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Abstract 

Background  Fluorescence quenching is an interesting phenomenon with the potential to be applied across various 
fields. The mechanism is commonly used across analytical applications for monitoring the concentration of trace 
substances. Naphthalimide and its family of compounds are commonly used as fluorescent detectors. This work inves-
tigated an analytical technique through which naphthalimide-based dyes could be quantified.  A commercial A/C 
leak detector was used as the dye and Cu2+ ions as the quencher. Experiments were also conducted to investigate the 
effect of temperature on quenching. To study the mechanism of quenching further, density functional theory (DFT) 
was used.

Results  The method detection limit obtained in this work is 1.7 × 10–6 mol/L. The results from the quenching experi-
ments demonstrated a pattern which fit a modified Stern–Volmer (SV) model, with an R2 value of 0.9886. From the 
experiments on the effect of temperature, a dynamic quenching behavior was observed given the emission spectra 
demonstrated an inverse relationship with temperature.

Conclusions  The quenching of the commercial A/C dye by Cu2+ ions can be used to develop a rapid and sensitive 
detection method for metal ions such as Cu2+, and for future fabrication of chemosensors for Cu2+.
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Introduction
Fluorescent materials have exhibited great promise in 
different fields such as chemical sensing, displays, bio-
logical imaging, and quantum computing [1–4]. The 
importance of fluorescent stems from their high sensi-
tivity, non-invasiveness, and high spatial and temporal 
resolution [5–7]. One of the most common applications 
of fluorescent chemicals is as leak-detecting dyes. Due 
to their rapid response to UV light, such dyes are widely 

used in automobile repair shops, the oil and gas indus-
try, research labs, as well as in the air conditioning (A/C) 
industry [8, 9]. Although many of these dyes are claimed 
to be nontoxic and environmentally friendly, the long-
term effects of fluorescent dyes and their fate is still being 
debated [10, 11]. In fact, little attention was devoted into 
the environmental impact of the fluorescent dyes’ over-
use and their possible spillage into water systems. As 
a result, this work was motivated to understand their 
fluorescence behavior, and their interaction with metal 
ions, and determine whether such interaction results in 
a chemical or physical interaction with heavy metal ions. 
The study’s findings could also be applied to the devel-
opment of a quick and sensitive analytical method that 
employs fluorescence spectroscopy to quantify the con-
centration of metal ions when used as quenchers.

*Correspondence:
Ismail Badran
i.badran@najah.edu
1 Department of Chemistry, Faculty of Sciences, An-Najah National 
University, Nablus, Palestine
2 College of Arts and Science, Qatar University, P.O. Box: 2713, Doha, Qatar

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-023-00987-2&domain=pdf
http://orcid.org/0000-0003-1423-7124
http://orcid.org/0000-0002-5173-0260


Page 2 of 10Badran and Riyaz ﻿BMC Chemistry           (2023) 17:69 

The use of fluorescence spectroscopic methods is con-
sidered one of the most precise and effective analytical 
techniques [5, 6]. While chromatographic techniques 
(e.g. HPLC, LCMS) are expensive and time-consuming, 
fluorometric analysis is straight forward, accurate, and 
requires little training [12, 13]. Fluorescence quenching 
is an interesting phenomena that is used in analytical 
analysis. Quenching is the process that decreases the flu-
orescence intensity of a sample [14]. For instance, Zhang 
et al., used rhodamine-110, a strong fluorescent dye, for 
accurate determination of trace nitrite ions in water sam-
ples [15]. In a previous study, [16] a fluorescence assay 
was developed for Curli proteins that exploits the fluo-
rescent features of Congo Red. In addition to traditional 
organic dyes, smarter fluorescent materials such as car-
bon quantum dots and molecular organic frameworks 
are now being developed [13, 17–19].

One of the most commonly used fluorescent materi-
als is naphthalimide and its derivatives [20]. These fluo-
rophores became attractive due to functionality at the 
4th position of the naphthalimide ring [8, 20]. By adding 
either electron-withdrawing or donating groups, the elec-
tronic, optical, and photochemical properties of naph-
thalimides can be altered and thus optimized [20, 21]. 
For instance, by introducing the amino electron-donating 
group (Scheme  1), naphthalimide becomes more selec-
tive towards transition metal ions such as Co2+ and Cu2+ 
[5, 8, 20].

The first objective of this study is to comprehend the 
quenching mechanism of the naphthalimide derivative. A 
commercial A/C leak detector was used as a model dye, 
and copper (II) ions were used as a quencher. The results 
were fitted to different quenching models including that 
of Stern–Volmer (S-V), the sphere of action model, and 
the modified SV model. The effect of temperature on the 
quenching was also systematically studied to distinguish 
static from dynamic quenching. Usually called ‘collisional 

quenching’, dynamic quenching involves the diffusion of 
the quencher to the fluorophore during the life time of 
the excited state [14]. As a result, the fluorophore returns 
to its ground state without emission of a photon. Static 
quenching, on the other hand, assumes that the fluoro-
phore and the quencher form a non-fluorescent pair [12, 
14].

The interaction between Cu2+ ion and the naphthal-
imide was also studied using density functional theory 
(DFT), and the absorption spectra before and after the 
quenching were obtained using time-dependent den-
sity functional theory (TDDFT). The quantum theory of 
atoms in molecules (QTAIM) was used to comprehend 
the interaction between the Cu2+ ion and the naphthal-
imide. Given the current knowledge gap regarding the 
mechanism of naphthalimide quenching by Cu2+, we 
examined the results of the quenching models and pro-
posed a mechanism of action that explains the quenching 
behavior of naphthalimide caused by the copper (II) ion. 
The mechanism was supported by the results of the DFT. 
TDDFT, and QTAIM calculations.

The second objective of this work is to develop an 
analytical technique to quantify the concentration of 
naphthalimide-based fluorescent dyes. This is due to the 
environmental concern surrounding the widespread use 
of such dyes [10, 22]. More importantly, the concentra-
tion of copper(II) themselves can be also determined in 
aqueous media, when used as quencher.

In the first part of this manuscript, we outline the 
results obtained from the experimental and theoreti-
cal studies. The results are discussed under the light of 
the DFT and QTAIM calculations in order to propose a 
quenching mechanism for naphthalimide-based fluores-
cent dye using Cu2+ as a quencher. Finally, the outcomes 
are used to provide a step-by-step procedure to quantify 
either A/C dye detector or Cu2+ ions in aqueous media.

Experimental work
Materials and instruments
A commercial A/C leak detector (Robinair 16241 Tracker 
Universal A/C Dye, Service Solutions US LLC, Min-
nesota, USA) was used in this work as a model fluores-
cent dye. The dye contains 4-amino-1,8-naphthalimide 
(CAS number 1742-95-6) as the main ingredient. Ethyl 
acetate (anhydrous, 99.8%) and copper(II) nitrate trihy-
drate (Cu(NO3)2.3H2O, ≥ 99.9% trace metals basis) were 
purchased from Sigma-Aldrich, Dorset, United King-
dom. All fluorometric measurements were done using a 
1-cm quartz cell. Milli-Q® water was used to prepare all 
solutions. The study was done using a fluorescence spec-
trophotometer (RF-6000, Shimadzu, Maryland, USA) 
equipped with a temperature controller.

Scheme 1  4-Amino-1,8-naphthalimide (CAS number 1742–95-6)
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Solutions preparation
The aromatic AC dye is not completely soluble in water, 
so it was dissolved in water/ethyl acetate mixture. A stock 
solution of 5.0 × 10–3  mol/L of the A/C dye (referred 
hereinafter by AC) was prepared in Milli-Q water/ethyl 
acetate. Similarly, a 1.0 × 10–3 mol/L of the Cu2+ quencher 
(referred hereinafter by Q) was also prepared and cov-
ered with aluminum foil. For the calibration curve, work-
ing solutions were prepared in the quartz cell by mixing 
different amounts of Q, ethyl acetate, and water to keep a 
total volume of 5.0 mL. This allows the formation of dif-
ferent concentrations in the range of 1.0–8.0 × 10–4 mol/L 
of the quencher but keeping a constant fluorophore con-
centration (F0 = 1.0 × 10–3  mol/L) under the same total 
volume. For the quenching study, different mixtures were 
prepared by altering the ratios of Q and AC keeping a 
total volume of 5.0 mL.

Fluorometric measurements
The excitations and emission spectra for water and 
ethyl acetate were recorded to ensure the absence of 
any interference. The optimum excitation wavelength of 
AC was obtained by screening the region between 220 
and 320 nm, and the best excitation was found to be at 
280  nm, which was used throughout this work. The 
excitation and emission bandwidths were fixed at a slit 
width of 5 nm and a speed of 6000 nm/min. For a typi-
cal quenching experiment, the desired volume of AC was 
transferred to the quartz tube using a micropipette along 
with definite amounts of ethyl acetate and water. Then a 
sample of the quencher was added to a total volume of 
5.0 mL and the emission spectrum was recorded imme-
diately. For the temperature study, all solutions were 
thermostatted for at least 5  min before performing the 
experiments. The study was done with fixed concentra-
tions of both AC and the quencher. The temperature was 
controlled throughout the experiment and no tempera-
ture fluctuations were observed. The cuvettes were cov-
ered during all experiments to prevent evaporation.

Theoretical calculations
For the sake of this theoretical study, 4-amino-1,8-naph-
thalimide was used, as it is the major ingredient in the 
commercial AC dye sample. All species in this work were 
first optimized using the B97D3 functional, [23, 24] and 
the 6–31 + g(d,p) basis set. The B97D3 functional devel-
oped by Grimme contains the necessary dispersion 
parameters required for the study. The level of theory 
used in this work has demonstrated excellent perfor-
mance for similar systems [25–28]. The optimization 
was done using implicit solvation with ethyl acetate by 
including the scrf = (solvent = ethylethanoate) keyword 
in Gaussain. Frequency calculations were requested after 

each optimization to ensure the absence of any imaginary 
frequencies. Restricted Hartree–Fock were considered 
for closed-shell species, while unrestricted calculations 
were requested for the open shell systems, such as that 
of Cu2+ ion. The TDDFT calculations were done under 
the same level of theory of the DFT calculations. The 
DFT, and TDDFT calculations were done using Gauss-
ian 16 Rev C.01 [29] and viewed using Gaussview [30]. 
The calculations of the quantum theory of atoms in mol-
ecules (QTAIM) were done starting from the optimized 
structures at B97-D/DZP level, and using ethyl acetate as 
a solvent. Scalar relativistic effects were treated with the 
ZORA approach [31, 32], and the frozen core approxima-
tion was set to none. All geometry optimizations were 
completed with an energy cut-off of 0.0005 Ha, and a 
gradient convergence of 0.005 Ha/Å. The QTAIM calcu-
lations were done using the ADF engine in Amsterdam 
Modeling Suite (AMS) 2022 [33–35]. Further details on 
the calculations used in this work were reported in previ-
ous publications [36–41].

Results and discussion
Calibration and method validation
Fluorescence spectrum of the water/ethyl acetate blank 
solution was recorded to ensure there were no interfer-
ences. A similar spectrum was also recorded for the Cu2+ 
solution, as shown in Fig. 1. As illustrated, the only peaks 
shown in the figure are the excitation peak at 280 nm and 
its duplicate peak at 560 nm. As a result, neither solution 
exhibits fluorescence in the 200–800 nm range.

The fluorescence emission spectra of the AC dye are 
shown in Fig. 2a. The spectra showed a maximum inten-
sity centered at 500  nm in accordance with the green 
color of the dye. As shown in the figure, the intensity 
increased as the dye concentration increased from 0.0002 
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Fig. 1  Room-temperature emission spectra for the water/ethyl 
acetate blank solution (black line), and 0.001 mol/L Cu2+ solution (red 
line). Excitation wavelength = 280 nm
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to 0.0100  mol/L. A calibration curve was then con-
structed (Fig. 2b) and found to follow the polynomial y = 
−1.35 × 109x2 + 4.41 × 107x + 7.45 × 103. The model was 
then used to determine the AC concentrations through-
out this work.

The spectrum of the blank solution was used to find 
the method detection limit (MDL), which is defined as 
the lowest concentration of analyte that can be meas-
ured with confidence [42–44]. MDL can be considered as 
three times the signal to noise ratio (3 × S/N) of the spec-
trum. The standard deviation of different measurements 
of the blank solution can be used to estimate the S/N 
value [44]. The MDL in terms of concentration units can 
then be determined from the slope and intercept of the 
calibration curve. Consequently, the MDL in this work is 
estimated to be 1.7 × 10–6  mol/L. The method quantita-
tion limit (MQL), on the other hand, can be defined as 
the lowest concentration of an analyte that can be quan-
tified using a given analytical procedure [42–44]. MQL 
can be calculated as three times the MDL, which equals 
be 5.1 × 10–6  mol/L. the sensitivity of the method was 
found from the slope of the linear fitting of the calibra-
tion curve, and it is equal to 3.8 × 107 L/mol.

The fluorescence quenching of the AC dye by copper (II) 
ions
The quenching of the AC dye was studied by adding dif-
ferent amounts of Cu2+ ions to the mixture while keep-
ing a constant concentration of AC. Figure 3a shows the 
emission spectra of AC in the presence of the quencher. 
Clearly, as [Q] increased, the intensity of the emission at 
500 nm decreased monotonically. Figure 3b depicts this 

decrease as a function of [Q]. The plot reaches a plateau 
with high concentrations of Cu2+ ions, indicating that the 
dye has been almost completely quenched.

In order to comprehend the mechanism of AC quench-
ing by Cu2+ ions, the quenching data were first fitted to 
the Stern–Volmer (S-V) model given by the relationship 
[14]:

where F0 and F are the fluorescence intensities in the 
absence and presence of quencher. Q is the quencher’s 
concentration, and KD is the S-V quenching constant. If 
the quenching is known to be dynamic, the S-V constant 
will be represented by KD. In the case of static quenching, 
however, the constant will be denoted as KS. Figure  4a 
shows the S-V plot for the data obtained in this study. 
The figure shows a negative deviation (curvature towards 
the x-axis) from the expected linear behavior, indicating 
that the mechanism is more complicated. The data was 
then fitted to the mixed static and dymanic model given 
by [14]:

where a plot of  
(

F0
F − 1

)

/Q vs. [Q] should give a straight 
line with slope = KDKS, and an intercept of = KD + KS.. Fit-
ting the data (not shown) according to Eq.  2 has failed 
and therefore rejected. Thus, we attempted the sphere of 
action model [14]. Such a model suggests that the fluoro-
phore and quencher don’t form a ground-state complex 
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Fig. 2  a Room-temperature emission spectra for AC with different concentrations in the range of 0.0002–0.0100 mol/L, b calibration curve for AC 
for the same concentration range at 25 °C. Excitation wavelength = 280 nm
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due to weak interaction. Instead, the quencher is posi-
tioned next to the fluorophore at the moment of excita-
tion [14]. The sphere of action model is given by the 
equation [14]:

where V the volume of the complex sphere, and N is 
Avogadro’s number. The fitting result is shown in Fig. 4b. 
Despite the fact that the fitting is successful, with an 
adjusted R2 value of 0.9781, it is unacceptable due to the 
negative exponent. This result is rejected because no 
meaningful sphere volume can be obtained.

The failure of the above models suggests that the 
quenching of AC by Cu2+ ions may follow a more com-
plicated mechanism. To explain such quenching behav-
ior, a modified S-V model was previously proposed 
[14], which assumes that fluorophores are divided into 
two populations with different access to the quencher. 
In this model, the total fluorescence of the fluorophore 
is given by [14]:

where F0a and F0b are the accessible and inaccessible (bur-
ied) populations. The model suggests that the difference 
between F0 and the F (i.e., ΔF) is related to the quencher 
concentration [Q] by the following equation: [14]

(3)
F0

F
= 1+ KD[Q]e[Q]VN/1000

(4)F0 = F0a + F0b

where fa is the fraction of the initial fluorescence that 
is accessible to the quencher. Therefore, a plot of F0/ΔF 
vs. 1/[Q] should give a straight line with a slope = 1/faKa 
and an intercept = 1/fa. Such plot is shown in Fig. 4c. The 
adjusted R2 value for the linear fitting is 0.9886, indicating 
a successful fitting. The value of fa and Ka were found to 
equal to 0.9342 and 4329 L/mol, respectively. The near-
unity value of fa suggests that most of AC population was 
indeed accessible to the quencher over the course of their 
interaction.

Effect of temperature on the quenching
We demonstrated that the quenching of AC by Cu2+ ions 
follow a modified S-V model. The model, however, does 
not specify whether the quenching was dynamic or static. 
To distinguish between the two, we performed quench-
ing experiments at different temperatures in the range of 
10–55 °C. As shown in Fig. 5a, as the solution tempera-
ture increased, the emission spectra of AC in the pres-
ence of Cu2+ ions decreased monotonically. This is also 
reflected in the relationship between the AC intensity 
(λmax = 500 nm) and temperature, as illustrated in Fig. 5b. 
This is typical dynamic quenching behavior, in which 
higher temperatures cause faster diffusion, resulting in 
a higher rate of collisions with naphthalimide molecules 
and higher quenching rates [12, 14]. In the next section, 
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Fig. 3  a Emission spectra of AC at 280 nm after being quenched by different concentrations of Cu2+ ions in the range of 0.0001–0.0008 mol/L. b 
The emission intensity of AC at 500 nm as a function of [Q]. Temp = 25 °C, [AC] = 0.001 mol/L. Error bars represent the standard deviation of three 
replicates. The peak at λ = 560 nm is the duplicate peak of the excitation peak at λ = 280 nm
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we will further explain the dynamic quenching of the AC 
dye based on quantum theoretical calculations.

Quenching mechanism based on theoretical calculations
In the previous section, we showed that Cu2+ ions are 
effective quenchers for the AC dye. The quenching was 
shown to be dynamic based on temperature measure-
ments. To further understand the quenching mechanism, 
we first optimized the structure of 4-amino-1,8-naphthal-
imide with and without the Cu2+ ion, as shown in Fig. 6a 
to d. Since the experiments were done using ethyl acetate 
as a solvent, the optimization was done in the presence of 
the solvent for more reliability. We tested different geom-
etries for the possible interaction of Cu2+ with dye, as 

illustrated in in Fig. 6b to d. The energy values, in Hartree 
units, are shown below each figure. In fact, the energy 
differences between the three geometries is small and lie 
in the range of 2–10 kJ/mol. The most stable geometry is 
the one in Fig. 6b, where the Cu2+ ion is positioned above 
the aromatic system. In Fig. 6c, which is only 2.0 kJ/mol 
higher than its predecessor, the Cu2+ is positioned next 
to the election-rich amine group of the aromatic struc-
ture. The N-Cu distance was found to be 2.0 Å, which lies 
within the range of nitrogen bonded to 3rd raw transition 
elements. This strong interaction between the naphthal-
imide and the metal ion has affected the emission spec-
trum of the dye. Using TDDFT calculations, we obtained 
the absorption spectra of the two systems as shown in 
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Fig. 7. The black spectrum in the figure represents naph-
thalimide and it shows a maximum absorbance around 
500  nm in accordance with the experiment. After Cu2+ 
was added to the geometry, the absorption spectrum was 

almost vanished in the 200–400 nm region, as seen from 
Fig.  7 (red line). The interaction between the Cu2+ ion 
and the dye moiety has resulted in the quenching of the 
two peaks in the UV region. It is important to note that 
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the excitation occurs in this particular region. Conse-
quently, the presence of Cu2+ has influenced the excited 
state configuration of the dye, thereby hindering its exci-
tation within the 200–400 nm range.

The bond between the Cu atom and the N atom in 
naphthalimide raises a question about its nature. Hence, 
we examined the structure using QTAIM calculations. 
The QTAIM theory, also known as Bader’s theory, uses 
the topology of the electron density (ρ) and its Laplacian 
(∇2ρ) to locate the critical points (CP) in the molecular 
structures [45, 46]. In addition to ρ and ∇2ρ, QTAIM 
computes other properties such as the local potential 
energy density (V), local gradient kinetic energy density 
(G), and total energy density (H) at each CP. One impor-
tant type of CPs is those located between non-bonded 
atoms and are referred to as bond critical points (BCP). 
The QTAIM properties can then be used to reveal the 
nature of the BCP [45–47]. The BCP can be classified as 
either a shared interaction (e.g., covalent and polar) or a 
closed-shell interaction (e.g., hydrogen bond, ionic, Van 
der Waals). Figure  8 shows the QTAIM topology of the 
naphthalimide/Cu2+ structure as obtained at B97-D/DZP 
level of theory. The QTAIM parameters of the nitrogen-
copper BCP are listed in Table 1. The electron density of 
the Cu–N BCP is found to be 0.092 Hartree, which is a 
typical value for intermolecular interactions (covalent 
bonds bear higher values). The Laplacian is relatively 
high and positive (0.397), indicating a VDV interaction, 
but it still cannot be classified as ionic bond [45, 48]. 
Another useful criterion is the ratio between the poten-
tial (V) and the kinetic energy (G) densities. If the ratio 
is smaller than 1, the bond is classified as pure closed 
shell (i.e., ionic, H-bonding, VDV) [48, 49]. Otherwise, a 
ratio higher than unity refers to a regular closed shell (i.e. 

covalent). In our case, the V/G is close to unity (1.2), sup-
porting the fact that the N-Cu bond is electrostatic (Van 
der Waals). In addition, one can obtain the bond energy 
as it is equal half the value of Vb [50]. In our case it is esti-
mated at 185.1 kJ/mol. These facts suggest a strong polar 
interaction between the Cu2+ ion and the naphthalimide 
moiety, which does not qualify to be covalent or ionic. 
This strong interaction explains why the fluorescence 
emission spectrum of the fluorophore decreases when it 
interacts with the copper (II) quencher. In the previous 
section, we observed that increasing the temperature 
resulted in higher quenching. Temperature is unlikely to 
weaken the strong interaction reflected by a bond energy 
of 185.1  kJ/mol. Particularly when the temperature dif-
ference in our experiments is only 45 °C. As a result, we 
believe that the quenching is controlled by diffusion, in 
agreement with the dynamic model. As temperature 
rises, the quencher diffuses faster in the solution, allow-
ing Cu2+ ions to be more accessible.

Procedure to quantify A/C dye or Cu2+ ions using 
fluorescence spectroscopy
For the future determination of A/C dye’s concentration, 
one can start by constructing a calibration curve simi-
lar to the one in Fig.  2. An analyte solution containing 
unknown concentration of A/C dye can then be analyzed 
under the same conditions and its concentration can be 
determined from the fitting model. As for determining 
the concentration of Cu2+ ions. The procedure is as fol-
lows: using a fixed amount of the fluorophore (F0), and 
different standard solutions of Cu2+, a quenching curve 
can be constructed as shown in Fig. 4a. The fluorescence 
intensity of an analyte containing unknown concen-
tration of Cu2+ can be measured in the presence of the 
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(black) and with Cu2+ ion (red) as obtained by TDDFT calculations at 
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Fig. 8  Schematic representation the electron density of 
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same fixed amount of the fluorophore (F0). The intensity 
(F) can then be known from the fitting of the calibration 
curve (Fig.  2). Finally, using the modified Stern–Volmer 
model (Eq. 5 and Fig. 4c), the [Cu2+] in the analyte sam-
ple, which is equal to Q, can be determined.

Conclusions
The work investigated the use of Cu2+ ions as quench-
ers in naphthalimide based dyes. The work succeeded 
in developing a rapid, sensitive and accurate technique 
to quantify both A/C leak detection dye and Cu2+ ions, 
when they are used as a quencher. The results were fitted 
to a modified SV model and temperature experiments 
further exhibited the dynamic quenching, as the fluo-
rescence emission spectra was observed to decrease as 
temperature increased. DFT calculations were conducted 
to develop a more comprehensive understanding on the 
mechanism of quenching. As per the QTAIM theory, a 
strongly polar interaction was found between the Cu2+ 
ion and naphthalimide. This was significant as it led to 
the conclusion that as per the dynamic model, quenching 
was controlled strictly by diffusion.

The findings of this work are significant as an efficient 
analytical system for the quantification of A/C leak detec-
tion dyes has been demonstrated. Such dyes may be pre-
sent in water streams, and consequently be introduced 
into several food chains. As such, their effect on ecosys-
tems is yet to be declared. Thus, the results of this work 
may be used to develop a rapid detection method for the 
presence of any such contaminants. The commercial A/C 
leak dye used in this work could also be used in further 
application as a selective chemosensor for the presence 
of Cu2+ ions and serve as a rapid detection method for 
copper (II) ions.
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