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Abstract 

The application of QSAR analysis dates back a half‑century ago and is currently continuously employed in any rational 
drug design. The multi‑dimensional QSAR modeling can be a promising tool for researchers to develop reliable 
predictive QSAR models for designing novel compounds. In the present work, we studied inhibitors of human aldose 
reductase (AR) to generate multi‑dimensional QSAR models using 3D‑ and 6D‑QSAR methods. For this purpose, 
Pentacle and Quasar’s programs were used to produce the QSAR models using corresponding dissociation constant 
 (Kd) values. By inspecting the performance metrics of the generated models, we achieved similar results with com‑
parable internal validation statistics. However, considering the externally validated values, 6D‑QSAR models provide 
significantly better prediction of endpoint values. The obtained results suggest that the higher the dimension of the 
QSAR model, the higher the performance of the generated model. However, more studies are required to verify these 
outcomes.
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Introduction
Targeted drug design is an inseparable part of any phar-
maceutical industry, primarily achievable through vari-
ous computer-aided drug design (CADD) approaches. 
Computational approaches are time-saving and cost-
effective, which are two essential parameters in the 
drug development pipeline. The CADD approaches are 
divided into structure-based and ligand-based meth-
ods. Spatial analyses of interactions between ligand and 
target molecules is a core hypothesis of structure-based 
drug design. This approach’s main goal is to optimize the 

binding pattern of the studied ligand and corresponding 
receptor in a three-dimensional fashion. Therefore, hav-
ing structural information on receptors can be helpful 
in structure-based computer-aided drug design inves-
tigations. In the case of the ligand-based approach, the 
ligands’ most important physicochemical, electronic, and 
conformational features are selected as significant con-
tributors to biological activities. However, in this strategy, 
knowledge of the target structure is not needed for gen-
erating predictive models [1–3]. Tirofiban [4], zanamivir 
[5], boceprevir [6], saquinavir [7], captopril [8, 9], and 
aliskiren [10] are approved examples of marketed drugs 
using CADD strategies.

Quantitative structure-activity relationship (QSAR) 
is a valuable technique in CADD aiming to relate the 
generated predictive mathematical models using struc-
tural features and biological activity values. From a 
dimensional point of view, the type of QSAR models 
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depends on the employed descriptors ranging from 
0D-QSAR to 7D-QSAR. Several descriptors (e.g., 
atomic properties, fragment counts, and topologi-
cal descriptors) constitute the components of 0D to 
2D-QSAR. A 3D-QSAR analysis results from incor-
porating three-dimensional based descriptors con-
sidering an extra dimension in spatial coordinates. 
Additional dimensions to 3D-QSAR models necessi-
tate the involvement of multivariate molecular descrip-
tors based on conformational flexibility, induced fit, 
solvation function, and target-based receptor mod-
els. Such incorporations lead to the generation of 
multi-dimensional QSAR (i.e., 4D- to 7D-QSAR) [11]. 
Today, increasing interest is seen in using classic and 
3D-QSAR models against the small number of stud-
ies employing multi-dimensional QSAR approaches 
along with their predictive power. However, it is not 
certain whether the higher the dimensionality, the 
higher the performance. In this respect, there is con-
troversy in the technical literature about the perfor-
mance of QSAR in terms of dimensionality. Therefore, 
more cases are needed to assess this debatable issue. 
Hence, we aimed to develop predictive multi-dimen-
sional QSAR models using inhibitors of aldose reduc-
tase (AR) (EC 1.1.1.21) and evaluate their performance 
in the predictive capability of biological activities. AR 
is an oxidoreductase enzyme classified as the Aldo-
Keto reductases (AKRs) superfamily responsible for 
the metabolism of glucose to sorbitol via the polyol 
pathway. However, in hyperglycemia, overproduction 
of sorbitol results in diabetic complications such as 
neuropathy, retinopathy, nephropathy, and catarac-
togenesis. Therefore, inhibition of AR could prevent 
such pathological events. In addition, AR inhibitors 
can be useful in inflammatory complications [12–16]. 
Accordingly, the prediction of the biological activity 
of AR inhibitors could pave the way for designing and 
developing novel compounds where the inhibition of 
AR is of paramount importance. Besides, by applying 
different multi-dimensional QSAR tools in predicting 
biological activity, it is possible to investigate the effect 
of 6D-QSAR as a representative of the multi-dimen-
sional QSAR model compared to 3D-QSAR.

Results
In this study, we employed two different multi-dimen-
sional QSAR approaches (i.e., 3D-QSAR and 6D-QSAR) 
to predict the biological activity of aldose reductase 
inhibitors and evaluate the effect of additional dimen-
sions on the predictive power of the generated models. 
In the case of 3D-QSAR, the bioactive conformations of 
the studied compounds were achieved by the 3D-solved 
structure of the co-crystallized ligand in complex with 
aldose reductase enzyme. The training and test sets 
were randomly selected based on their inhibitory activi-
ties, where both sets covered a similar range of activi-
ties. A 3D-QSAR model was trained using GRIND-based 
descriptors by applying the PLS model. Few rounds of the 
fractional factorial design (FFD) method were applied 
to improve the statistical quality of the obtained model 
until no observation of significant changes occurred in 
terms of squared correlation coefficient  (R2), cross-vali-
dated correlation coefficient  (q2), and standard deviation 
of the error of prediction (SDEP). Based on the obtained 
results, three latent variables (3LVs) were chosen as an 
optimum number of the PLS model. Table  1 gives the 
statistics for the 3D-QSAR model based on PLS analysis 
for AR inhibitors. Moreover, cross-validation methods, 
including LOO and LTO, are reproducible after several 
runs. However, in the case of RG, several runs with dif-
ferent seeds were conducted. Eventually, the average val-
ues of  R2 and  Q2 were 0.98 and 0.85, respectively, which 
are not significantly different from those mentioned in 
Table 1  (R2 = 0.98 and  Q2 = 0.87).

Experimental vs. predicted values obtained from the 
3D-QSAR analysis are given in Table 2 and illustrated in 
Fig. 1.

Molecular docking was conducted using two software, 
i.e., GOLD and AutoDock, which were used for generat-
ing an ensemble of different conformations of the studied 
ligands to be used in the Quasar program for develop-
ing the 6D-QSAR model. As a representative of molec-
ular structures, the best solution for the docked pose of 
a4 compound (PDB ID: 2PDG) is depicted in Fig. 2. The 
calculated RMSD between docked and co-crystallized 
ligand is 0.289 Å. Table 3 shows the statistical results of 
the generated 6D-QSAR models using both conforma-
tion ensembles docked by the two mentioned algorithms. 
Figure  3 represents the scatter plot of experimental vs. 

Table 1 Statistics for the 3D‑QSAR model based on PLS analysis for AR inhibitors

LV SSX SSXacc SDEC SDEP R2
R2acc   (LOO)  Q2

acc  (LTO) Q2
acc  (5RG)

1 63.31 63.31 0.69 0.89 0.55 0.55 0.26 0.22 0.25

2 14.37 77.68 0.21 0.43 0.41 0.96 0.83 0.75 0.81

3 10.60 88.28 0.16 0.36 0.02 0.98 0.88 0.81 0.87
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predicted  pKd values, and the corresponding values are 
given in Table 3. It is worth mentioning that the predic-
tion values (including all the statistical parameters,  R2, 

 Q2
LOO, and  R2

test in Table  3) are average values of 100 
individual runs attained from the Quasar software.

The results of analyses obtained from 3D- and 
6D-QSAR models are presented in Tables  2 and 3. As 
can be seen, although the coefficient of determination 
 (R2) for these models are comparable that are greater 

Table 2 Observed dissociation constant,  pKd(exp) of the human 
aldose reductase (AR) inhibitors vs. their predicted values using 
alignment independent 3D‑QSAR analysis

SSX X variable explanation, SDEC standard deviation of error of calculation, SDEP 
standard deviation of error of prediction

The acc stands for accumulative value, Validation methods used for calculation 
of  q2 are: leave one out (LOO), leave two out (LTO) and random groups (RG)
a Test set

Compound pKd(exp) pKd(pred)

a1 8.18 8.19

a2 7.17 7.12

a3 6.04 6.11

a4 7.45 7.56

a5a 5.18 6.06

a6 5.55 5.45

a7 5.12 5.49

a8 7.27 7.21

a9a 6.21 5.67

a10 5.49 5.25

a11 7.49 7.42

a12a 7.40 6.74

R2 0.98

Q2
(LOO) 0.88

R2
Test 0.42

Fig. 1 Experimental vs. predicted  pKd for the human aldose 
reductase inhibitors using 3D‑QSAR based model. Filled diamonds 
indicate training set and open triangles show the test set compounds

Table 3 Observed dissociation constant,  pKd(exp) of the human 
aldose reductase (AR) inhibitors vs. their predicted values using 
GOLD and AutoDock through 6D‑QSAR analysis 

Statistical parameters for the performance of predictive obtained models are 
also listed

LOO leave‑one‑out

 aTest set

Compound pKd(exp) pKd(pred_GOLD) pKd(pred_AutoDock)

a1 8.18 8.18 8.16

a2 7.17 7.16 7.08

a3 6.04 6.12 5.73

a4 7.45 7.34 7.43

a5a 5.18 4.65 4.37

a6 5.55 5.45 5.49

a7 5.12 5.79 5.92

a8 7.27 7.18 7.24

a9a 6.21 6.02 5.70

a10 5.49 5.16 5.26

a11 7.49 7.41 7.49

a12a 7.40 7.38 7.09

R2 – 0.92 0.92

Q2
(LOO) – 0.90 0.89

R2
Test – 0.76 0.58

RMS deviation training set – 0.35 0.40

Maximal deviation training 
set

– 0.90 1.07

RMS deviation test set – 0.44 0.78

Maximal deviation test set – 0.71 1.09

Fig. 2 The docked and co‑crystallized ligand (a4, PDB ID: 2PDG) 
using GOLD program (version 5.2.2) depicted by PyMOL software 
(version 1.1r1)
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than 0.9 (i.e., 0.98 for 3D-QSAR and 0.92 for 6D-QSAR 
models) with marginally similar internal validations 
(3D-QSAR-Q2

LOO: 0.88, 6D-QSARGOLD-Q2
LOO: 0.90, and 

6D-QSARAutoDock -Q2
LOO: 0.89), the external validations 

are significantly different in terms of binding affinity pre-
diction of test dataset (3D-QSAR-R2

Test: 0.42, 6D-QSAR-
GOLD-R2

Test: 0.76, and 6D-QSARAutoDock-R2
Test: 0.58). 

Based on the obtained results, increasing the dimension-
ality in QSAR models may help improve prediction per-
formance in the developed models. More details on the 
results are listed in Additional file 1.

The applicability domain (AD) was also determined 
for the studied molecules to detect the outlier in the 
defined chemical space. The Williams plots for the three 
developed QSAR models are demonstrated in Fig. 4. The 
illustrations suggest the absence of outliers, and all data 
points are within the AD range for all generated QSAR 
models.

Discussion
Bridging from bench to bedside for a new chemical entity 
necessitates employing a computer-aided drug design 
process. In light of this, QSAR methodologies, as one of 
the CADD approaches, are extensively used to accelerate 
the drug design and discovery process. Successful exam-
ples of such drugs are norfloxacin, cimetidine, and zan-
amivir, originally derived from QSAR analyses [17–20]. 
In this research, three QSAR-based models were devel-
oped and validated. Of these models, one model was 
derived from the 3D-QSAR method, and the other two 
were derived from 6D-QSAR analyses. The   conforma-
tions needed for 6D-QSAR analyses were obtained from 

two molecular docking programs, GOLD and AutoDock. 
By inspecting the performance metrics of the gener-
ated models based on training sets, it can be concluded 
that all of the models have similar results with compa-
rable internal validation statistics (3D-QSAR:  R2 = 0.98, 
 Q2

LOO = 0.88; 6D-QSAR (GOLD):  R2 = 0.92,  Q2
LOO = 0.90; 

6D-QSAR (AutoDock):  R2 = 0.92,  Q2
LOO = 0.89). How-

ever, considering the externally validated values, 
6D-QSAR models provide significantly better prediction 
of endpoint values on the unseen data not involved in the 
training procedure (3D-QSAR:  R2

Test = 0.42; 6D-QSAR 
(GOLD):  R2

Test = 0.76; (AutoDock):  R2
Test = 0.58). External 

validation assessment is critical to any QSAR model anal-
ysis to propose an efficient model for drug design pro-
jects. Considering that the acceptance criterion for the 
squared correlation coefficient for the test set (i.e.,  R2

Test) 
is suggested to be greater than 0.6, the best model for pre-
dicting purposes might be the GOLD-based 6D-QSAR 
model. However, the AutoDock-based 6D-QSAR model 
can also be marginally acceptable for prediction.

Based on the established rules by Organization for Eco-
nomic Co-operation and Development (OECD), defining 
the applicability domain of any QSAR model is inevitable 
[21]. In this study, AD was determined, and the findings 
proposed no observation of outliers showing reliabil-
ity and robustness of the developed 3D- and 6D-QSAR 
models.

The literature research from 1974 to 2022 includes 
the QSAR studies with the term “QSAR” in their titles 
using the Scopus database shows over 9,000 articles. 
Among these articles, more than 2000 studies have 
used 3D-QSAR, 75 investigations employed 4D-QSAR, 

Fig. 3 Experimental vs. predicted  pKd for the human aldose reductase inhibitors using 6D‑QSAR based models. A and B are related to the results 
obtained from GOLD and AutoDock, respectively. Filled diamonds and open triangles are training and test sets, respectively
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and four and one out of the whole studies were carried 
out based on 5D- and 6D-QSAR modeling, respectively. 
However, the remaining ones did not have any dimen-
sion value in their titles, suggesting that they would 
probably belong to dimensions less than or equal to 
two.

When experimental approaches have not deter-
mined a receptor structure, an elegant method for 
calculating the free energy of ligand binding to target 
molecules may be found in multi-dimensional QSAR 
techniques. In light of this viewpoint, 3D-QSAR has 
been researched using advanced methodologies such 
as CoMFA, CoMSIA, CoMSA, CoMMA, and many 
more. The limitations of the 3D-QSAR model have 

been a matter of debate in several previously reported 
publications. Due to the limitations of 3D-QSAR, i.e., 
the selection of correct bioactive conformation of 
given molecules, more advanced QSAR methods have 
been developed (e.g., 4D-, 5D-, and 6D-QSAR) [22].

The performance of 3D- and 4D-QSAR approaches 
were investigated using steric and electronic param-
eters on CBG binding steroids in work by Polanski et al. 
Despite discrepancies observed between developed 
models due to the utilized descriptive codings, CoMFA 
and 4D-QSAR seemed to produce comparable results 
[23].

In this study, Bruton’s tyrosine kinase (Btk) inhibi-
tor dataset was employed to assess the performance of 
QSAR algorithms, including multivariate image analy-
sis (MIA)-QSAR and 4D-QSAR. Analyses of the results 
indicated the superior performance of 4D-QSAR over 
MIA-QSAR, with a significant difference in the bioac-
tivity prediction [24].

Findings demonstrate that using appropriate ligand 
conformers (4D) combined with an induced fit model 
(5D) is applicable as multi-dimensional QSAR. Vedani 
et  al. have shown that 5D-QSAR is superior to other 
approaches in estimating the binding affinities of new 
compounds [25].

Another study investigated different molecular struc-
tures of estrogen receptor ligands to predict biological 
activities. To this end, different levels of QSAR analy-
ses were used, including 3D to 6D-QSAR. Quasar Java-
based program was used to develop a 6D-QSAR model 
considering different conformers of the given ligands, 
induced-fit models, and solvation models. Comparing 
cross-validated and predictive  r2 values demonstrated 
the superiority of 6D-QSAR to low-dimensional QSAR 
techniques [26].

Regarding the importance of prediction of the bio-
logical activity of the compounds in the early stages of 
drug design and discovery process before the synthe-
sis of molecules, developing highly predictive models 
to fulfill this essence can be regarded as a strong point 
of this study. In this respect, multi-dimensional QSAR 
may be helpful since it has been evidenced in many 
recent papers as an innovative strategy. Although con-
sidering stereochemistry in multi-dimensional QSAR 
is an advantage over classic QSAR (i.e., 2D-QSAR), 
finding appropriate orientation and conformation of 
the studied ligands is a challenging issue that requires 
obtaining the available 3D-solved experimental data 
(X-ray crystallography or NMR data). However, consid-
ering the mentioned information, we still need manual 
intervention and superimposition of ligands for devel-
oping multi-dimensional QSAR models.

Fig. 4 Applicability domain using Williams plot for (a) 3D‑QSAR 
model, (b) 6D‑QSAR model (GOLD), and (c) 6D‑QSAR model 
(AutoDock). Standardized residuals are plotted vs. the leverage 
values for each compound. Circle and triangle shapes are used to 
demonstrate training and test dataset
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Conclusions
QSAR is a ligand-based approach for predicting the 
biological activity of compounds. This method plays 
a significant role in the early stages of the drug design 
and discovery pipeline. With the emergence of more 
advanced QSAR techniques in terms of dimensional-
ity, substantial progress has been achieved in improving 
the predictive capability of QSAR-based models. In this 
work, we investigated the prediction inhibitory activity 
of human aldose reductase ligands by applying 3D- and 
6D-QSAR methods. The findings showed the better per-
formance of the 6D-QSAR model according to the statis-
tical parameters. Overall, an increase in dimensionality 
in QSAR studies may lead to the development of more 
reliable QSAR models than in low-dimensional QSAR 
approaches. However, since scarce studies are available in 
the literature, more studies are needed to be conducted 
to verify the findings of this research.

Methods
Protein preparation
In this study, a set of X-ray crystal structures in complex 
with corresponding AR inhibitors were retrieved from 
the Protein Data Bank (PDB) database (PDB IDs: 1PWM, 
1US0, 1Z89, 2PDG, 4PUU, 4PUW, 4Q7B, 4QR6, 2IKG, 
2IKH, 2IKI, 2IKJ). Table 4 shows the molecular structures 
of AR inhibitors used in this investigation. The available 
reported biological activities of the studied inhibitors 
(i.e.,  Kd) in the literature were obtained with the same 
experimental conditions covering a range of three orders 
of magnitude (6.5 nM–7.5 µM) [27–31].

Molecular docking studies
The co-crystalized AR inhibitors were extracted from 
the crystal structures and docked into the binding site 
of AR. GOLD (version 5.2.2; CCDC Inc., Cambridge, 
UK) [32, 33] and AutoDock (version 4.2) [34] software 

Table 4 Chemical structures of AR inhibitors used for QSAR analyses

Comp PDB Structure Refs. Comp PDB Structure Refs.

a1 1PWM [27] a7 4Q7B [30]

a2 1US0 [28] a8 4QR6 [30]

a3 1Z89 [28] a9 2IKG [31]

a4 2PDG [29] a10 2IKH [31]

a5 4PUU [30] a11 2IKI [31]

a6 4PUW [30] a12 2IKJ [31]
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running under the LINUX operating system were used 
for molecular docking procedures. The preparation of 
proteins was performed using in-built modules and tools 
by applying the default parameters. The hydrogen atoms 
were added to the protein structures by removing water 
molecules for both docking protocols. The binding site 
for molecular docking was defined based on the cen-
troid of the co-crystallized ligands. Semi-flexible dock-
ing of studied ligands into the binding site of AR was 
performed for each ligand. In the case of a GOLD pro-
gram, all atoms within a radius of 10 Å from the center 
of the binding site were selected for the docking process 
by setting the population size of 100, number of opera-
tions of 100,000, and number of islands of 5. For Auto-
Dock, Lamarckian Genetic Algorithm (LGA) was applied 
by accepting default parameters. The obtained solutions 
were inspected and selected in terms of RMSD to the 
corresponding reference molecule.

Multi‑dimensional QSAR studies
3D‑QSAR study
The 3D coordinates of co-crystallized ligands in com-
plex with AR enzyme were used for a 3D-QSAR study 
using the Pentacle program (version 1.06) [35]. At first, 
various probes (i.e., hydrophobic (DRY), hydrogen bond 
acceptor, HBA (N1), hydrogen bond donor, HBD (O), 
and shape (TIP) probes) were considered for calculat-
ing interaction energies with different parts of the tar-
get molecules for obtaining molecular interaction fields 
(MIFs). For generating the 3D-QSAR model, the data 
were divided into training and test sets. In this process, 
we assigned 75% and 25% of the dataset for training and 
test sets, respectively. Approximately up to  105 nodes 
were generated, each representing a value for interaction 
energy. Then, grid-independent descriptors (GRIND) 
were achieved by calculating node-node interactions to 
be used as input parameters for 3D-QSAR analysis. The 
most relevant descriptors significantly contributed to the 
biological activities were extracted using the AMANDA 
algorithm for partial least squares (PLS) analysis.

6D‑QSAR study
For the 6D-QSAR study, the docked poses with the low-
est RMSD compared to the reference molecule were 
retained as input of the 4D data set in Quasar software 
(version 6.1) [26, 36]. The same training and test sets 
used in the 3D-QSAR analysis were employed for the 
6D-QSAR approach. Gasteiger-Huckel charges were cal-
culated for the studied molecules using  BioX software 
(version 4.6) [37]. For the studied molecules, the entropy 
values were computed. Then, the corresponding induced 
fit model was created, incorporating the genetic algo-
rithm for optimizing the generation of a quasi-atomistic 

receptor surface model based on creating 100 models and 
5,000 crossover cycles. The Quasar devoted to 6D-QSAR 
model generation considers a putative receptor site com-
prised of a three-dimensional surface encompassing the 
given molecules at a predefined van der Waals distance 
and mapping the atomistic features onto the generated 
surface. In 6D-QSAR, different levels of dimensions were 
taken into account, including the topology property of 
the binding site, ensemble of conformers, orientations, 
protonation states of the molecules as the fourth dimen-
sion, induced fit parameters as the fifth dimension, and 
simultaneous incorporation of solvation models as the 
sixth dimension of QSAR model.

Applicability domain
The reliability of the predictive power of the generated 
QSAR models was evaluated by determining the appli-
cability domain of the studied compounds. For this pur-
pose, the “Williams plot” was generated based on the 
leverage method, where the Y axis denoted the stand-
ardized residuals, and leverage values were expressed 
by the X axis [38, 39]. In this way, the behavior of each 
compound is assessed to detect possible outlier(s) in 
the defined chemical space. The following equation, 
known as the “Hat” matrix, was used to calculate lever-
age values  (hi) of the compounds in the data set:

where  Xi shows the descriptor matrix of i and X refers 
to the descriptor matrix of the training set.  XT denotes 
the transpose matrix of X. The warning leverage value 
(h*) is calculated using the following formula:

where p is the number of descriptors and n represents 
the number of training compounds. For any compound 
to be as an outlier, two criteria are considered: com-
pounds with  hi greater than warning leverage value (h*) 
and standard residual of a compound higher than (±) 
thrice the standard deviation of mean with normally 
distributed data.

Abbreviations
CADD  Computer‑aided drug design
QSAR  Quantitative structure‑activity relationship
AR  Aldose reductase
FFD  Fractional factorial design
3LVs  Three latent variables
SDEP  Standard deviation of the error of prediction
Btk  Bruton’s tyrosine kinase

hi = Xi(X
T
X)

−1
X
T
i ,

h* =
3(p+ 1)

n
,
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