using shape 
and color.

Model validation
The statistical robustness and good validation of models 
were corroborated based on criteria proposed by Gol-
braikh, Tropsha and Gramatica (Supplementary mate-
rial). Moreover, The experimental error of the dependent 
variable (bioactivity values) is required to determine 
the maximum model performance [49]. In the absence 
of experimental uncertainty, the maximum R2

0 test
 and 

minimum RMSEtest distributions can be computed using 
the uncertainty in public bioactivity databases [50]. 
The model is likely to be over-optimistic if the metrics 
obtained were above the maximum values (for R2

0 test
 ) or 

below the minimum values (for RMSEtest ) of the distri-
bution. With the functions MaxPerf and MinPerf, you 
can compute the maximum and minimum R2

0 test
 and 

RMSEtest values. The methodology for calculating these 
parameters was explained in the Supplementary material.

Ensemble modeling
Ensemble modeling techniques, such as greedy and 
stacking optimization, are applied using the caretEnsem-
ble R package. This approach allows for the creation of 
ensemble models by combining multiple individual mod-
els, which have been shown to be more accurate and less 
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Fig. 2  A Multiple sequence alignment of LDH homologous. Multiple sequence alignment of residues considered cavity amino acids is represented 
in bold. Conserved positions are marked by asterisks. B The superimposition structures of LDHA (PDB ID: 5W8J) and LDHB (PDB ID: 1I0Z)
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prone to errors than standalone models [51]. In greedy 
optimization, using a linear combination of the predic-
tion values from the input model, the cross-validated 
RMSE is optimized [52]. On a set of training data with 
the same fold composition, these models were trained. 
Following is a description of how each model is assigned 
a weight. In the beginning, all models had zero weight. 
After that, the weight of a specific model was incremen-
tally increased by 1 whenever the normalized weight vec-
tor resulted in a closer alignment between the combined 
predictions from cross-validation and the observed pIC50 
values. By default, n = 1000, thus repeating this step n 
times. In order to obtain a final weight vector, the result-
ing weight vector is normalized. In the process of model 
stacking, the predictions generated by the input models 
are utilized as training data for a meta-model. It is pos-
sible for this meta-model to have linear or non-linear 
characteristics [53]. If the algorithm selected is able to 
determine the importance of each input, each input is 
associated with an individual model, which in turn deter-
mines the relative contribution of each model to the pre-
diction. Using this model ensemble, a test set (not used 
when the ensemble is constructed) can be used to com-
pare the error metric (for example RMSE) between the 
ensemble and the single models.

Results and discussion
Analysis of PCM models
Occasionally, in BindingDB for a compound there might 
be more than one bioactivity value. Duplicate pairs are 
removed with “remove_duplicates.R” and the mean bio-
activity value is maintained. A total of 312 compounds 
remained after removing redundant pairs and were used 
for PCM modeling. Additional file 1: Table S1 shows their 
structures in SMILES format and pIC50. By using the 
function StandardiseMolecules with default parameters, 

it was possible to find a common representation for 
compound structures that kept all molecules, regardless 
of their molecular mass or the number of halogens they 
contained. As a visualization tool, histograms (Densi-
tyResponse) were used to explore the distribution of the 
response variable (Fig.  3). Figure  4 illustrates the PCA 
performed on the amino acid descriptors of the bind-
ing site for the two LDHs. This figure defines two distant 
clusters related to protein isoforms, LDHA and LDHB.

SMILES format was used to represent molecules. We 
generated 1241 descriptors for ligands including 512 cir-
cular Morgan fingerprint descriptors using "MorganFPs" 
and RDkit, and 729 topological and physicochemical 
descriptors using the GeneratePadelDescriptors function 

Fig. 3  Density of the response variable for A LDHA, B LDHB

Fig. 4  PCA analysis output from PCM. The function PCA was used 
to analyze the binding site amino acid descriptors (represented by 
5 Z-scales). The first two principal components (PCs) accounted for 
over 76% of the variance, suggesting that the data primarily exhibits 
two main sources of variability. The LDHs can be observed to cluster 
into two distinct groups, corresponding to the isoenzymes LDHA and 
LDHB
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and the PaDEL-Descriptor Java library. ImputeFeatures 
function was used to fill in the missing (NA" or "Inf”) 
descriptor values. 88 residues were selected in a radius of 
10 Å centered on the ligand and calculated 5 Z-scales for 
these residues with the function AADescs (440 descrip-
tors). Following these two filter steps, 286 descriptors 
were selected including 232 physicochemical descrip-
tors, 24 Morgan fingerprint descriptors, and 30 Z-scales; 
(1) the function RemoveHighlyCorrelatedFeatures with 
a threshold value of 0.95 was used to remove descrip-
tors with high correlation and redundant predictive sig-
nals, and (2) describing features with near-zero variance 
and therefore little predictive value were removed using 
RemoveNearZeroVarianceFeatures with a cut-off value 
of 30/1. The function PreProcess was used to scale all 
descriptors to have unit variance and zero mean prior to 
model training. To demonstrate the capabilities of camb 
for PCM modeling of compound properties, the data-
set used comprised 312 data points including 218 for 
training and 94 for the test set. Three machine learning 
approaches including RF, SVM, and GBM for single PCM 
models were trained. The optimal value used for the RF 
model was mtry = 256. mtry is the number of features 
to consider at each split point. Optimize values of band-
width of kernel function (σ = 0.01) and capacity param-
eter (C = 3) for SVM with radial basis function kernel 
were selected. Tuning parameters ’n.trees’ (number of 
trees), ’interaction.depth’ (maximum nodes per tree), and 
’n.minobsinnode’ (the minimum number of observations 
in terminal nodes) at GBM model were held constant at 
a value of 500, 25 and 20, respectively. ’Shrinkage’ (learn-
ing rate) was considered at four values 0.04, 0.08, 0.12, 
and 0.16. RMSE was used to select the optimal model 
using the smallest value. The final values used for the 
model were n.trees = 500, interaction.depth = 25, shrink-
age = 0.16 and n.minobsinnode = 20. As commonly rec-
ognized, a dependable model is indicated by R2 (or Q2) 
values that approach 1 and low RMSE or MAE values 
when predicting the test set or through cross-validation. 
In terms of statistical performance, the RF is better than 
the other PCM models (Table  1). With the ’Correla-
tion Plot’ function, we can see the correlation between 
observed and predicted values of test set for RF model as 
the best model (Fig. 5).

One way to improve model robustness and pro-
ductivity is using of ensemble modeling (greedy and 
stacking optimization previously described). The file 
modelsEnsemble contains a list of models previously 
trained (RF, SVM and GBM). The ensemble models are 
created by greedy and stacking optimization methods 
after all models have been loaded. The function Vali-
dation is utilized to compute statistical metrics values 
for the test set. Except for svmRBF Best (Table  2), all 

model ensembles performed better predictive power on 
the test set than single PCM models. RF ensemble Best 
produced  (bolded in Table  2) the highest R2

0 test
 value, 

0.65, and the lowest RMSEtest value, 0.62. "Best" ensem-
bles are those trained on only the three most predic-
tive RF, GBM, and SVM models. According to these 
findings, combining PCM models in more predictive 
model ensembles is associated with higher predictive 
power, although it may sometimes be marginal. On 
the other hands, Fig. 6 shows maximum and minimum 
distributions of R2

0 test
 and RMSEtest values of 0.73 and 

Table 1  Internal and external validation metrics for the single 
PCM models

Parameters RF SVM GBM

R2
CV

0.89 0.54 0.92

RMSECV 0.382 1.11 0.317

R2test
0.62 0.29 0.57

R2
0 test

0.62 0.09 0.55

Q1
2test 0.62 0.07 0.53

Q2
2test 0.62 0.07 0.54

Q3
2test 0.67 0.18 0.60

RMSEtest 0.65 1.01 0.71

MAE 0.46 0.84 0.54
(

R2test−R2
0 test

)

R2test
< 0.1

0.0003 0.689 0.016

0.85 ≤ k ≤ 1.15 1.0005 1.030 0.983

Fig. 5  Observed against predicted values on the test set for RF 
model
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0.59, which are only marginally different from the R2

0 test
 

and RMSEtest of the RF best model with 0.65 and 0.62. 
Also, ensemble QSAR models were constructed in the 
camb package. According to statistical parameters cal-
culated for the ensemble QSAR models in Additional 
file 1: Table S2 (Supplementary material), and compar-
ing these values with the ensemble PCM models, we 
conclude that the PCM method was more suitable for 
predicting biological activities. 

The RF ensemble Best model exhibited benefits in 
forecasting the activity (pIC50) of LDHA and LDHB 
inhibitors when compared to other proteochemomet-
rics models. Nevertheless, it also had some limitations. 
The difference between internal validation (R2

cv = 0.93) 
and external validation (R2

test = 0.66) continues to per-
sist. These outcomes suggest that the model’s capabil-
ity to predict the activity of novel compounds requires 
enhancement. This concern could potentially stem 
from a slight overfitting of the model. To tackle this 

Table 2  Internal and external validation metrics for the ensemble PCM models

EN, elastic net

Parameters GBM best RF best svmRBF Best EN stacking 
SVMliner

EN stacking linear EN greedy EN stacking 
SVMRBF

EN stacking enet

R2
CV

0.90 0.93 0.54 0.90 0.92 – 0.54 0.65

RMSECV 0.34 0.29 1.1 0.37 0.32 0.63 1.1 0.68

R2test
0.63 0.66 0.4 0.65 0.65 0.65 0.64 0.65

R2
0 test

0.62 0.65 0.11 0.64 0.64 0.64 0.63 0.64

Q1
2test 0.61 0.65 0.09 0.64 0.64 0.63 0.62 0.64

Q2
2test 0.61 0.65 0.09 0.64 0.64 0.64 0.64 0.64

Q3
2test 0.68 0.71 0.24 0.7 0.70 0.7 0.69 0.7

RMSEtest 0.66 0.62 1.01 0.63 0.63 0.63 0.65 0.63

MAE 0.505 0.436 0.495 0.492 0.486 0.485 0.509 0.486
(

R2test−R2
0 test

)

R2test
< 0.1

0.031 0.0151 0.725 0.0158 0.0158 0.0158 0.0156 0.0158

0.85 ≤ k ≤ 1.15 0.982 0.982 0.978 0.982 0.98 0.982 1.002 0.972

Fig. 6  Distribution of theoretical R2
0 test

 (A) and RMSEtest values (B) for RF model
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issue, various approaches can be explored to enhance 
the model in the future. One possible strategy is to 
incorporate the regularization method during the con-
struction of the fundamental model to alleviate overfit-
ting. Furthermore, acquiring a more extensive dataset 
could aid in avoiding overfitting and enhancing the 
overall performance of the model. Additionally, investi-
gating alternative feature selection methods may prove 
advantageous in reducing the model’s complexity. The 
absence of feature selection methods in the camb is evi-
dent, highlighting the usefulness of such techniques as 
an effective strategy. Notwithstanding these limitations, 
the RF ensemble Best model remains applicable for 
predicting the activity of LDHA and LDHB inhibitors. 
Its favorable performance in internal validation indi-
cates its potential effectiveness in these domains. With 
future enhancements and optimizations, its capabilities 
can be further improved.

To enhance the validation of the RF-Best model, we 
employed the Application domains (AD) analysis. The 
ADs were established by employing the leverage dis-
tance method, which involved using Williams plots 
to compare the standardized residual (s) against the 
leverage (h) and to determine whether any influen-
tial chemicals or outliers were present. The chemicals 
that significantly influenced the model were identified 
by their hi value, which was greater than the threshold 
value h* (3p/n, where p and n represent the number of 
descriptors and chemicals, respectively). On the other 
hand, outliers were determined based on a standard-
ized residual value that exceeded 3 units [54]. Based on 
the established model, we have identified six chemicals 
as influential compounds using the leverage distance 
method. These influential compounds have hi values 
larger than h* and standardized residuals |s| smaller 
than 3, as shown in Fig. 7. However, these compounds 
were not identified as outliers. On the other hand, three 
compounds in the training set and three compounds in 

the test set were identified as outliers, as their stand-
ardized residuals |s| were larger than 3.

The important extracted descriptors in the PCM model
The top 21 most important descriptors in the RF-Best 
model were selected from the 286 input descriptors to 
build PCM models (Fig. 8).

It is important to note that these descriptors are related 
to compounds V357, V415, V338, V129, and V296. 
Descriptors are hashed Morgan fingerprints. The reason 
for abandoning hashed fingerprints was that they lack 
predefined substructural features and bit collision phe-
nomena (the same bit is set by multiple patterns), which 
makes it nearly impossible to interpret specific finger-
print coordinates structurally [55]. The Chi index [56] 
descriptors are defined for the whole molecule. Chi index 
descriptors emphasize the variation of skeletal structure 
with particular attention to issues such as the degree 
of branching and the frequency of branching patterns, 
including branching adjacency and ring structure. These 
types of structure information are encoded by two types 
of Chi indices. The valence Chi indices account for atom 
valence states, whereas the simple Chi indices emphasize 
skeletal structure, independent of chemical elements. Chi 
indices are two-dimensional descriptors that include Chi 
chains, Chi clusters, and Chi path clusters. The autocor-
relation descriptor is a topological descriptor that rep-
resents the degree of similarity between molecules and 
reflects the interdependence among atomic properties in 
a molecular graph [57]. Some previous studies used 2D 
autocorrelation descriptors to model the biological activ-
ities of synthetic chemicals [58–60]. The electrotopologi-
cal state indices (E-states) were proposed by Kier and Hall 
for the characterization of atomic electronic and topo-
logical properties [61]. An E-state variable is assigned 
to each atom in the molecular graph, which encodes its 
intrinsic electronic state as perturbed by the electronic 
influence of all other atoms within the molecule within 
the context of its topological character. In this way, the 
E-state depends on the detailed structure of a molecule 
for a given atom (type). In linear free energy relations 
(LFERs), solvation parameters are used to describe the 
solvent–solute interactions [62]. In chemical and bio-
chemical systems, Abraham’s general solvation parameter 
model is one of the most useful approaches for analyzing 
and predicting free energies of partitioning. Among the 
independent descriptors in Abraham’s equation, hydro-
gen-bond basicity appears in our PCM model. BCUT 
(Burden—CAS—University of Texas eigenvalues) met-
rics are extensions of parameters developed by Burden 
[63]. BCUT-values encode both substructural topological 
information (based on actual bonding or interatomic dis-
tances) and atomic properties relevant to ligand-receptor 
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interactions (such as atomic charge, polarizability, 
H-bond donor and acceptor properties), and thus, can 
be used as chemistry-space metrics to assess pharma-
ceutical diversity. A BCUT descriptor related to polar-
izability in the PCM model gives important structural 
information. Based on Liu’s suggestion, the molecular 
distance-edge (MDE) [64] can be calculated as follows 
for a molecule: each non-hydrogen atom of the molecule 
is considered a point and each chemical bond is consid-
ered an edge. The whole molecule is viewed as a topo-
logical graph. For example, using four different types of 
carbon atoms (secondary carbon in this study), MDE can 
discriminate between isomers of alkanes well. The MDE 
descriptors are practical and easy to use for modeling and 
can be correlated with many physical properties, such as 
Gibbs free energy and enthalpy as well as biological activ-
ity. On the other hand, the 21st important descriptor is 
a Z scale protein descriptor that has important value as 
well as the 20th descriptor, V296. Table  3 lists the two-
dimensional top 21 selected descriptors in RF-Best PCM 
model with details. Inhibitory activation can be explained 
with Morgan fingerprints and topological structure 
descriptors, as shown in Table 3. The Chi indices can help 

us understand how the degree and frequency of branch-
ing patterns in the inhibitors affect their binding to the 
LDH enzyme. The E-state indices, on the other hand, 
can provide insights into the electronic properties of the 
inhibitors and how they interact with the electronic prop-
erties of the active site. The BCUT metrics can assess the 
chemical diversity of the inhibitors and their potential 
to interact with different types of receptors. Finally, the 
MDE descriptors provide information on the topological 
similarity between the inhibitors and the LDH enzyme, 
which can be used to predict their inhibitory activity. 
Overall, these descriptors provide a mechanistic under-
standing of the interaction between LDH and inhibitors 
by identifying the key structural and electronic factors 
that influence inhibitor binding. This understanding can 
be used to design more potent and selective LDH inhibi-
tors, which could have significant therapeutic potential in 
the treatment of cancer and other diseases.

Conclusion
PCM modeling was applied to the modeling of 312 
compounds of LDHA and LDHB isoenzyme inhibi-
tors by camb package. Combining chemical and target 

Fig. 8  The 21 top descriptors selected in the RF-Best model
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information in ensemble models improves the predic-
tion of compound IC50 on human LDHA and LDHB 
compared with single models. LDH inhibitory activa-
tion is influenced by Morgan fingerprints and topologi-
cal structure descriptors, according to the best model. 
Novel LDH inhibitors can be designed using the above 
information. In sum, PCM appears to be a suitable 
method for predicting compound activities by under-
standing how compounds interact with LDHA and 
LDHB. Further studies are needed to fully understand 
the biology of the LDH family in order to better predict 
the effects of compound interactions in cell-line models 
and in vivo.
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