
Li et al. BMC Chemistry           (2023) 17:54  
https://doi.org/10.1186/s13065-023-00977-4

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Chemistry

Adsorption of Cd (II) by a novel living 
and non-living Cupriavidus necator GX_5: 
optimization, equilibrium and kinetic studies
Xingjie Li1,2,3*, Qiusheng Xiao1,2,3, Qin Shao1, Xiaopeng Li1,2, Jiejie Kong1, Liyan Liu1, Zhigang Zhao1,2 and 
Rungen Li1,3 

Abstract 

Biosorbents have been extensively studied for heavy metal adsorption due to their advantages of low cost and 
high efficiency. In the study, the living and non-living biomass of Cupriavidus necator GX_5 previously isolated were 
evaluated for their adsorption capacity and/or removal efficiency for Cd (II) through batch experiments, SEM and 
FT-IR investigations. The maximum removal efficiency rates for the live and dead biomass were 60.51% and 78.53%, 
respectively, at an optimum pH of 6, a dosage of 1 g/L and an initial Cd (II) concentration of 5 mg/L. The pseudo-
second-order kinetic model was more suitable for fitting the experimental data, indicating that the rate-limiting step 
might be chemisorption. The Freundlich isotherm model fit better than the Langmuir isotherm model, implying that 
the adsorption process of both biosorbents was heterogeneous. FT-IR observation reflected that various functional 
groups were involved in Cd (II) adsorption: –OH, –NH, C=O, C–O and C–C groups for the living biomass and –OH, 
–NH, C–H, C = O, C–N and N–H groups for the dead biomass. Our results imply that non-living biosorbents have a 
higher capacity and stronger strength for absorbing Cd (II) than living biomass. Therefore, we suggest that dead GX_5 
is a promising adsorbent and can be used in Cd (II)-contaminated environments.
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Introduction
Heavy metals refer to a series of metals and metalloids 
with atomic numbers greater than 20 and elemental den-
sities greater than 5 g/cm3 [1]; heavy metals may produce 
devastating consequences if released into the environ-
ment. Cd is one of the most hazardous heavy metals due 
to its high toxicity and non-degradation [2, 3]. It has 

adverse effects on plant growth, animal development 
and microbial metabolism. Furthermore, Cd accumula-
tion poses health risks in humans through the food chain 
[4], leading to skeletal dysfunctions, cancer and kidney or 
liver damage [5–7]. Regarding this issue, effective meas-
ures for Cd pollution disposal in soil and water must be 
employed to protect the environment; however, this task 
is challenging.

Physicochemical approaches have been extensively 
studied and widely used in heavy metal contaminated 
sites due to their advantages of short remediation time 
and simple operation, including ion exchange, chemical 
precipitation, reverse osmosis and so on [8]. However, 
these applications are mostly ineffective and expensive, 
especially those that involve low metal concentrations 
[9]. In contrast, the use of microbiology biomass as a 

*Correspondence:
Xingjie Li
lixingjie2019@163.com
1 College of Life Science and Environmental Resources, Yichun University, 
Yichun 336000, China
2 Engineering Technology Research Center of Jiangxi Universities 
and Colleges for Selenium Agriculture, Yichun 336000, China
3 Key Laboratory of Crop Growth and Development Regulation of Jiangxi 
Province, Yichun 336000, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-023-00977-4&domain=pdf


Page 2 of 14Li et al. BMC Chemistry           (2023) 17:54 

biosorption material for heavy metal remediation is an 
alternative method due to its low cost, high adsorption 
capacity and environmental friendliness [10–12].

Various types of microbiology-based biosorption mate-
rials, such as bacteria, fungi and algae, have been evalu-
ated for their capacities to remove heavy metals [13–15]. 
Meanwhile, living and non-living bacterial cells have been 
extensively comparatively analysed for metal adsorption. 
Priya et  al. [16] demonstrated that the biosorption of 
living biomass is higher than that of dead biomass. Zhu 
et  al. [17] showed the same tendency, with adsorption 
capacities of 79.65 and 56.51 mg/g for living and non-
living cells, respectively. In contrast, some researchers 
have indicated that non-living cells exhibit higher capaci-
ties than living cells [18, 19]. The biosorption procedure 
is a complex process that involves surface adsorption, ion 
exchange, chemisorption, complexation and so on [20]. 
In addition, it can be affected by adsorption factors, such 
as biomass amount, heavy metal concentrations, pH val-
ues, contact time and so on.

Although numerous bacterial cells have been stud-
ied for Cd (II) adsorption in the environment, develop-
ing a new high-capacity microbial biosorbent remains 
meaningful and challenging. Cupriavidus necator GX_5 
(CP002878) is a Cd-resistant and Gram-negative bac-
terium formerly isolated from the rhizosphere soil of a 
local dominant plant near a Pb–Zn ore and considered 
as a plant-growth promoting rhizobacterium, which can 
assist hyperaccumulators to remediate Cd contaminated 
soil [21]. However, it is also considered a potential micro-
bial biosorbent for Cd-polluted soil or water [22, 23]. The 
colony morphology is displayed in Additional file 1: Fig. 
S1. To our knowledge, equilibrium and kinetic studies of 
living and non-living C. necator GX_5 for Cd biosorption 
have not been investigated. Therefore, the present work 
aims to (1) analyse the biosorption potential of living and 
non-living biomass of C. necator GX_5 as a biosorbent, 
(2) optimise the parameters involved in Cd removal effi-
ciency, (3) evaluate kinetic and equilibrium models and 
(4) characterise both living and non-living biosorbent 
surfaces using scanning electron microscopy (SEM) and 
Fourier transform infrared spectroscopy (FT-IR).

Materials and methods
Bacterial cultivation and preparation of biosorbents
The strain of C. necator GX_5 was incubated in a Luri–
Bertani broth medium at a pH of 7.0 ± 0.2 on a rotary 
shaker at 180 rpm and 28 °C until the logarithmic growth 
period, reaching an  OD600 of approximately 1.0. For the 
living biosorbents, the biomass was collected by cen-
trifuging at 10,000 rpm for 10 min. It was then washed 
three times with sterile distilled water, pre-cooled at 
− 80 ℃ and lyophilised 24 h with a Labconco freeze drier 

[24]. Thereafter, the dried pellet was ground into powder 
before use. For the non-living cells, the living bacterial 
suspension was inactivated using a high-pressure steam 
sterilization [25]. Dead biosorbent was prepared similarly 
to the abovementioned methods for the live ones. Mean-
while, the biosorbent dosages (concentrations) were cal-
culated by grams per litre.

Cd solutions
A 1000 mg/L stock Cd solution was made by dissolv-
ing  CdCl2·2.5H2O in double distilled water. The solution 
was appropriately diluted to the specified concentrations 
according to the adsorption experiment and sterilised 
before use. The pH values were also adjusted by adding 1 
mol/L of HCl or NaOH. All reagents used in the experi-
ments were analytical grade and purchased from Aladdin 
Biochemical Technology Co., Ltd., Shanghai, China. The 
purity of  CdCl2·2.5H2O and NaOH were 99% and 98%, 
respectively. The mass fraction of HCl was 36–38%, cor-
responding to 12 mol/L.

Batch adsorption experiments
The adsorption capacity and/or removal efficiency of 
both the living and non-living biosorbents of C. necator 
GX_5 for Cd (II) were performed in batch experiments. 
They were conducted in 50 mL Erlenmeyer flasks con-
taining 20 mL of Cd (II) working solution at 28 ℃ and 
a shaking speed of 180 rpm on a rotary shaker. The fol-
lowing influencing factors were evaluated: pH (3–7), 
biosorbent dosage (0.2–4 g/L), initial Cd (II) concentra-
tion (5–200 mg/L) and contact time (5–360 min). Other 
factors were kept constant (pH of 6, dosage of 1 g/L, ini-
tial Cd (II) concentration of 50 mg/L and contact time of 
24 h). After adsorption, the supernatant was obtained by 
centrifuging the mixture at 10,000 rpm for 10 min. It was 
filtered through an inorganic filter membrane (0.22 μm), 
and Cd (II) concentration in the supernatant was assayed 
by graphite furnace atomic absorption spectroscopy (GF-
AAS) AA800 (Perkin Elmer, USA). It was equipped with 
a graphite furnace, Zeeman correction, a hollow cathode 
lamp, and an air-acetylene burner [26]. The working cur-
rent and wavelength were 4 mA and 228.8 nm, respec-
tively. The instrument was controlled by a computer with 
WinLab32 software.

The adsorption capacity (qe) of the biosorbents was cal-
culated using Eq. (1) [27]:

where qe (mg/g) defines the adsorption capacity of the 
biosorbent per unit; c0 (mg/L) refers to the initial Cd (II) 
concentration; ce (mg/L) represents Cd (II) concentra-
tion at equilibrium or a certain time; V (L) denotes the 

(1)qe =
(C0 − Ce)× V

m
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volume of the working solution; and m (mg) represents 
the dry weight of living or non-living biomass.

The removal efficiency (%removal) was listed in Eq. (2) 
[27]:

where co (mg/L) and ce (mg/L) indicate the same mean-
ing as in Eq. (1). All experiments were tested in three 
repetitions.

Biosorption kinetic studies
In the biosorption kinetic studies, the samples were col-
lected, and the Cd (II) concentration in the supernatant 
was assayed at different time intervals (5, 10, 20, 30, 
60, 120, 240 and 360 min). Other parameters remained 
unchanged (pH of 6, dosage of 1 g/L and initial Cd (II) 
concentration of 50 mg/L). The experimental data were 
fitted using pseudo-first-order and pseudo-second-order 
kinetic models.

The linear pseudo-first-order kinetic model was pro-
vided in Eq. (3):

where qe (mg/g) and qt (mg/g) signify the adsorption 
capacity of the biosorbents at equilibrium and any given 
time, respectively; and k1 is rate constant. The value of k1 
was obtained from the plot of ln (qe − qt) versus t [28].

The linear pseudo-second-order kinetic model was 
expressed as:

where qe (mg/g) and qt (mg/g) mean the same as in Eq. 
(3); and k2 implies the pseudo-second-order rate con-
stant, which was determined by the plot of t

qt
 versus t 

[29].

Biosorption isotherm studies
The widely used biosorption isotherms, namely, Lang-
muir and Freundlich isotherm models, were adopted to 
study the adsorption processes of living and non-living 
C. necator GX_5 biosorbents for Cd (II) at a pH of 6.0, a 
dosage of 1 g/L and varying initial Cd (II) concentrations 
(5, 10, 20, 50, 100 and 200 mg/L). The experiment was 
also conducted in 50 mL sterile flasks, each with 20 mL 
of working solution. After adsorption for 6 h, the Cd (II) 
concentration in the supernatant was measured based on 
the previously mentioned method.

The linear Langmuir isotherm model was represented 
as:

(2)%removal =
C0 − Ce

C0
× 1 00

(3)ln (qe − qt) = lnqe − k1t

(4)
t

qt
=

1

q2e k2
+

t

qe

where Ce (mg/L) represents the equilibrium metal con-
centration; qe (mg/g) indicates the adsorption amount 
per unit biosorbent; qmax (mg/g) denotes the maximum 
theoretical adsorption capacity; and KL is the Langmuir 
isotherm constant. The KL and qmax values were calcu-
lated from the slope and intercept of the linear plot of 
1/qe versus 1/Ce [30]. To determine the favourability of 
the adsorption process, we calculated the dimensionless 
separation factor RL using Eq. (6) [31]:

where RL > 1 indicates the adsorption process unfa-
vourable; RL =1 indicates linear; 0 < RL < 1 indicates 
favourable; and RL = 0 indicates irreversible [32].

The linear Freundlich isotherm model was written as:

where Ce (mg/L) and qe (mg/g) have the same meaning 
as in Eq. (5); KF and n are the Freundlich isotherm con-
stants, which were determined by the slope and intercept 
of the linear plot of logqe versus logCe [33].

SEM and FT‑IR characterisation of the biosorbents
The surface morphological characteristic changes of both 
living and non-living biosorbents loaded with and with-
out 100 mg/L of Cd (II) were determined by SEM (Sirion 
200, USA). The strain suspension was prepared, washed 
and fixed with 2.5% glutaraldehyde at 4 ℃ overnight. The 
suspension was then smeared on a coverslip of appropri-
ate size, air dried, dehydrated with ethanol of gradient 
concentrations (30%, 50%, 70%, 90% and 100%) and sput-
ter coated with gold before observation [34].

The main functional groups before and after 100 mg/L 
of Cd (II) adsorption were analysed by a (FT-IR, Nicolet 
6700, USA). The dried biosorbent was mixed with KBr 
(1:100), thoroughly ground in an agate mortar, pressed to 
transparent discs and immediately evaluated in the range 
of 4000–400  cm−1 at a resolution of 4  cm−1 [35].

Statistical analysis
Data analyses were conducted using SAS 8.1. All plots 
were constructed using Sigmaplot 12.5. The data were 
evaluated using ANOVA and the least significant differ-
ence test, with a significance set at p < 0.05.

Results and discussion
Effect of adsorption parameters on biosorption
The effects of solution pH in the range of 3 to 7 on Cd (II) 
biosorption by the living and non-living biosorbents were 

(5)
Ce

qe
=

Ce

qmax
+

1

KLqmax

(6)RL = 1/(1 + KLC0)

(7)log qe = logKF +
1

n
logCe
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studied at an initial Cd (II) concentration of 50 mg/L, 
dosage of 1 g/L and reaction time of 24 h. As shown in 
Fig. 1; Table 1, when the pH was increased from 3 to 6, 
the biosorption capacity of both biosorbents significantly 
increased and then significantly decreased for living cells 
at 7. Therefore, the optimal pH was considered as 6. This 
result may be due to the decreased competition between 
Cd (II) and hydroxonium ions in the solution [36]. These 
results agree with many other Cd (II) adsorption stud-
ies using bacterial adsorbents, which have considered 6 
as the optimum pH [37, 38]. However, some researches 
mentioned that the maximum adsorption of Cd (II) 
occurs at a pH of 5 [39, 40]. In general, a pH in the range 
of 3 to 6 is favourable for metal adsorption by microbial 
adsorbents [41]. Besides, the adsorption capacity of the 
dead biomass was significantly higher than that of the live 
biomass (Table 1).

Considering that hydroxyl ions react with Cd (II) and 
form hydroxide sediment if the pH is higher than 7, only 
pH values from 3 to 7 were utilised in the study. Mean-
while, in other experiments, the maximum adsorption 
capacity or highest removal efficiency of the biosorbents 
was obtained when the pH of the solution was fixed at 6. 
Solution pH is a vital factor affecting biosorption because 
it influences the surface charges and functional groups on 
the active sites of the biosorbents [42].

Initial metal concentration and biosorbent dosage were 
the other two major factors influencing the adsorption 

capacity and removal efficiency of the biosorbents. As 
shown in Fig. 2, Additional file 1: Tables S1, S2, when the 
initial Cd (II) concentration was increased from 5 mg/L 
to 200 mg/L, the adsorption capacity of the living and 
non-living biomass increased from 3.03 mg/g to 17.17 
mg/g and from 3.93 mg/g to 17.55 mg/g, respectively. 
However, for the adsorption capacity of the live biomass, 
there existed no difference between initial metal concen-
tration of 5 and 10 mg/L, and between 10 and 20 mg/L, 
while there was a significant difference between each 
other when the concentration was 50, 100 and 200 mg/L. 
For the dead biomass, the adsorption capacity was signif-
icantly different between each two concentrations from 
5 to 200 mg/L, except between 10 and 20 mg/L (Addi-
tional file 1: Table S1). The biosorption capacity of dead 
cells seemed higher than that of the living cells (Fig. 2), 

Fig. 1 Effect of pH on the adsorption capacity of Cupriavidus necator GX_5

Table 1 The effect of pH on the adsorption capacity of 
Cupriavidus necator GX_5

Note: Values are the means of three replications ± standard deviation;

Means with the same superscript letter are not significantly different (p < 0.05)

Biosorbents Adsorption capacity (mg/g)

pH

3.0 4.0 5.0 6.0 7.0

Live 2.32f±0.21 4.65e±0.37 6.49c±0.36 7.46b±0.48 6.62c±0.41

Dead 5.66d±0.32 7.81b±0.31 9.10a±0.44 9.63a±0.47 9.12a±0.38
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but there was no significant difference (Additional file 1: 
Table S1).

Moreover, the removal efficiency of living and non-
living biomass decreased from 60.51 to 8.58% and from 
78.53 to 8.77%, respectively, and existed significant dif-
ference between each two Cd (II) concentration. Fur-
thermore, the removal efficiency of the dead biosorbent 
was significantly higher than that of the live biosorbent 
when metal concentration was 5, 10, 20 and 50 mg/L, 
but with no difference at 100 and 200 mg/L, as shown in 
Additional file  1: Table  S2. At a low concentration, suf-
ficient binding sites were observed on the biosorbent sur-
face, assuring that a thorough combination of Cd (II) and 
the biomass occurred, leading to high removal efficiency 
[43]. However, the ratio of metal numbers versus the 
available sites increases with metal concentration; there-
fore, the binding sites can be completely utilised, which 
results in improved adsorption capability [44]. Besides, 
the slope of the removal efficiency curve for both living 
and non-living biosorbents of C. necator GX_5 decreased 
at 50 mg/L of Cd (II). Therefore, this concentration was 
used in other batch experiments.

The effect of the dosage of living and non-living biosor-
bents on Cd (II) adsorption was investigated at an initial 
metal concentration of 50 mg/L, a pH of 6 and a reac-
tion time of 24 h. As demonstrated in Fig.  3 and Addi-
tional file 1: Table S3, a decrease in adsorption capacity 
from 15.97 mg/g to 4.39 mg/g for the living biomass and 
from 21.47 mg/g to 5.44 mg/g for the non-living biomass 

occurred with an increased dosage from 0.2 g/L to 4 g/L. 
The adsorption capacity of the dead cells for Cd (II) was 
significantly different between each two dosages in the 
range of 0.2 to 4 g/L. But it was more complex for the liv-
ing cells. And the dead pellet had a significantly higher 
adsorption capacity than live pellet at lower dosage of 1.2 
to 1 g/L (Additional file 1: Table S3).

Conversely, the removal efficiency increased from 6.39 
to 35.15% and from 8.59 to 43.49% for the living and non-
living biosorbents, respectively. Unlikely to the presen-
tation of the adsorption capacity, the removal efficiency 
between any two dosages of both live and dead biosorb-
ents was significantly different as demonstrated in Addi-
tional file 1: Table S4. Similarly, the removal efficiency of 
Cd (II) by the dead pellet was significantly higher than 
live pellet. The increase in biosorbent dosage may aggre-
gate or overlap, which means reducing the available bind-
ing sites, leading to decreased adsorption capacity [45]. 
The active sites on the cell surface cannot be fully applied, 
which has also decreased the adsorption capacity of the 
biosorbents [46]. However, the total site quantities in 
higher dosages were much greater than those in lower 
biomass concentrations, which can adsorb more metal 
ions, thus increasing removal efficiency [47]. Many other 
biosorbents for metal adsorption have displayed the same 
tendency [48–50]. Similarly, the slope of the biosorption 
capacity curve for both biosorbents decreased at 1 g/L. 
Therefore, the optimum dosage was 1 g/L, which was 
exploited in the experiments.

Fig. 2 Effect of initial Cd (II) concentration on theadsorption capacity and removal efficiency of Cupriavidus necator GX_5
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Contact time was another important factor affect-
ing the adsorption process. It determines the equilib-
rium time. The effects of contact time varying from 5 to 
360 min on the biosorption capacity of the two biosor-
bents for Cd (II) were analysed, and the results are 

demonstrated in Fig. 4; Table 2. The adsorption capac-
ity increased sharply in the first 30 min and reached 
adsorption equilibrium within 60 min. The rapid 
change in adsorption capacity in 30 min may be attrib-
uted to the many free available sites on the surface of 

Fig. 3 Effect of dosage on the adsorption capacity and removal efficiency of Cupriavidus necator GX_5

Fig. 4 Effect of contact time on the adsorption capacity of Cupriavidus necator GX_5
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the biosorbents [51]. In the adsorption process, the site 
numbers become finite, and the presence of competi-
tion of metal ions decreases the adsorption rate until 
equilibrium [52].

The rate of adsorption capacity of the living (6.35 mg/g) 
and non-living biomass (7.26 mg/g) at 30 min occupied 
86.00% and 86.84% and 7.27 mg/g and 8.36 mg/g towards 
the equilibrium adsorption capacity, respectively. Other 
researchers have reported similar results [53, 54]. Just as 
discussing the effects of pH, dosage and initial metal con-
centration on the adsorption capacity, the dead biomass 
was significantly higher than live biomass at any time 
point of the same sampling time, as displayed in Table 2.

Biosorption kinetic evaluation
To elucidate the Cd (II) adsorption process using the liv-
ing and non-living C. necator GX_5 biomass, we tested 
the experimental data using the pseudo-first-order and 
pseudo-second-order kinetic models, which have been 
extensively used in metal adsorption experiments by 
biosorbents [55–58]. In the linear plot of ln (qe − qt) 
versus t, with the reaction time proceeding, qt is infi-
nitely close to qe . Therefore, this equation is applicable 
only to the process before adsorption equilibrium [59]. 
Thus, only the experimental data before 60 min were 
employed to fit the parameters in the equation. Figure 5; 
Table 3 show that the  R2 values of the pseudo-first-order 
and pseudo-second-order models were all above 0.99 for 

Table 2 Effect of the contact time on the adsorption capacity of Cupriavidus necator GX_5

Note: Values are the means of three replications ± standard deviation;

Means with the same superscript letter are not significantly different (p < 0.05)

Biosorbents Adsorption capacity (mg/g)

Time (min)

5 10 20 30 60 120 240 360

Live 2.40g±0.16 3.59f±0.23 5.34e±0.11 6.25d±0.36 7.14bc±0.40 7.25bc±0.37 7.32b±0.45 7.38b±0.21

Dead 3.15f±0.23 4.83e±0.48 6.64cd±0.57 7.26bc±0.66 8.21a±0.35 8.34a±0.35 8.41a±0.61 8.49a±0.39

Fig. 5 Pseudo-first-order (a) and pseudo-second-order (b) kinetic plots of the living (A) and non-living (B) biomass of Cupriavidus necator GX_5
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both biosorbents. However, the predicted qe was lower 
than the qmax of the experimental data in the pseudo-
first-order model, especially for the non-living biomass, 
at 6.76 mg/g in comparison to 8.36 mg/g.

Febrianto et  al. indicated that the adsorption pro-
cess cannot fit the pseudo-first-order model if a large 
discrepancy occurs between the predicted qe and the 
experimental qmax even if the plot had a high coefficient 
[60]. This result may be caused by the boundary layer 
or external resistance controlling at the beginning of 
the adsorption reaction, which was named as a time lag 
[61].

The predicted qe (8.65 mg/g) in the pseudo-second 
order was close to qmax (6.76 mg/g) (Table  3.), which 
indicated that the pseudo-second-order kinetic model 

was a better fit in describing the adsorption process. 
This tendency suggests that the rate-limiting step may 
be chemisorption, complexation, coordination and/or 
chelation [62, 63].

Biosorption isotherm evaluation
Two widely used isotherm models, the Langmuir and 
Freundlich isotherm models, were applied for the analy-
sis of the fit of data, which can determine the adsorption 
affinity and capacity of the biosorbents [64]. The Lang-
muir model is usually used for monolayer adsorption of 
specific homogenous sites, whereas the Freudlich model 
is highly suitable for heterogeneous adsorption types of 
different active sites [65].

Table 3 Adsorption kinetic parameters of Cd (II) by live and dead biomass of Cupriavidus necator GX_5

Strain type qmax(mg/g) Pseudo-first-order Pseudo-second-order

qe(mg/g) k1 R2 q(mg/g) k2 R2

Live 7.27 7.04 0.0657 0.9967 7.57 0.0168 0.9996

Dead 8.36 6.76 0.0630 0.9973 8.65 0.0185 0.9998

Fig. 6 Langmuir (a) and Freundlich (b) isotherm plots of the living (A) and non-living (B) biomass of Cupriavidus necator GX_5



Page 9 of 14Li et al. BMC Chemistry           (2023) 17:54  

The linear plots and model parameters are shown in 
Fig. 6; Table 4. We determined that the  R2 values in the 
Freundlich isotherm equation for Cd (II) adsorption 
by both living and non-living biosorbents were higher 
than those in the Langmuir model, indicating that the 
Freundlich isotherm model provided a better fit than 
the Langmuir isotherm model. This implied that the 
adsorption process of both biosorbents was heteroge-
neous and had multilayer adsorption.

The characteristics of the Freundlich equation are 
determined by the constants KF and n. KF is usually 
used to indicate the adsorption capacity of biosorbent 
to adsorbate; n means the adsorption strength, and the 
larger the n is, the stronger the reaction between the 
biosorbent and the adsorbate [66]. We discovered that 
the KF value (3.5197) of non-living cells was larger than 
that (2.1647) of living cells in the Freundlich model 
(Table 4), indicating that the dead biomass had a higher 

Cd (II) adsorption capacity than the living biomass, 
which is also shown in Figs. 1 and 4; Table 3. This phe-
nomenon agrees with experiments conducted by other 
investigators [67]. Meanwhile, the adsorption strength 
of the non-living biosorbent was stronger than that 
of the living biosorbent by comparing the n values of 
3.5932 against 2.7122 from Table 4.

SEM and FT-IR analysis
In our previous investigation, the minimal inhibitory 
concentration of C. necator GX_5 for Cd (II) was 6 mM 
[21]. Furthermore, the higher the metal concentration, 
the more evident the results would be to some extent; 
thus, 100 mg/L of Cd (II) was used in the SEM and FT-IR 
characterisation of the adsorption process.

The surface morphology characterisation of the living 
and non-living biosorbents of C. necator GX_5 before 
and after the adsorption of Cd (II) was studied using 

Table 4 Langmuir and Freundlich biosorption constants of Cd (II) by live and dead biomass of Cupriavidus necator GX_5

Strain type Langmuir isotherm Freundlich isotherm

KL qmax(mg/g) RL R2 n KF R2

Live 0.0292 18.59 0.1462 0.9055 2.7122 2.1647 0.9680

Dead 0.0441 18.08 0.1017 0.9339 3.5932 3.5197 0.9580

Fig. 7 SEM images of the living (A) and non-living (B) biomass of Cupriavidus necator GX_5 before (a) and after (b) adsorption
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SEM, and the results are shown in Fig. 7. The surfaces of 
the living and non-living cells were smooth and invagi-
nated before adsorption. In addition, the dead biomass 
seemed to clump. After loading with Cd (II), the invagi-
nated parts were filled with particles and plumped, and 
the surface was coated with sediments. This phenom-
enon may be caused by the interaction of Cd (II) with 
microbial extracellular polymeric substances [68].

The functional groups on the cell surface were an 
important factor for absorbing metal ions. Changes in 
adsorption peaks indicate that the functional groups on 
the cell surface may have participated in the metal com-
bination [69]. Therefore, the changes in the functional 
groups before and after adsorption with Cd (II) by the 
two types of biosorbents were surveyed using an FT-IR 
instrument. The infrared spectrum showed several dif-
ferent adsorption peaks, as displayed in Fig.  8. Before 

Fig. 8 FT-IR spectra of living (A) and non-living (B) biomass of Cupriavidus necator GX_5 before and after adsorption
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adsorption, the characteristic peaks of the living and 
non-living biomass were similar, except that a new peak 
at 2979.51  cm−1 appeared for the non-living biosorb-
ent, which was obviously very acute. Although the peaks 
were similar between the living and non-living biosorb-
ents, the action mode performed differently after Cd (II) 
adsorption, as demonstrated in Table  5. Xu et  al. [11] 
studied the characterisation of Cd (II) biosorption of the 
living and non-living biomass of Pseudomonas sp. 375, 
and their results are consistent with ours.

For the living biosorbent, the major spectrum bands 
shifted from 3307.31, 1741.17 and 1185.71  cm−1 before 
adsorption to 3367.98, 1728.50 and 1180.85  cm−1 after 
adsorption, representing the stretching vibrations of 
O–H and N–H of saccharides [70], stretching vibra-
tions of C = O of lipids, and stretching vibrations of C–O 
and C–C, respectively [71] (Fig. 8A; Table 5). Regarding 
the non-living biomass loaded with and without Cd(II), 
the main offsets were from 3415.13, 2979.51, 2934.62, 
1649.69 and 1544.36  cm−1 to 3305.50, 2982.40, 2931.04, 
1656.34 and 1536.76  cm−1, corresponding to the stretch-
ing vibrations of O–H and N–H [70], stretching vibra-
tions of C–H [72], stretching vibrations of asymmetric 
C–H [73], stretching vibrations of C = O (amide I) [74], 
and stretching vibrations of C–N and deformation 
vibrations of N–H (amide II) [75], respectively (Fig.  8B; 
Table 5). All the above indicated that –OH, –NH, C =O, 
C–O and C–C groups might be involved in Cd (II) 
adsorption for living biosorbents, and –OH, –NH, C–H, 
C = O, C–N and N–H groups were associated with non-
living biosorbents. Meanwhile, we determined that more 
functional groups participated in Cd (II) adsorption, 
which might partly explain why the adsorption capacity 
of non-living cells was higher than that of living cells.

Conclusions
In this study, the living and non-living biomass of C. 
necator GX_5, which is a previously isolated Cd-resistant 
strain, were evaluated for their adsorption capacity and/
or removal efficiency of Cd (II). The pH, initial metal con-
centration, dosage and contact time significantly affected 
the reaction process. The maximum removal efficiency 
rates for the living and non-living biomass were 60.51% 
and 78.53%, respectively, at an optimum pH of 6, a dosage 
of 1 g/L and an initial Cd (II) concentration of 5 mg/L. 
The pseudo-second-order kinetic model was a better fit 
in describing the adsorption process. The Freundlich 
isotherm model provided a better fit than the Langmuir 
model for both the living and non-living biosorbents. 
SEM analysis verified the Cd (II) absorption on the cell 
surface. FT-IR observation suggested that the functional 
groups of –OH, –NH, C =O, C–O and C–C of the living 
biomass and the –OH, –NH, C–H, C=O, C–N and N–H 
groups of the non-living biomass might be responsible 
for Cd (II) adsorption. This work implied that non-living 
biosorbents were superior to living biosorbents in Cd 
(II)-adsorbing capacity and strength, which is a promis-
ing adsorbent in Cd (II)-contaminated environments.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13065- 023- 00977-4.

Additional file 1: Figure S1. Cupriavidus necator GX_5 colonies grown 
on LB agar. Table S1. The effect of initial Cd concentration on adsorp-
tion capacity of Cupriavidus necator GX_5. Table S2. The effect of 
initial Cd concentration on removal efficiency of Cupriavidus necator 
GX_5. Table S3. The effect of biosorbent dosage on adsorption capacity 
of Cupriavidus necator GX_5. Table S4. The effect of biosorbent dosage on 
removal efficiency of Cupriavidus necator GX_5.

Acknowledgements
Authors are thankful to YH for SEM analysis and BSZ for FTIR spectra analysis 
(Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai, 
China). The authors are thankful to the anonymous reviewers for their 
comments.
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Strain type Before adsorption
(cm−1)

After adsorption
(cm−1)

Differences in shifts 
 (cm−1)

Assignment

Living 3307.31 3367.98 60.67 stretching vibration of O–H and N–H of saccharide

1741.17 1728.50 − 12.67  C=O stretching vibrations from lipids

1185.71 1180.85 − 4.86  C–O and C–C stretching vibrations

Non-living 3415.13 3305.50 − 109.63 stretching vibration of O–H and N–H of saccharide

2979.51 2982.40 2.89  C–H stretching vibrations

2934.62 2931.04 − 3.58 asymmetric C–H stretching vibration

1649.69 1656.34 6.65 stretching vibration of C= O(amide I)

1544.36 1536.76 − 7.6 stretching vibration of C–N and deformation 
vibration of N–H (amide II)
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