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Abstract
Quinolone and sulfonamide are two classes of antibacterial agents with an opulent history of medicinal chemistry 
features that contribute to their bacterial spectrum, efficacy, pharmacokinetics, and adverse effect profiles. The 
urgent need for their use, combined with the escalating rate of their resistance, necessitates the development of 
suitable analytical methods that accelerate and facilitate their analysis. In this study, the advanced firefly algorithm 
(FFA) coupled with support vector regression (SVR) was used to select the most significant descriptors and to 
construct two quantitative structure-retention relationship (QSRR) models using a series of 11 selected quinolone 
and 13 sulfonamide drugs, respectively, to predict their retention behavior in HPLC. Precisely, the effect of the pH 
value and acetonitrile composition in the mobile phase on the retention behavior of quinolones and sulfonamides, 
respectively, were studied. The obtained QSRR models performed well in both internal and external validations, 
demonstrating their robustness and predictive ability. Y-randomization validation demonstrated that the obtained 
models did not result by statistical chance. Moreover, the obtained results shed the light on the molecular features 
that influence the retention behavior of these two classes under the current chromatographic conditions.
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Introduction
Antibacterial resistance is a major public health con-
cern affecting humans worldwide, owing primarily to 
the uncontrolled use of such bioactive compounds, 
particularly in countries lacking standard treatment 
guidelines [1]. Among those antibacterial agents, fluo-
roquinolones, a fluoro substituent series derived from 
nalidixic acid, showed an escalating rate of resistance 
after dominating the therapeutic practice for some 
time, particularly against gram-negative pathogens [2–
4]. Such classes of active compounds must be carefully 
monitored regarding their use and abundance in the 
environment. Consequently, from an analytical view-
point, the urgent detection and analysis of these drugs 
become essential considering the need to develop 
quick, simple, economical, and accurate methods for 
their analysis.

A review of the literature revealed that quinolones 
could be determined thoroughly using high-perfor-
mance liquid chromatography in various matrices, 
including biological fluids and tissues [5–11], milk and 
food of animal origin [12–17], marine products [18], 
honey [19], wastewater [20–22] and in many phar-
maceutical formulations [23–28]. Furthermore, the 
relationship between the retention factors and lipo-
philicity of quinolones has been analyzed using RP-
TLC [29–31] and HPLC human serum albumin and 
α1-acid glycoprotein stationary phases [32]. Addition-
ally, Wu et al. [33] investigated the retention factors-
activity relationship of some quinolones using micellar 
chromatography.

Moreover, sulfonamides are another class of syn-
thetic antimicrobial agents that, unfortunately, have 
widespread resistance, making them infrequently used 
for medical interventions. However, the application of 
sulfonamides has expanded beyond their original indi-
cation as antimicrobial agents to other new medical 
uses, including anticancer, antiglaucoma, cyclooxygen-
ase-2 (COX-2) and lipoxygenase inhibitors, anticon-
vulsant, and hypoglycemic activities [34]. Regarding 
the analytical tools used in their detection, a review 
of the literature revealed that reversed-phase liq-
uid chromatography was also dominant in this class’s 
determination [35–38]. In the context of their reten-
tion mechanisms, Cazenave-Gassiot et al., [39] studied 
the correlation between the sulfonamides’ retention 
factors and the proportion of the organic modifier in 
the mobile phase using supercritical fluid chromatog-
raphy. However, the separation behavior of this class 
on reversed-phase liquid chromatography must be 
investigated.

Among the various models and theories used to draw 
an image of the retention manner of the various ana-
lytes in reversed-phase liquid chromatography, the 

quantitative structure-retention relationship (QSRR) 
provides useful insights not only in elucidating how dif-
ferent the analytes perform regarding their retention but 
also in predicting their retention chromatographic sys-
tems relatively well [40, 41]. This relationship provides a 
powerful alternative to the conventional trial-and-error 
approach with significant improvements in experiment 
time and cost.

A correlation is built in these mathematical models 
between the chemical structures of compounds rep-
resented by their descriptors and their retention data 
in various chromatographic systems. The number of 
molecular descriptors that can be obtained for a sin-
gle analyte is enormous, with some software capable 
of calculating up to 5000 descriptors per analyte [42]. 
Such a significant increase in the dimensionality of 
the descriptors and the incorporation of some non-
empirical features could affect the performance of the 
various QSRR models. Consequently, feature selection 
methods (variable selection) are necessary to untan-
gle this problem and determine which descriptors are 
important regarding the retention of the compounds 
of interest. These methods range from classical types 
like forward selection and backward elimination to 
advanced nature-inspired ones like particle swarm 
optimization (PSO), genetic algorithm (GA) and its 
descendants (firefly, flower pollination, grasshopper, 
and ant colony algorithms) [43–52].

Furthermore, various chemometric and machine learn-
ing algorithms, such as partial least squares (PLS), mul-
tiple linear regression (MLR), artificial neural networks 
(ANNs), and support vector regression (SVR) were 
proven to be effective in building reliable QSAR and 
QSRR models due to their ability in extracting the maxi-
mal chemical information while also capturing the pos-
sible relationship between the chemical structure and the 
target property of interest [53–55]. The application of 
QSRR models has been documented to various chemical 
families on reversed-phase liquid chromatography, such 
as non-steroidal anti-inflammatory drugs [56], azole anti-
fungal agents [57], and some analgesics [58].

Support vector regression (SVR), a machine learning 
algorithm, was first reported by Vapnik, Chervonenkis, 
and colleagues [59]. The algorithm is based on identifying 
a linear function that explains most of the variation in the 
response and simultaneously links the nonlinear relation-
ship between the input and the target data [60]. Com-
pared to conventional regression and neural network 
algorithms, SVR has some advantages, including good 
generalization ability, global optimization, and dimen-
sional independence [61]. Because of its capability to 
model possible nonlinear relationships between molecu-
lar descriptors and retention time, it has been incorpo-
rated into developing powerful QSRR models [62, 63].
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QSRR models could be classified into local models and 
universal models where local models focus on a specific 
class of chemical compounds, whereas universal models 
handle diverse classes in the chemical space. The specific-
ity of the local models makes it perform superior relative 
to the performance of universal models which character-
ized by generality [64, 65].

Previously, our group developed two QSRR models that 
captured the essence of some β-lactam antibiotics reten-
tion behavior using MLR models combined with the for-
ward or firefly variable selection algorithms [55]. In our 
pursuit of studying the QSRR modeling of antibacterial 
agents, our scope in this work is to investigate the quan-
titative structure retention relationship in the quino-
lone and sulfonamide antibacterial classes, highlighting 
their reversed-phase chromatographic retention mecha-
nisms. Furthermore, investigate the quinolones’ retention 
behavior with respect to their different ionization states 
and the organic modifier percentage, as well as the sul-
fonamides’ retention behavior with respect to the organic 
modifier percentage. Because of the complexity of the 
generated data, the use of an advanced variable selection 
technique coupled with a machine learning algorithm 
seems imperative. Consequently, the firefly algorithm 
coupled with SVR was used to develop the target QSRR 
models. Furthermore, the obtained models were assessed 
regarding their predictive ability using strict validation 
criteria; thus, they could be used to predict the reten-
tion behavior of potential degradation products and even 
metabolites of these compounds.

Experimental
Solvents, chemicals, sample preparation, and 
instrumentation
The quinolones (Fig. S1) and sulfonamides (Fig. S2) 
under investigation were supplied by different phar-
maceutical companies. Pure HPLC-grade acetonitrile, 
methanol, and dimethylsulfoxide were supplied by Scar-
lau (Barcelona, Spain). The other chemicals used in this 
study, including ortho-phosphoric acid, trifluoroacetic 
acid, sodium dihydrogen orthophosphate, and sodium 
hydroxide were supplied by Honeywell Riedel-de Haën 
(Seelze, Germany).

The instruments used in this study included a Jenway 
3510, Essex-UK, England pH meter equipped with a glass 
electrode, and Agilent 1260 HPLC-UV series.

Each drug’s stock solution (2  mg mL− 1) was prepared 
with a suitable solvent either (methanol, dimethylsulfox-
ide, water, or acetonitrile). These solutions were stored at 
4  °C and then diluted with the mobile phase to achieve 
sample concentrations ranging (0.05–1 mg mL− 1) before 
analysis.

Chromatographic conditions
The quinolones were eluted chromatographically using 
an Inertsil® C18 column (250 mm x 4.6 mm, 5 μm) and 
detected at 275  nm. In a gradient mode, five mobile 
phases were prepared according to the plan of the 
experiment, and a chromatographic system was used as 
programmed in Table  1, using acetonitrile and 28 mM 
sodium dihydrogen orthophosphate buffer prepared 
at different pHs 2.2, 3.5, 5.2, 6.5, and 8.2 using ortho-
phosphoric acid or sodium hydroxide. However, the pH 
was measured again after mixing the buffer with aceto-
nitrile and was determined to be 3.2, 4.4, 5.9, 7.32, and 
8.9, respectively. The system flow rate was adjusted to 1 
ml min− 1. After each injection, the system was recon-
ditioned by returning to the initial ratio and remaining 
constant for 3 min. Data acquisition was performed using 
the Agilent LC Chemstation software.

Sulfonamides were separated chromatographically on 
a hypersil C18 column (150 mm x 4.6 mm, 5 μm) using 
isocratic elution based on a mobile phase consisting of 
acetonitrile and water acidified with trifluoroacetic acid 
(1 mL. L− 1) in different ratios of 50:50, 45:55, or 30:70 
v/v and at a flow rate of 0.8 ml min− 1. A ratio of 15:85, 
v/v was initially included but not considered for further 
assessment because many compounds were strongly 
retained in the column. The analyses were performed 
at ambient temperature, with detection at 270 nm. Data 
acquisition was performed using the Agilent LC Chem-
station software.

QSRR modeling
Drawing structures and molecular descriptors calculation 
and filtration
The major microspecies of the study quinolone at the 
pH of interest were estimated using the MarvinSketch 
(6.0.3) [66] generating 21 ions. The canonical smiles of 
these ions were imported into the Molecular Operating 
Environment (MOE, 2020.0901) software, where they 
were converted into 3D structures, and energy was mini-
mized using an RMSD gradient of 0.05  kcal.mol− 1Å−1 
with MMFF94x forcefield. The partial charges were auto-
matically calculated. Finally, MOE molecular mechani-
cal descriptors were computed for all compounds, 
generating a descriptor fund of 313 descriptors. The ini-
tial descriptor fund was reduced by removing zero value 
and constant descriptors. This resulted in a descriptor 
fund with 293 descriptors.

Table 1  Gradient elution system used in quinolone separation
Time (min) Acetonitrile % Buffer %
0 20 80

3 20 80

5 60 40
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In the case of sulfonamides, the PubChem database 
[67, 68] was used to introduce sulfonamides canoni-
cal SMILES into the MOE, where they were converted 
to 3D structures, and energy was minimized using the 
same parameters as for quinolones. Afterward, MOE 
molecular mechanical descriptors were computed for 
all compounds and a descriptor fund of 313 descriptors 
was generated. The initial descriptor fund was reduced by 
removing zero value and constant descriptors, generating 
a fund of 112 descriptors; moreover, the acetonitrile per-
centage was incorporated as a descriptor.

Training set and test set generation
The 21 quinolones’ major microspecies were divided into 
a calibration (training) set of 16 molecules and a test set 
of five molecules. Regarding sulfonamides, a total of 39 
experimental retention factors resulted from three dif-
ferent ratios of mobile phase for the 13 compounds that 
were used in building the QSRR model. The total number 
of experiments was split into a training set of 30 observa-
tions and an external validation test set of nine observa-
tions. The selection of the calibration and the validation 
compounds of quinolones and sulfonamides was based 
on maintaining the same retention factor value distribu-
tion in both sets.

Descriptor selection and modeling
Based on Durbin–Watson (DW) test, the linearity of 
the datasets was tested using augmented partial residual 
plots (APARP) [69–71]. The test was conducted using a 
custom script written in MATLAB (R2016 a) [72, 73]. The 
descriptors that survived the initial filtration were then 
used to build the QSRR models. The firefly algorithm was 
implemented in MATLAB and used for descriptor selec-
tion as an advanced nature-stimulated algorithm with the 
RMSECV of the SVR model serving as the fitness func-
tion inside the algorithm for both datasets. The selected 
descriptors were finally incorporated into the SVR final 
model building. The algorithm’s parameters were combi-
natorially optimized such that they were varied in inter-
vals of specific increments, keeping in mind that in all 
optimization iterations, one parameter was varied while 
the others remained constant.

Model validation
Model validation approaches were performed to evaluate 
the reliability, robustness, and applicability of the gener-
ated models. In the current study, the generated models 
were validated both internally and externally, and any 
potential correlation was tested using a Y-scrambling 
technique, a method commonly used for this purpose.

Internal validation was conducted using leave-one-out 
cross-validation (CVLOO) in the quinolones QSRR model 
while using leave-10%-out (CVL10%O) in the sulfonamides 

QSRR model. On the other hand, the external validation 
was conducted by applying the obtained QSRR models to 
an external validation set of five microspecies of quino-
lones and nine molecules of sulfonamides. The statistical 
quality of the models was assessed by calculating the root 
mean square errors (RMSE) of the prediction and coef-
ficient of the determination.

In Y-randomization validation for the two datasets, the 
compounds’ output retention factors were shuffled ran-
domly, whereas the compounds’ descriptors remained 
unscrambled. The resulting datasets were used to build 
FFA-SVR models using the same protocol as the original 
models, and the correlation and predictive ability of the 
resulting models were determined. The entire procedure 
was repeated 100 times for both datasets.

Hotelling’s T2 and William’s plot methods were used to 
determine the developed models’ applicability domains 
(AD) as described in our previous work [55].

Results and discussion
Optimization of the FFA and SVR parameters for 
developing the QSRR models
The firefly algorithm (FFA) was used as a feature selec-
tion method to find the relevant descriptors that build 
reliable QSRR models. The algorithm parameters were 
initially optimized for proper descriptor selection. Based 
on our previous study [55], the RMSECV was used as the 
fitness function computed by the SVR model to evalu-
ate the models’ performance. A critical parameter in the 
FFA is the absorption coefficient parameter “γ” because 
it regulates the light intensity, and thus controls the fire-
flies’ attractiveness; thus, this parameter has a signifi-
cant impact on the speed of convergence and the overall 
behavior of the algorithm. Another valuable parameter 
is the “α” parameter, which prevents sticking to the local 
optima by providing some sort of random movements. 
Finally, the exploration phase of the FFA was controlled 
by the number of fireflies used, whereas the exploitation 
phase was controlled by the number of generations. The 
adjusted FFA parameters obtained through combinato-
rial optimization are presented in Table 2.

Concerning SVR, different types of kernels as basis 
function expansions were assessed, including polyno-
mial, radial basis function (RBF), and sigmoid. Initially, 
the kernel function was examined by evaluating the 

Table 2  Parameters of the firefly algorithm used for variable 
selection in QSRR modeling
Parameter Quinolones Sulfonamides
Number of fireflies 10 20

Generations 100 100

α 0.1 0.15

βο 1 1

γ 0.01 0.01



Page 5 of 13Fouad et al. BMC Chemistry           (2022) 16:85 

performance of developed FFA-SVR models, and the 
RBF was selected as the best kernel function to model 
the nonlinearity of the generated data. The RBF kernel 
parameter regulates the amplitude of the Gaussian func-
tion and influences the SVR’s generalization ability. Fur-
thermore, two parameters determining the quality of 
the SVR model were optimized: the penalty error (C), a 
parameter that controls the trade-off between the com-
plexity of the decision rule and the frequency of error, 
and the insensitive loss function (ɛ), a precision fac-
tor expressing the radius of the tube placed around the 
regression function f(x). To optimize these parameters, 
their values were systematically varied in the training 
step via (CVLOO) and (CVL10%O) for quinolones and sul-
fonamides, respectively, while the models’ RMSEcv was 
monitored. To obtain the optimal ɛ, the SVR with differ-
ent ɛ values was trained; initially, the value of C was set to 
1, but after finding the optimal value of ɛ, the C value was 
further optimized. It was found that the best models were 
obtained using kernel types of (RBF), C = 1 and ɛ = 0.01 
for both datasets. The final developed FFA-SVR models 
were used to predict the retention factors of molecules in 
the test set for quinolones and sulfonamides, respectively.

QSRR modeling of quinolones in their different ionization 
states
To elucidate the chromatographic behavior of the qui-
nolones studied, it is important to first understand the 
relationship between the mobile phase pH and the ion-
ization states of each compound (Fig. S3). Some com-
pounds behave ideally with respect to their ionization 
state, for example, moxifloxacin exists as a cation (polar) 
at acidic pHs (2.2 and 3.5) but as a neutral compound 
(hydrophobic) at basic pH (6.5 and 8.2), rationalizing its 
longer retention factor in basic pH than an acidic one. 
Ciprofloxacin, lomefloxacin, and norfloxacin exist in dif-
ferent ionization states at pHs (5.2 and 8.2) and this jus-
tifies the fluctuation in their retention factors over these 

pHs. Nadifloxacin exists as a neutral compound at acidic 
pHs (2.2, 3.5, and 5.2), which explains its longer reten-
tion factor at these lower pH values, whereas at basic pH 
8.2, it exists as an anionic compound, resulting in rapid 
elution and a lower retention factor. On the other hand, 
ofloxacin and danofloxacin exhibit distinct behavior, with 
their cationic forms appearing at acidic pHs (2.2 and 3.5) 
exhibiting lower retention factors, whereas their anionic 
forms present at basic pHs (6.5 and 8.2) exhibit higher 
retention factors. Additionally, gatifloxacin and gemi-
floxacin show stability in their retention factors although 
they can exist in different ionization states across the 
pH range (2.2–8.2). The calculated retention factors of 
the eluted quinolones are presented in Table 3. (The raw 
retention times ± SD are listed in Table S1 in the support-
ing material.)

Based on these previous observations, the behavior 
of quinolone compounds cannot be predicted solely 
on their ionization state, and a more in-depth analy-
sis must successfully predict their behavior. It is worth 
noting that, at a specific pH, a compound can exist in 
various ionization states and percentages, making it 
difficult to predict the retention behavior based on sin-
gle microspecies. To address this issue, we attempted 
to select the major microspecies as a representative for 
each molecule in the given pH while avoiding select-
ing the same microspecies at different pH or retention 
factors for the same ionization state. Considering this 
approach, we would be able to derive a simple, inter-
pretable QSRR model that can predict the retention 
factors of quinolones in their various ionization states.

The first step for quinolones’ QSRR model generation 
was to check the linearity of the data. Consequently, 
augmented partial residual plots (APARP) and DW test 
were used to examine the residuals’ correlation [69–71]. 
The associated probability was found to be 0.045 (< 0.05) 
indicating the significance of the test and nonlinearity of 
the data; thus, nonlinear models such as ANN and SVR 
were tried for data modeling, with SVR yielding the best 
results.

Five descriptors were chosen by the FFA and combined 
in building the SVR model (SMR, GCUT_SLOGP_1, 
VSA, Vsurf_EWmin 2, and Vsurf_IW6). SMR is a 2D 
descriptor linked to molecular refractivity, which 
includes implicit hydrogens [74]. This property is an 
atomic contribution model that assumes the correct 
protonation state. GCUT_SLOGP_1 is a 2D descriptor 
that uses atomic contribution to logP in place of par-
tial charge. VSA is a 3D descriptor related to the sur-
face area, volume, and shape of molecules; it represents 
van der Waals’ surface area [75]. Vsurf_EWmin 2 is a 3D 
descriptor that represents the second lowest hydrophilic 
energy. Vsurf_IW6 is a 3D descriptor that represents 
the hydrophilic integy moment at (− 4.0). Considering 

Table 3  List of quinolones’ chromatographic retention factors 
(k)*
Compound name pH 2.2 pH 3.5 pH 5.2 pH 6.5 pH 8.2
Gatifloxacin 1.580 1.603 1.576 1.566 1.635

Lomefloxacin 1.405 1.560 1.501 0.920 1.035

Moxifloxacin 1.558 1.606 1.592 1.749 1.840

Nadifloxacin 2.121 2.148 2.114 2.036 1.685

Norfloxacin 1.191 1.162 1.192 1.158 0.384

Ofloxacin 1.032 1.176 1.559 1.836 1.885

Ciprofloxacin 1.142 1.363 1.294 1.153 0.646

Gemifloxacin 1.557 1.576 1.578 1.584 1.633

Enrofloxacin 1.622 1.567 1.591 2.468 1.973

Danofloxacin 1.370 1.551 1.572 1.822 1.668

Sparfloxacin 1.560 1.576 1.567 2.486 1.987
*Dead time = 2.9 min
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the selected descriptors, the model displays that quino-
lones retention depends on their size and hydrophobic/
hydrophilic nature, which is consistent with the main ele-
ments influencing the retention in reversed-phase liquid 
chromatography.

Regarding the performance of the developed QSRR 
model for the quinolones, the agreement of the experi-
mental and predicted retention factors demonstrates the 
model’s good predictive capability, as shown in Table  4. 
The proximity between the training set prediction and 

the cross-validation results indicates the robustness of 
the resulting QSRR model and its lack of any overfitting. 
As shown in Table  5, the results demonstrate the good 
prediction capability of the obtained model. The correla-
tion between the experimental and predicted retention 
factors for the training set, test set, and CVLOO results are 
presented in the supporting materials (Figs. S4 and S5). 
The Spearman ranking correlation coefficient (ρ) was also 
calculated and found to be 0.976, 0.982, and 0.900 for 
the training set prediction (ρcal), CV LOO (ρLOO), and the 
external test set (ρpred), respectively, (Table 5). The close-
ness of ρ to “1” indicates a reasonable accuracy and excel-
lent capability of the generated model to reproduce the 
experimental retention factor ranking (Fig. 1).

QSRR modeling of sulfonamides using different organic 
modifiers
QSRR modeling of sulfonamides was implemented to 
study the associations between the retention factors of 
the examined compounds eluted using different per-
centages of acetonitrile in the mobile phase composition 
(50%, 45%, and 30%), (See Fig. S6), and their calculated 
constitutional, geometrical, physicochemical, and elec-
tronic descriptors (independent variables). The raw 
retention times ± SD and the calculated retention fac-
tors of eluted sulfonamides are shown in Table S2 and 
Table 6, respectively.

Table 4  Experimental and predicted retention factors (k) of quinolone compounds in the training set, cross-validation, and test set 
prediction
Compound name Buffer

pH
Experimental k Training set prediction Residuals Cross-Validation

CVLOO

Residuals

Lomefloxacin 6.5 0.920 1.175 0.255 1.247 0.327

Ciprofloxacin 6.5 1.153 1.164 0.011 1.262 0.109

Norfloxacin 3.5 1.162 1.255 0.093 1.342 0.18

Ofloxacin 3.5 1.176 1.261 0.085 1.385 0.209

Ciprofloxacin 3.5 1.363 1.330 −0.033 1.293 −0.07

Lomefloxacin 3.5 1.560 1.550 −0.01 1.401 −0.159

Gatifloxacin 6.5 1.566 1.555 −0.011 1.493 −0.073

Gemifloxacin 3.5 1.576 1.586 0.01 1.593 0.017

Gemifloxacin 6.5 1.584 1.575 −0.009 1.558 −0.026

Gatifloxacin 3.5 1.603 1.613 0.01 1.621 0.018

Moxifloxacin 3.5 1.606 1.616 0.01 1.638 0.032

Danofloxacin 8.2 1.668 1.659 −0.009 1.662 −0.006

Nadifloxacin 8.2 1.685 1.694 0.009 1.763 0.078

Moxifloxacin 6.5 1.749 1.739 −0.01 1.700 −0.049

Enrofloxacin 8.2 1.973 1.819 −0.154 1.773 −0.2

Nadifloxacin 3.5 2.148 1.828 −0.32 1.769 −0.379

Norfloxacin* 6.5 1.158 1.149 −0.009

Danofloxacin* 3.5 1.551 1.433 −0.118

Sparfloxacin* 3.5 1.576 1.563 −0.013

Enrofloxacin* 2.2 1.622 1.493 −0.129

Ofloxacin* 8.2 1.885 1.603 −0.282
(*) Test set compound

Table 5  Quinolones and sulfonamides FFA-SVR model 
performance evaluation parameters
Parameter Quinolones FFA-SVR Sulfon-

amides 
FFA-SVR

R2
cal 0.931 0.900

R2
cal−adj 0.926 0.896

q2
LOO 0.808 ---

q2
L10%O --- 0.812

R2
pred 0.879 0.820

RMSEcal 0.114 0.240

RMSECVLOO 0.163 0.328

RMSEpred 0.148 0.450

ρcal 0.976 0.988

ρLoo 0.982 ---

ρL10%O --- 0.941

ρpred 0.900 0.883
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The linearity of the data was first considered using 
the same procedures conducted in the quinolone data-
set, with an associated probability of 3.2− 17 (< 0.05) 
indicating the nonlinearity of the generated data. The 
FFA-SVR model was used in this case, resulting in two 
descriptors plus acetonitrile percentage in building 
the QSRR model. The selected features (Vsurf-D2 and 
vsurf-w2) are 3D descriptors related to the molecular 
hydrophobic and hydrophilic volumes, respectively. 
The QSRR model indicates that, in addition to the 

influence of the third descriptor (acetonitrile percent-
age in the mobile phase), the sulfonamide analytes 
retention depends on their hydrophobic/hydrophilic 
nature, which is a common element that plays an 
important role in the differential elution of analytes in 
reversed-phase liquid chromatography.

The results also demonstrate the obtained model’s 
good prediction capability, as shown in Tables  5 and 
7. The model training and test set correlation of the 
experimental and predicted retention are presented 
in the supporting material (Fig. S7), while the com-
pounds’ experimental and predicted retention in the 
CV L10%O are presented in the supporting material (Fig. 
S8), indicating the good correlation and the generaliz-
ability of the developed QSRR sulfonamide model. The 
Spearman ranking correlation coefficient (ρ) was cal-
culated for the training set prediction (ρcal), CV L10%O 
(ρL10%O), and the external test set (ρpred) and was found 
to be 0.988, 0.941, and 0.883, respectively (Fig. 2). The 
proximity of ρ to “1” indicates the capability of the 
generated model to reproduce the experimental reten-
tion factor ranking of the compounds under investiga-
tion with reasonable accuracy.

Furthermore, the residual plots for both classes show 
the differences between the predicted and the experi-
mental retention factors (residuals) for the various com-
pounds. The random dispersion of the residuals around 
the horizontal axis confirmed the model’s prediction 

Table 6  List of sulfonamides chromatographic retention factors 
(k) *
Compound name Acetonitrile%

50% 45% 30%
Sulfacetamide Na 0.154 0.203 0.393

Sulfaguanidine 0.170 0.188 0.256

Sulfadiazine 0.174 0.228 0.443

Sulfaclozine 0.549 0.752 2.196

Sulfadimethoxine 0.419 0.567 1.433

Sulfadimidine 0.311 0.389 0.730

Sulfadoxine 0.395 0.524 1.276

Sulfathiazole 0.166 0.221 0.426

Sulfachloropyrazine Na 0.546 0.754 2.177

Sulfanilamide 0.154 0.194 0.295

Sulfamethoxazole 0.421 0.568 1.548

Sulfapyridine 0.306 0.359 0.597

Sulfaquinoxaline 0.519 0.716 2.221
*Dead time = 2.0 min

Fig. 1  FFA-SVR model experimental k ranking vs. predicted k ranking in quinolone training set prediction
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Compound name Acetonitrile % Experimental k Training set prediction Residuals of
Training set

Cross-Validation
CVL10%O

Residuals of
Cross-Validation

Sulfacetamide Na 50% 0.154 0.153 −0.001 0.151 −0.002

Sulfacetamide Na 45% 0.203 0.194 −0.009 0.171 −0.032

Sulfacetamide Na 30% 0.393 0.385 −0.008 0.336 −0.057

Sulfaguanidine 50% 0.170 0.178 0.009 0.212 0.042

Sulfaguanidine 45% 0.188 0.181 −0.006 0.182 −0.006

Sulfaguanidine 30% 0.256 0.267 0.011 0.458 0.202

Sulfadiazine 50% 0.174 0.185 0.011 0.193 0.019

Sulfadiazine 45% 0.228 0.237 0.010 0.236 0.008

Sulfadiazine 30% 0.443 0.454 0.011 0.520 0.078

Sulfaclozine 50% 0.549 0.528 −0.021 0.460 −0.088

Sulfaclozine 45% 0.752 0.701 −0.051 0.657 −0.095

Sulfaclozine 30% 2.196 1.310 −0.886 1.082 −1.114

Sulfadimethoxine 50% 0.419 0.429 0.010 0.427 0.008

Sulfadimethoxine 45% 0.567 0.576 0.009 0.602 0.035

Sulfadimethoxine 30% 1.433 1.278 −0.155 1.006 −0.427

Sulfadimidine 50% 0.311 0.299 −0.012 0.289 −0.022

Sulfadimidine 45% 0.389 0.378 −0.010 0.352 −0.037

Sulfadimidine 30% 0.730 0.643 −0.087 0.555 −0.175

Sulfadoxine 50% 0.395 0.405 0.010 0.419 0.024

Sulfadoxine 45% 0.524 0.540 0.017 0.569 0.046

Sulfadoxine 30% 1.276 1.211 −0.065 0.962 −0.314

Sulfathiazole 50% 0.166 0.224 0.058 0.242 0.076

Sulfathiazole 45% 0.221 0.285 0.064 0.289 0.068

Sulfathiazole 30% 0.426 0.521 0.095 0.574 0.148

Sulfachloropyrazine Na 50% 0.546 0.568 0.022 0.623 0.078

Sulfachloropyrazine Na 45% 0.754 0.742 −0.012 0.698 −0.056

Sulfachloropyrazine Na 30% 2.177 1.233 −0.944 0.937 −1.240

Sulfanilamide 50% 0.154 0.165 0.011 0.231 0.078

Sulfanilamide 45% 0.194 0.183 −0.010 0.167 −0.026

Sulfanilamide 30% 0.295 0.307 0.012 0.409 0.114

Sulfacetamide Na 50% 0.154 0.153 −0.001 0.151 −0.002

Sulfacetamide Na 45% 0.203 0.194 −0.009 0.171 −0.032

Sulfacetamide Na 30% 0.393 0.385 −0.008 0.336 −0.057

Sulfaguanidine 50% 0.170 0.178 0.009 0.212 0.042

Sulfaguanidine 45% 0.188 0.181 −0.006 0.182 −0.006

Sulfaguanidine 30% 0.256 0.267 0.011 0.458 0.202

Sulfadiazine 50% 0.174 0.185 0.011 0.193 0.019

Sulfadiazine 45% 0.228 0.237 0.010 0.236 0.008

Sulfadiazine 30% 0.443 0.454 0.011 0.520 0.078

Sulfaclozine 50% 0.549 0.528 −0.021 0.460 −0.088

Sulfaclozine 45% 0.752 0.701 −0.051 0.657 −0.095

Sulfaclozine 30% 2.196 1.310 −0.886 1.082 −1.114

Sulfadimethoxine 50% 0.419 0.429 0.010 0.427 0.008

Sulfadimethoxine 45% 0.567 0.576 0.009 0.602 0.035

Sulfadimethoxine 30% 1.433 1.278 −0.155 1.006 −0.427

Sulfamethoxazole* 50% 0.421 0.248

Sulfamethoxazole* 45% 0.568 0.322

Sulfamethoxazole* 30% 1.548 0.644

Sulfapyridine* 50% 0.306 0.283

Sulfapyridine* 45% 0.359 0.306

Sulfapyridine* 30% 0.597 0.443

Sulfaquinoxaline* 50% 0.519 0.530

Table 7  Experimental and predicted retention factors (k) of sulfonamide compounds in the training set, cross-validation, and test set
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ability (see supporting materials) (Figs. S9 and S10). The 
prediction accuracy of the generated local focused mod-
els is acceptable and comparable to that of the general-
ized universal models [64, 65].

Y-scrambling validation
Y-randomization or permutation test is another crite-
rion used to validate our findings in this study, espe-
cially with this small number of observations, to ensure 
that the obtained models are due to a true correlation 
between the selected descriptors and the target reten-
tion factors rather than statistical chance. It is suspected 
that the original QSRR model is significant if there is a 
solid link between the selected descriptors and the origi-
nal response variables. Y-randomization was repeated 
100 times, if the statistical attributes of these random-
ized models are significantly lower than the original one, 
it can be concluded that the model is sensible and was 
not obtained by chance. The equation below was used to 
evaluate the quality of the obtained models from the 100 

randomized matrices and to compare it with the original 
model quality. cRp

2 should be above 0.5 to ensure that the 
original model is not obtained by chance [76].

	 cR
2
p = R*

√
R2 − R2

y

Where (cRp
2) is the degree of variation in the values of the 

squared correlation coefficient average of the random-
ized models Ry

2 and the squared correlation coefficient of 
the original model R2.

The statistical parameters of the scrambled models 
gathered around zero in a symmetrical pattern for both 
data (Fig.  3), indicating that the scrambled models are 
of an extremely low quality. cRp2 values calculated for 
cross-validation were found to be 0.687 and 0.791 (more 
than 0.5) for quinolones and sulfonamides QSRR models, 
respectively, which negates that the obtained model is the 
result of a chance correlation.

Fig. 2  FFA-SVR model experimental k ranking vs. predicted k ranking in Sulfonamides training set prediction

 

Compound name Acetonitrile % Experimental k Training set prediction Residuals of
Training set

Cross-Validation
CVL10%O

Residuals of
Cross-Validation

Sulfaquinoxaline* 45% 0.716 0.719

Sulfaquinoxaline* 30% 2.221 1.279
-Test set compound (*)

Table 7  (continued) 
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Applicability domain of both QSRR models
The applicability domain of a QSPR is the structural, bio-
logical space, or physicochemical knowledge or informa-
tion on which the model’s training set was developed and 
for which it is applicable to make predictions for new 
compounds. In William’s plot for the FFA-SVR models, 
the applicability domain is inside a squared area within 
± 3 standard deviations and has a leverage threshold h* of 
1.125 and 0.4 for quinolones and sulfonamides, respec-
tively. The prediction is only considered reliable for those 
compounds that fall within this AD. It can be seen that all 
compounds (training and test sets) fall within this range, 
with no outliers (Fig. 4).

Conclusion
Two QSRR models were generated for predicting the 
retention behavior of quinolones and sulfonamides in 
the HPLC system. The influence of the pH of the mobile 
phase on the ionization state and hence the retention fac-
tor of each quinolone, as well as the effect of acetonitrile 
composition in the mobile phase on the retention fac-
tors of sulfonamides, were investigated, resulting in the 
selection of 21 major microspecies of quinolones and 
39 sulfonamide compounds. In both classes, significant 
descriptors related to retention behavior in the chro-
matographic system were selected using the advanced 
FFA and then incorporated into building the QSRR mod-
els using the SVR algorithm. The two models performed 

Fig. 3  Y-randomization validation results for the FFA-SVR for (A) quinolone and (B) sulfonamide modeling
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well on both the training and the validation levels. In 
quinolones, the regression coefficients of the training 
set prediction (R2

cal), CV LOO (q2
LOO), and the exter-

nal test set (R2
pred) were 0.931 (R2

adjusted = 0.926), 0.808, 
and 0.879, respectively, with RMSE of 0.114, 0.163, and 
0.148, respectively. In sulfonamides, the regression coef-
ficients of the training set prediction (R2

cal), CV L10%O 
(q2

L10%O) and the external test set (R2
pred) were 0.900 

(R2
adjusted = 0.896), 0.812 and 0.820, respectively, with 

RMSE of 0.240, 0.450, and 0.328, respectively. In the 
Y-randomization validation test, the two models had 
cRp

2 values of 0.687 and 0.791 for quinolones and sulfon-
amides, respectively, indicating that both models are sig-
nificant and were not obtained by chance.
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