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Abstract 

The direct binding of antiviral agents; Daclatasvir and valacyclovir and green synthesized nanoparticles to salmon 
sperm DNA have been assessed in a comparative study. The nanoparticles were synthesized by the hydrothermal 
autoclave method and have been fully characterized. The interactive behavior and competitive binding of the ana‑
lytes to DNA in addition to the thermodynamic properties were deeply investigated by the UV–visible spectroscopy. 
The binding constants were monitored in the physiological pH conditions to be 1.65 ×  106, 4.92 ×  105 and 3.12 ×  105 
for daclatasvir,valacyclovir and quantum dots, respectively. The significant changes in the spectral features of all 
analytes have proven intercalative binding. The competitive study has confirmed that, daclatasvir, valacyclovir, and the 
quantum dots have exhibited groove binding. All analytes have shown good entropy and enthalpy values indicat‑
ing stable interactions. The electrostatic and non‑electrostatic kinetic parameters have been determined through 
studying the binding interactions at different concentrations of KCl solutions. A molecular modelling study has been 
applied to demonstrate the binding interactions and their mechanisms. The obtained results were complementary 
and afforded new eras for the therapeutic applications.

Keywords Daclatasvir and valacyclovir, Nitrogen doped orange quantum dots, An in‑depth UV–visible spectroscopic 
investigation, The electrostatic and non‑electrostatic kinetic parameters, Molecular modelling

Introduction
The DNA pair has four chemical bases; cytosine, guanine, 
adenine, and thiamine. Each base is attached to sugar and 
phosphate molecules giving a nucleotide. These nucleo-
tides are arranged in a spiral manner into two strands 
what is known as the double helix resembling a ladder 
of phosphate and sugar molecules with rungs of the base 
pairs [1]. The binding to the DNA is considered the major 
goal of many drug molecules targeted to inhibit the cell 
activity. The conjugation with DNA could disturb the 
vital activities of the cell by modifying the transcription 
functions including essential proteins synthesis as well 
as gene expression, hence adversely affects replication. 
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Molecules that behave in such manner could be deemed 
as efficient antimicrobial agents [2]. The binding of the 
small therapeutic molecules to DNA could be divided 
into number of classes based on their structural varia-
tion; Groove binding in the minor groove, alkylation by 
the chemical reaction with the DNA, cleavage of DNA 
chains, and the intercalation between base pairs [3]. Two 
modes are suggested to confirm the binding of small mol-
ecules to DNA; the irreversible covalent binding that is 
mainly achieved by alkylation cutting off whole DNA 
processes causing cellular damage [4]. The second mode 
is the reversible non-covalent binding, which could hap-
pen to a covalent one, it involves conjugation with DNA 
via groove binding, sandwiching (insertion), and inter-
calation through the phosphate clamp; separate coordi-
nation of phosphate moiety resulting in conformational 
and charge changes of the obtained conjugates [5]. Quan-
tum dots are nanostructures of zero dimensions with 
electronic confinement in all directions. They provide 
improved intrinsic optical and redox characteristics with 
various surface passivation schemes introducing a new 
platform of natural light-activated antimicrobial agents. 
They have afforded many advantages including environ-
ment friendly, versatility for either to potency improved 
surface modification or synergistic adhesion to other 
antimicrobial agents, photostability, and considered 
excellent specific drug delivery vehicles [6, 7]. In addi-
tion, they could be synthesized from natural inexpensive 
sources with eco-friendly ways [8].

Globally, the hepatocellular carcinoma caused by HCV 
and hepatitis B viruses infections is one of the major 
causes of death. Additionally, the chronic HCV infec-
tions cause cellular damage and liver cirrhosis [9]. Now-
adays, researchers have shown much more interest to 
daclatasvir (DAC) molecule which is considered the game 
changer in different respects, chemically; methyl N-[(2S)-
1-[(2S)-2-[5-[4-[4-[2-[(2S)-1-[(2S) -2- (methoxy carbonyl 
amino) -3- methyl butanoyl] pyrrolidine -2- yl] -1H- imi-
dazol-5-yl] phenyl] phenyl]-1H- imidazol-2-yl] pyrroli-
din-1-yl]-3-methyl-1-oxobutan-2-yl] carbamate, Fig.  1 
[10]. The combination of DAC and sofosbuvir (SOF) has 

proven potential safety and efficacy in managing hepati-
tis C (HCV) infections as well as it enhances the stiffness 
of the liver and minimizes the portal hypertension and 
fibrosis [11]. DAC exhibits potential DNA destructive 
effect affording anticancer characteristics [12] thus it has 
dual mechanisms as antiviral and antitumor against the 
hepatocellular carcinoma. Recently, the DAC/SOF com-
bination has been investigated in treatment of COVID19 
patients and has shown potential efficacy in mild and 
moderate cases [13–15]. Valacyclovir (VAC) is an oral 
prodrug of acyclovir (its L-valyl ester), chemically; 
l-valine-2-[(2-amino-1,6-dihydro-6-oxo-9H-purin-9yl) 
methoxy] ethyl ester, Fig.  1. It exhibits potential antivi-
ral activity against DNA viruses like herpesviruses and 
varicella zoster virus by inhibition of DNA polymerases 
terminating the chain elongation [16, 17]. There are cur-
rent worldwide threats of viral pandemics and exceed-
ing number of cancer patients as well as fears of future 
worse circumstances in theses respects. Accordingly, a 
great demand has evolved for finding new green alterna-
tives like the orange QDs (OQDs) that suspected to be 
safe and hopefully acting more effectively than usual regi-
mens. Additionally, precise evaluation of cellular toxicity 
and the antimicrobial activity of commonly prescribed c 
antiviral molecules like DAC and VAC could provide new 
eras in disease management. Few researches have stud-
ied DNA interactions with the investigated analytes, but 
their reports were restricted to detection of the confor-
mational structural differences between the calf thymus 
DNA and the low molecular weight salmon sperm DNA 
(ssDNA). Many techniques were exploited in this respect 
like UV–visible spectrophotometry, fluorescence spec-
troscopy, isothermal coulometric titration and viscosity 
measurements [18]. An in-depth investigational study 
has been presented for the DNA binding interaction with 
VAC [19]. The DNA interaction behavior of DAC has 
been monitored throughout a comparative study with 
other antiviral agents based mainly on MALDI-TOF MS 
analysis and limited spectroscopic investigation for the 
spectral changes of only one concentration of both drug 
and DNA at three time intervals [12].

Fig. 1 Chemical structures of the investigated molecules
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In this research work, a comparative and simple UV–
visible spectroscopic study has been carried out for the 
interaction of ssDNA with the investigated analytes. The 
binding kinetics have been estimated, binding constant, 
binding mode through competitive interaction, effect 
of molar concentration, zeta potential measurements, 
and thermodynamic parameters. The selection of this 
spectroscopic technique as it provides a cost effective 
and accurate analytical tool as well as very weak lumi-
nescence criteria of VAC. Additionally, the tetrazine dye 
(TAR) has been also used as a determinant of the binding 
modes of OQDs, DAC and VAC through competitive dis-
placement binding.

Experimental
Materials
Daclatasvir and TAR were kindly provided from 
GLOBAL NAPI Pharmaceuticals (Giza, Egypt), while 
VAC was gifted from EVA Pharma Pharmaceuticals (6th 
October city, Egypt). Salmon sperm DNA, Tris–HCl 
and ethylenediamine were purchased from Merck KGaA 
(Darmstadt, Germany). Potassium chloride crystals was 
purchased from the El-Nasr Company for Pharmaceuti-
cal Chemicals (Abozabaal, Egypt).

Instrumentation
UV–Visible Spectrophotometer (PG Instruments Lim-
ited, T80, United Kingdom). Teflon-lined stainless steel 
hydrothermal autoclave (100.00  mL), locally designed 
and manufactured according to the standard dimensions. 
Mass spectrometer (Thermo Scientific, ISQ 7000 Single 
Quadrupole, Waltham, USA). X-ray diffraction pattern 
(Philips PW-1700) with wavelength Cu-Kα radiation at 
40 kV and 30 mA settings, and at a diffraction angle range 
(20°–70°) with a step of 0.06°. High-resolution electron 
microscope (HRTEM) (JEM-100-CXII plus JEOL micro-
scope working at 120 kV). Nicolet 6700 FTIR Advanced 
Gold Spectrometer, supported with OMNIC 8 software 
(Thermo Electron Scientific Instruments Corp., Madi-
son, WI USA) for data processing. A 15 mm glass mortar 
and pestle and a hydraulic-press using a Perkin Elmer die 
press and Thermo-scientific (Fischer, USA) Qwik handi-
press instrument were used to prepare the KBr OQDs 
sample discs.

Synthesis of the nitrogen doped orange quantum dots
Fresh oranges were chopped and squeezed to get pulp-
free juice. Modified procedure for a previous report 
[20] was utilized by mixing 55.00  mL orange juice with 
0.50  mL of ethylenediamine in the autoclave and then 
allowed to be heated at 130  °C for 6  hrs. The autoclave 
was left to cool at room temperature. The dark brown 
solution was centrifuged twenty minutes at 5000  rpm. 

The supernatant was filtered through membrane filter 
(0.22 μm). The solution was then dialyzed with magnetic 
stirring for 24 h in one liter of deionized water. The water 
was replaced every 1  hr. Finally, the obtained solution 
was lyophilized to get the solid black nanoparticles of the 
nitrogen doped carbon QDs.

Characterization of the OQDs
The fourier transform infrared spectrum (FTIR) has 
exhibited different vibrational features. A broad strong 
overlapping band extending from 3600 to 3050   cm−1 is 
attributed to O–H and N–H stretching vibrations. The 
medium broad band at 2930   cm−1 represents clearly 
a C-H stretching vibration. The medium shoulder at 
1692   cm−1 has exhibited the carbonyl moieties con-
firming the formation of carboxylic acid moieties espe-
cially with the emerging broad band centered almost at 
3300   cm−1. The formation of C═N stretching is indi-
cated by the strong vibrational band at 1615   cm−1. The 
broad medium band and the weak shoulder at 1417 and 
1250  cm−1 are assigned to the C═N and C-N stretching 
vibrations, respectively. The strong band at 1051   cm−1 
is attributed to both C-OH and C-O-C stretching vibra-
tions. The weak bands at 735 and 775  cm−1 refer to out-
of-plane C-H bending [21, 22] [23], Fig.  2A. Further 
characterization has been applied by the transmission 
electron microscope (TEM). The resulting images have 
explored almost unisize nearly mono-spherical nano-
particles with size distribution ranged from 12.00 up to 
20.00 nm, Fig. 2B. The X-ray powder diffraction (XRPD) 
pattern has revealed a sharp peak at 2θ = 25 (0.42  nm) 
and another weak one at 2θ of 53 (0.31 nm) indicating an 
amorphous carbon phase with a partial graphitic struc-
ture which is attributed to the abundance of amino, car-
boxylate and hydroxyl functional moieties, Fig.  2C. The 
mass spectrum, Fig.  2D of the synthesized NQDs has 
shown a peak at the end of the spectrum with molecular 
weight of 144.1  m/z which attributed to a stable OQDs 
fragment ion.

Preparation of ssDNA solution
An appropriate amount of 0.02  g ssDNA was dissolved 
in 100 mL deionized water and stored away from light at 
4 °C for one week. The stock ssDNA solution concentra-
tion was calculated to be 331.14 μM from the measured 
absorbance (at 260  nm), molar absorptivity (ε) of 6600 
L.mol−1.cm−1 [24] and application of Beer-Lambert law. 
This stock solution was diluted with 0.01  M Tris–HCl 
solution to get working solutions of 2.50–40.00 μM. The 
purity was checked by determining the absorbance ratio 
at 260  nm/280  nm that was found to be more than 1.8 
confirming that the ssDNA is almost free from protein 
[25].



Page 4 of 13Abdel Hakiem et al. BMC Chemistry           (2023) 17:39 

Preparation of working solutions
All studied analytes including the synthesized OQDs was 
found to have proper water solubility. Aqueous stock 
solutions of 0.20 mg/mL were prepared and were diluted 
furtherly with the same solvent to get 20.00 μg/mL work-
ing solutions of DAC, VAL and TAR as well as 100.00 μg/
mL OQDs. The TAR solution has been diluted furtherly 
with 0.01 M Tris–HCl solution to get 12.50 μg/mL solu-
tion and then was mixed in equal volumes with 20.00 μM 
to get the working complex solution for the competitive 
study.

Surface potentials of the studied analytes
The electrostatic surface potentials were calculated for 
DAC, VAL and OQDs using the MOE 2020.01 software 
and they have shown abundance of positive charges, 
Fig. 3.

Salt‑concentration effect on the binding of the studied 
analytes and ssDNA
The lifetime of ligand (investigated drugs) on its binding 
sites at the biological host molecule (ssDNA) and hence 
its potency is a representation for the cumulative effects 
of both the non-electrostatic and electrostatic interac-
tions. Changing concentration of either the ligand or the 
host provides a way to evaluate the role of non-electro-
static forces in the unbinding process as well as probing 
the change in the electrostatic ones [26] [27]. Assess-
ment of the binding kinetics in varying electrolyte solu-
tion provides alternative and accurate way in this respect 
since biological molecules are amphiphilic in nature and 

their dissociation kinetics are greatly affected thermo-
dynamically by the univalent salt concentration [28]. An 
inverse proportion governs the increasing in salt con-
centration and binding constants [29, 30]. This could be 
attributed to distance elongation between interacting 
charges and hence weakening the coulombic interaction 
(i.e. charge—charge interaction) and/or disturbance in 
the ionic distribution [31].

The interaction behavior of ssDNA with the studied 
analytes has been studied in KCl media of different con-
centrations from 0.00125 to 0.10  M since the more rel-
evance of KCl to intracellular halophilic conditions and 
getting well defined bands with respect to NaCl [32]. The 
maximum studied KCl concentration was 0.10  M was 
because of that the binding constant doesn’t exhibit linear 
relationship with salt concentration above 0.125  M [33] 
and at 1.00 M or more the electrostatic interaction drops 
to zero and becomes mainly dependent on the non-elec-
trostatic interaction. Hence, the stability of complex will 
be hindered as the electrostatic interactions will be inter-
rupted and hence shows faster dissociation [34]. The con-
centration of salt  [K+] has significant effect on binding 
interactions between the polyion (ssDNA monomer) and 
the counterion (studied analytes) since the ratio between 
their concentration above the unity (i.e. ratio between the 
least used experimental concentration of the added salt 
 K+; 0.00125 M to that of ssDNA; 2.50 μM) [35].

3D Molecular docking
A molecular modelling and visualization study was 
carried out on synthetic double stranded DNA using 

Fig. 2 Characterization of the synthesized NQDs, A FTIR spectrum, B TEM image, C XRPD, D Mass spectrum
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Molecular Operating Environment software, MOE 
2020.01. The structure of a parallel stranded DNA 
duplex at Atomic Resolution was obtained through 
the RCSB Protein Data Bank (PDB ID: 1JUU) [36]. The 
energy of docked ligand; DAC, VAL and NQDs (pro-
posed fragments) were minimized with gradient RMSE 
of 0.0001  kcal/mol. The DNA structure was modelled 
by using the MOE QuickPrep protocol. The compounds 
were docked on double stranded DNA molecule using 
the method of Alpha triangle placement with Amber10: 
EHT forcefield. The Refinement was performed with 
Forcefield, and it was scored using the Affinity dG scor-
ing system.

Results and discussion
Spectrophotometric assessment of the interaction 
ssDNA—studied analytes’ interaction
The studied analytes are considered excellent interca-
lators through vertical stacking to the backbone of the 
ssDNA without covalent bonding or hydrogen bonds 
breaking between bases pairs causing significant over-
lapping of p-electrons [37]. The analytes have exhibited 
different spectral behaviors upon titration of their fixed 
concentrations by increasing concentrations of ssDNA 
solution using 0.01 M Tris–HCl solution as blank, Fig. 4, 
Table  1. The large hypochromic effects with or without 
slight red shift confirm insertion of the planar aromatic 

rings of DAC and VAL in between the base pairs to dif-
ferent extents without disturbing the overall stack-
ing pattern. Similarly, the OQDs have exhibited strong 
hypochromic effect as a result of stacking interaction 
between the ssDNA base pair and the heterocycle of 
OQDs (i.e. the FTIR characterization of the OQDs has 
shown bands at 1417 and 1250   cm−1 that are corre-
sponding to the C═N and C-N stretching vibrations, 
respectively) [38]. These significant spectral changes 
have proved occurrence of large conformational changes 
expressed in decreasing helical twisting as well as length 
shortening [39]. Hence, their interactions with ssDNA 
are considered strong intercalation because of the strong 
hypochromic effects with almost insignificant bathochro-
mic shifts varied from 2.00 to 6.00  nm [40–44]. It is 
worth noted that VAL has exhibited isosbestic points at 
300 nm confirming its binding interaction. These spectral 
changes could be attributed to the decreasing in cube the 
distance between the analytes and ssDNA, hence mini-
mizing the electronic interaction which is consistent with 
coupling between π* electrons of the analytes and ssDNA 
leading to hypochromism which is encountered to a 
decrease in π–π* energy transition [45–48].

Competitive displacement assay
The competitive replacement of a dye in conjuga-
tion with the DNA helix by a small molecule gives an 

Fig. 3 The electrostatic surface potentials of DAC, VAL and TAR, where, red and blue represent negative and positive charges, respectively
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indication that it has similar DNA binding fashion 
[49]. Tetrazine dye was selected for this study since it 
was evidenced to replace effectively the Hoechst 33258 
dye that binds strongly to the minor groove of double-
stranded B-DNA with specificity to AT-rich sequences 
[50]. The binding of ssDNA to the TAR dye was utilized 
efficiently to investigate the interaction modes between 
DAC, VAL and NQDs with ssDNA using 0.01 M Tris-
HCl as blank. Hyperchromic spectral changes have 
taken place with the studied analytes as well as devel-
opment of new absorption band at 316  nm with DAC 
due to the formation of a new complex. These spectral 
changes have indicated dynamic displacement of TAR 
dye by DAC, VAL and OQDs and hence confirming 
their minor groove binding to ssDNA [51], Fig. 5.

The binding kinetic parameters at different electrolyte 
concentrations
The binding constants were calculated at different KCl 
concentrations. Linear relationships have been presented 
between the obtained binding constants versus the cor-
responding  [K+] in order to obtain the total binding free 
energy change into its electrostatic and non-electrostatic 
contributions as well as the non-electrostatic binding 
constants in the light of the polyelectrolyte Eq.  (1) [52, 
53];

where, Z is the partial charge on the binding ligand 
involved in the ssDNA phosphate groups interaction and 
could be estimated from the slope of the linear regression 
line between ln  Kb and ln  [K+], ψ is the number of cations 
associated with a phosphate group that are displaced on 
complex formation [54] and equals 0.88 for the B form 
of the double-stranded DNA and γ± is the mean activity 
coefficient at different  [K+], which was calculated in the 
light of Debye-Hiickel formula [55], Fig. 6.

The extent of association of monovalent counterions 
 M+ with the polyions (ζ) and the fraction of the coun-
terion condensed on an infinite polyion per structural 
polyion charge (δ) were found to be 4.2 and 0.76 for the 
B form of the double stranded DNA, respectively [56], 

(1)
lnKb = lnK 0

t + Zζ−1
{

ln(γ ± δ)
}

+ Zψ(ln[M+
])

Fig. 4 The UV spectral changes upon titration of the investigated analytes upon titration with increasing ssDNA concentrations of 2.50, 3.00, 5.00, 
7.50, 10.00, 12.50, 15.00, 17.50, 20.00 and 22.50 µM

Table 1 The spectral effects of the added ssDNA on the 
maximum absorption spectra of the studied analytes

Analyte Intensity Wavelength Δλmax

DAC Hypochromic 314 nm –

VAL Hypochromic 196 nm Bathochromic, 4 nm

Hypochromic 252 nm Bathochromic, 2 nm

OQDs Hypochromic 252 nm Bathochromic, 6 nm
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the Ko
t  is the non-electrostatic contribution or stabiliza-

tion to the overall binding constant  Kb of the ssDNA—
ligand complex and should be constant whatever the 
salt concentration. This term accounts for hydrophobic 
interactions; Van der Waal forces, translational, con-
figurational and rotational entropies [57]. The studied 

analytes have shown decreased binding interaction by 
increasing the  [K+]. In all cases, this could be attributed 
to favoring ion pairing and the associating release of of 
low molecular weight ions at low  [K+]. Hence, the equi-
librium will be shifted towards neutralization reactions 
and consequently complex formation [46].

Fig. 5 The competitive binding interaction study

Fig. 6 The effect of electrolyte concentration on the binding constants of the analytes to the ssDNA



Page 8 of 13Abdel Hakiem et al. BMC Chemistry           (2023) 17:39 

On the other hand, they have exhibited almost the 
same or slightly increased non-electrostatic binding 
constants  Ko

t at higher potassium chloride concentra-
tions in addition to increased contribution percent-
age in the total binding (%  Kt

o/Kb). This indicates that 
the electrostatic interaction is salt dependent and has 
minor effect on non-electrostatic forces. The binding 
interactions are energetically driven and possess the 
spontaneous character only the Gibbs free energy dif-
ference of the system between bound and free states 
(i.e. standard binding free energy, ΔG.o and suggested 
to be at reference concentration of 1.00  mol/L) upon 
attaining equilibrium at definite pressure and tem-
perature [58, 59]. It is related to the  Kb and calculated 
through the this formula [60]

The electrostatic or polyelectrolyte (ΔGo
pe) and the 

non-electrostatic contributions (ΔGo
t) into the stand-

ard binding free energy are calculated getting the slope 
for the logarithmic plot between ln  [K+] versus ln  [Kb] 
that represents the SK value and equals to the absolute 
value of Zψ (ψ = 0.88).

The non-electrolyte contributions (ΔGo
t) is then 

obtained by the difference between the change in the 
standard binding free energy and the change in the 
electrostatic contribution [61].

(2)�Go
= −RTlnKb

(3)�G0
pe = (SK)RTlnKb

(4)�G0
t = �Go

−�G0
pe

Since the light absorption is directly proportional to 
the square of the electric dipole transition moment. 
Hence, the changes in light absorption of polymers (i.e. 
DNA) is attributed to light induction in chromophores 
resulting in dipoles interactions [62] [63]. Hyperchromic-
ity is considered one of the important evaluators for the 
strength of DNA binding interaction, it represents the 
effect of ligand binding on DNA molecule compaction as 
a result of electrostatic interaction [64]. The hyperchro-
micity percentage was calculated according to the follow-
ing equation [65] [66]:

where, εf, εb correspond to the extinction coefficients of 
the free and bound forms of the complex. All param-
eters were calculated for the studied analytes at differ-
ent potassium chloride concentrations in accordance the 
above-mentioned equations and summarized in Table 2

Close inspection of Table  2, it is evidenced that, all 
analytes have shown decreased binding constants by 
increasing  [K+] and this confirms great contributions of 
electrostatic interactions into analytes—ssDNA conjuga-
tion. On the other hand, a slight increase that could be 
insignificant in the non-electrostatic forces, hence the 
binding interaction is mainly managed by the electro-
static ones. Accordingly, the percentage contributions 
of the non-electrostatic forces into the total binding  Kt

o/
Kb (%) has increased with increasing the electrolyte con-
centration. Daclatasvir provides the highest electronic 
environment among the analytes by two imidazole rings, 
biphenyl moiety, four carbonyl moieties, two acetyl moi-
eties, and two pyrrolidine rings. The acyclovir molecule 

(5)Hyperchromicity (%) = εf − εb/εf × 100

Table 2 The kinetic parameters of the binding interactions between the studied analytes and the ssDNA at different  [K+]

[K+] Kb  (M−1) Kt
o % H ΔGo ΔGo

pe ΔGo
t Kt

o/Kb (%) ΔGo
t/ΔGo (%)

DAC

 0.1000 3.1253 ×  104 2.2671 ×  104 3.28 − 25.64 − 5.00 − 20.65 72.54 80.53

 0.0125 6.3522 ×  104 2.2498 ×  104 4.37 − 27.40 − 5.34 − 22.10 35.42 80.65

 0.0025 6.912 ×  104 2.2434 ×  104 10.93 − 27.61 − 5.38 − 22.23 32.45 80.52

 0.00125 7.55 ×  104 2.2416 ×  104 11.67 − 27.83 − 5.42 − 22.41 29.70 80.52

VAL

 0.1000 3.2497 ×  104 5.958 ×  103 31.50 − 25.74 − 4.47 − 21.27 18.33 82.63

 0.025 2.1224 ×  105 5.831 ×  103 12.55 − 28.55 − 4.96 − 23.40 2.74 81.96

 0.0125 2.0634 ×  105 5.907 ×  103 20.01 − 30.40 − 5.27 − 25.11 2.86 82.60

 0.00125 1.843 ×  106 5.811 ×  103 7.30 − 24.38 − 4.23 − 20.15 0.31 82.65

OQDs

 0.025 6.50 ×  103 98.74 12.30 − 21.75 − 0.50 − 22.24 1.52 102.25

 0.0125 8.74 ×  103 97.61 41.70 − 22.48 − 0.51 − 22.99 1.12 102.27

 0.0025 2.626 ×  104 95.95 5.83 − 25.21 − 0.57 − 25.78 0.36 102.26

 0.00125 1.09858 ×  105 95.51 4.11 − 28.75 − 0.65 − 29.41 0.087 102.29
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has less electronic configuration represented in purine 
nucleus with carbonyl moiety and substituted with amnio 
group. One imidazole ring, two phenyl and an azo moi-
ety afford good electronic structure to the two molecules. 

Additionally, it was supposed that thermal treatment 
of OQDs has introduced many heterocyclic, aromatic, 
amino and surface carboxylic acid moieties. These struc-
tural chemical features have elucidated the descending 
order of the binding constants at physiological pH envi-
ronment (provided by Tris–HCl) without electrolyte 
interference of 1.65 ×  106, 4.92 ×  105 and 3.12 ×  105 for 
DAC, VAL and OQDs, respectively. The lowest binding 
constant of TAR interprets changes in the absorption 
bands (hyperchromic effect) upon titration for its conju-
gate with the ssDNA with DAC, VAL and OQDs. Based 
on these experimental results, the electrostatic bind-
ing constant of DAC was logically and greatly hindered 
at different electrolyte concentrations. Both VAL and 
OQDs have almost similarly affected but lesser than DAC 
by the electrolyte concentration. The competition of  K+ 
to the binding sites has caused varying spectral changes 
among analytes, it could decrease n–π* and π–π* transi-
tions resulting in decreased % Hypochromicity with DAC 
or vice versa as observed with VAL and OQDs and hence 
confirming the binding interaction. The standard binding 
free energy, ΔGo has shown inverse proportion with the 
electrolyte concentration and the negative signs refer to 
spontaneous exothermic interactions, affording reason-
able behavior coincide with the numerical values of the 
binding constants at different electrolyte concentrations. 

Fig. 7 Thermodynamic study of the investigated analytes

Table 3 Thermodynamic parameters of the studied analytes

Kb  (M−1) DAC VAL OQDs

Kb at 298 1.653125 ×  106 4.91966 ×  105 3.116 ×  105

Kb at 303 1.5074 ×  106 1.3418 ×  106 1.0082 ×  106

Kb at 308 3.85725 ×  106 1.1491 ×  106 1.8925 ×  106

Kb at 313 5.021667 ×  106 2.2474 ×  106 1.8509 ×  106

ΔHo − 66.07 − 68.44 − 99.12

ΔSo 0.34 0.34 0.44

Table 4 Energy scores (kcal/mol) and DNA interactions of DAC, 
VAL,and OQDs

DA DeoxyAdenine, DT DeoxyThymine, DC DeoxyCytosine

Analyte Energy score (S) 
(kcal/mol)

Interacting DNA bases

DAC − 7.30 DT3, DA4, DT6, DA7, DT7, DT8

VAL − 5.53 DA4, DT5, DA7, DT7, DT8

OQDs − 5.19 DA3, DT4, DC1, DC2
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Fig. 8 The molecular interaction between synthetic DNA and the investigated analytes; while, (A) corresponds to the 2D and 3D DAC‑ssDNA 
interaction; (B) corresponds to the 2D and 3D VAL‑ssDNA interaction; (C) corresponds to the 2D and 3D OQDs‑ssDNA interaction
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Consequently, both the electrostatic and the non-electro-
static contributions into the binding free energy, ΔGo

pe, 
ΔGo

t, respectively, have been decreased at higher elec-
trolyte concentrations. It is obviously noted that, the per-
centage contribution of the non-electrostatic binding free 
energy change into the total standard free energy hasn’t 
been changed for all analytes among all studied electro-
lyte concentrations. Both DAC and VAL have smaller 
percentages of nearly 80.00% than NQDs that has value 
around 102.00%. This indicates the higher electrostatic 
effect induced by the functional moieties’ rich structures 
of DAC and VAL. These almost constant percentages 
provide stability for ssDNA binding events of all studied 
analytes.

Thermodynamic analysis
Parsing the binding free energy into its components rep-
resents an excellent approach to get detailed explanation 
about ssDNA interaction. The numerical values of stand-
ard enthalpy ∆Ho, and standard enthalpy ∆So are con-
sidered the main determinants of the driving forces that 
monitor binding modes of the analytes with the ssDNA. 
The previous reports stated that when both ∆Ho and ∆So 
are less than zero, the interaction is dominated by hydro-
gen bonding or Van der Waals forces, while, if both are 
more than zero, the interaction is governed by hydropho-
bic forces but when ∆Ho ≤ zero and at the same time ∆So 
is more than zero, the electrostatic forces are considered 
the play maker in the binding interaction. These parame-
ters are determined by construction of the Van’t Hoff plot 
in accordance to the following equation [67, 68]:

where, ln K represents binding constants obtained at four 
different investigated temperatures, R, is the gas constant 
and T, is the temperature in Kalvin.

The inverse proportions obtained among all analytes 
between ln K and 1/T, Fig. 7 as well the numerical values 
at Table 3 have evidenced that all bindings are governed 
by electrostatic interaction.

Molecular modelling
The docking study has provided a confirmatory insight 
into the analytes’ potential binding affinity to DNA mol-
ecule. The docking investigation showed the consistency 
with the results of the interaction kinetics. Daclatasvir 
has exhibited the highest exothermic interaction and 
binding affinity (the lowest binding score value) and 
hence the highest interaction spontaneity. On the other 
hand, NQDs (proposed fragments) was the least interact-
ing molecule. All interactions with DNA bases mediated 

(6)lnK =
−�Ho

RT
+

�So

R

by H-bonding which formed mainly by heterocyclic aro-
matic moieties and all that drive the intercalation of the 
docked compounds into DNA molecule, Table 4, Fig. 8

Conclusion
This research has provided an intensive UV–vis-
ible monitoring of interaction behavior of the salmon 
sperm DNA with a number of small molecules and a 
green synthesized nanoparticles. Selection of analytes 
was based on the suspected anti-hebetic carcinoma 
activity of DAC besides its antiviral action, confirma-
tion the potency of VAL as DNA antiviral agent and 
the suspected anticancer and antiviral activity of the 
ecofriendly synthesized nitrogen doped nanoparti-
cles. Daclatasvir has exhibited the highest binding in 
the physiological condition, at the same time the green 
OQDs have shown promising binding. The interaction 
behavior of DAC, VAL and OQDs has been confirmed 
by efficient displacement of TAR from its complexes 
with ssDNA. The thermodynamic study confirmed 
the binding behavior through the acceptable numeri-
cal values of both entropy and enthalpy. Investigation 
of the binding kinetics in different KCl concentra-
tions has proven that the electrostatic interaction is 
the main determinant of binding for all analytes. The 
3D molecular docking study has introduced important 
complementary evidence about interactions and their 
mechanisms.
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