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Leveraging structural and 2D‑QSAR 
to investigate the role of functional group 
substitutions, conserved surface residues 
and desolvation in triggering the small 
molecule‑induced dimerization of hPD‑L1
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Abstract 

Small molecules are rising as a new generation of immune checkpoints’ inhibitors, with compounds targeting the 
human Programmed death-ligand 1 (hPD-L1) protein are pioneering this area of research. Promising examples 
include the recently disclosed compounds from Bristol-Myers-Squibb (BMS). These molecules bind specifically to 
hPD-L1 through a unique mode of action. They induce dimerization between two hPD-L1 monomers through the 
hPD-1 binding interface in each monomer, thereby inhibiting the PD-1/PD-L1 axis. While the recently reported crystal 
structures of such small molecules bound to hPD-L1 reveal valuable insights regarding their molecular interactions, 
there is still limited information about the dynamics driving this unusual complex formation. The current study 
provides an in-depth computational structural analysis to study the interactions of five small molecule compounds in 
complex with hPD-L1. By employing a combination of molecular dynamic simulations, binding energy calculations 
and computational solvent mapping techniques, our analyses quantified the dynamic roles of different hydrophilic 
and lipophilic residues at the surface of hPD-L1 in mediating these interactions. Furthermore, ligand-based analyses, 
including Free-Wilson 2D-QSAR was conducted to quantify the impact of R-group substitutions at different sites of 
the phenoxy-methyl biphenyl core. Our results emphasize the importance of a terminal phenyl ring that must be pre-
sent in any hPD-L1 small molecule inhibitor. This phenyl moiety overlaps with a very unfavorable hydration site, which 
can explain the ability of such small molecules to trigger hPD-L1 dimerization.
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Introduction
Immunotherapy is emerging as a transformative para-
digm in the treatment of cancer. This new paradigm 
relies on releasing the brakes of the immune system, 

allowing it to recognize and destroy cancer cells [1]. 
One of these brakes is the Programmed cell death pro-
tein 1 (PD-1), where blocking this receptor and its ligand, 
PD-L1 with monoclonal antibodies (MABs) has revo-
lutionized cancer treatment over the last few years [2]. 
However, despite their outstanding success, these MABs 
still have numerous disadvantages, including cost and 
side-effects [3–6]. Second-generation MAB checkpoint 
inhibitors target either the receptors or ligands involved 
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in non-PD-1 pathways. Promising examples target the 
cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) 
receptor (e.g. Ipilimumab [7]). However, with all of these 
MABs a spectrum of severe immune-related adverse 
events (irAE) started to emerge [3], which include rash, 
diarrhea, colitis and hepatotoxicity. Although combining 
multiple immune checkpoints inhibitors has enhanced 
the overall efficacy [8], their side-effects are still of con-
cern. Furthermore, these MABs are very expensive to 
manufacture and administer, making them financially 
inaccessible to many patients. For example, the treat-
ment cost per quality-adjusted life year for a patient with 
metastatic melanoma using anti-CTLA-4 MAB exceeds 
$500,000 (USD) [9, 10]. In this context, the introduc-
tion of small molecule immune checkpoints’ inhibitors 
represents a third-generation wave of alternatives to 
these MABs. These small molecules have the potential of 
enabling the efficient treatment of many existing cancer 
types at a reasonable cost and manageable side effects.

Of all immune checkpoints, PD-L1 seems to be the 
most promising target for small molecule inhibitors [11–
13]. PD-L1 (also known as CD274 or B7-H1) is constitu-
tively expressed on antigen presenting cells (APCs) and 
on the surface of non-hematopoietic organs such as lung 
and heart. PD-L1 and its homolog, PD-L2 (37% sequence 
homology), are the two well-characterized endogenous 
protein ligands for PD-1 [14–16]. The PD-1/PD-L1 path-
way suppresses T-cells activity, up-regulates regulatory 
T cells (Treg) that are involved in promoting self-toler-
ance and reduces autoimmunity [17, 18]. PD-L1 was 
also shown to bind to B7-1, another immune-checkpoint 
ligand, to deliver an inhibitory signal to the immune sys-
tem [19]. The overexpression of PD-L1 on the surface 
of many types of cancer cells attenuates the directed 
immune response against these cells, leading to a state 
of immune escape [20–23]. Directed therapy against the 
PD-L1 ligand is a successful strategy to reactivate the 
immune system to recognize and kill these cancer cells 
[24, 25].

Researchers at Bristol-Myers-Squibb (BMS) have pio-
neered the discovery of small molecule inhibitors against 
PD-L1. They have recently disclosed several patents 
describing the chemical structures, synthetic routes and 
the homogeneous time-resolved fluorescence (HTRF) 
binding assay data for a number of their compounds. This 
includes a new class of (2-methyl-3-biphenylyl) methanol 
derivatives that serve as potent (nano-molar) inhibitors 
of the human PD-1/PD-L1 interactions [26, 27]. Two fol-
low-up X-ray structure studies have confirmed the bind-
ing mode of these small molecules onto a groove formed 
at the interface between two PD-L1 monomers, at their 
PD-1 binding faces [28, 29]. Using a combination of clas-
sical and accelerated MD simulations, we have recently 

investigated the nature of this binding site. It was evi-
dent from our analysis that this site is a cryptic site that 
is transiently accessible for a limited period of time [30]. 
The clinical benefits of many small molecules from this 
series have been demonstrated in humanized mouse 
models [31].

The current study provides a “deep-dive” into the 
dynamicity and druggability of this PD-L1 cryptic site. 
Here, we describe and discuss the results obtained from 
a detailed in silico structural characterization of five 
small molecule organic compounds targeting the PD-L1 
protein. The chemical structures of these molecules are 
shown in Fig.  1. The potential binding modes of these 
compounds are discussed below in light of in  vitro 
characterization data obtained by our group as well as 
additional data reported in the literature [32]. The com-
putational methods used in this study include molecular 
docking simulations, molecular dynamics simulations, 
binding free energy calculations and Computational 
Solvent Mapping through Grid Inhomogeneous Solva-
tion Theory (GIST) and Hydration Site Analysis. Fur-
thermore, ligand-based analyses, including Free-Wilson 
2D-QSAR was conducted to quantify the impact of 
R-group substitutions at different sites of the phenoxy-
methyl biphenyl core. A virtual library of potential mol-
ecules was built around the core, scored and made ready 
for the next steps. We hope the findings described in 
this work can advance the development of more potent 
PD-L1 inhibitors and be translated to other immune 
checkpoint receptors.

Methods
Preparation of the protein–ligand complexes
The X-ray crystal structure of hPD-L1 dimeric structure 
co-crystallized with a small molecule compound from a 
recent BMS patent (PDB ID: 5J89) was used to prepare 
all protein-small molecules’ complexes described below 
[28]. The initial PDB structure was prepared using the 
protein preparation wizard in Schrodinger software [33]. 
Preparation includes the completion of missing protein 
residues and heavy atoms, building disulphide bonds, 
the addition of hydrogen atoms and partial charges, and 
the proper assignment of the protonation states of titra-
ble amino acid residues at pH 7. Finally, restrained par-
tial minimization of the complex was performed and 
the restraints were released when the root-mean-square 
deviation of the heavy atoms reached 0.3  Å. The recent 
forcefield from Schrodinger, namely OPLS3-FF [34], was 
used.

The chemical structures of all studied molecules (see 
Fig.  1) were constructed using Maestro and were pre-
pared using ligprep. Preparation included adding hydro-
gen atoms, assigning proper protonation states at the 
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corresponding pH (i.e. pH = 7) as well as optimizing 
ligand geometries. Following ligand preparation, molec-
ular docking simulations were performed through the 
standard precision mode of Glide (Glide SP), and the 
best scoring pose of each ligand (according to the Glide 
SP score) was saved for further in silico structural analy-
sis. To validate the docking protocol, the co-crystallized 
ligand (#5J89LIG) was redocked to the crystal structure. 
The resulting root mean square deviation (rmsd) value 
of the top-scoring poses (according to the glide docking 
score) was found to be < 1 Angstrom. The deviation from 
the co-crystalized ligand was mainly centered around the 
linear solvent-exposed structural motif of the compound.

The five compounds selected in this work include 
a small molecule that was disclosed by BMS and was 
described in a recent crystal structure with PD-L1 (PDB 
ID: 5J89) [28]. This compound is referred to as #5J89LIG 
in this study. The selected compounds also include two 
reported PD-L1 inhibitors, referred to as #BMS135, 
#BMS136, used internally by our group as positive con-
trols in our immune-checkpoint program [32]. In addi-
tion, we selected a minimal active fragment that was 
reported in a recent NMR-based study by Skalniak et al. 
[35], named here as #BMSMINA. This fragment repre-
sents a minimal requirement to induce a PD-L1 dimeri-
zation as indicated in the H1-N15 HMQC NMR chemical 
shift experiments conducted by Skalniak et al. It includes 
the biphenyl ring system (of the 2-methyl-3-biphenylyl 

methanol motif ) which is mandatory for binding and for 
triggering the dimerization of two PD-L1 protein mono-
mers. It is important to note that molecules lacking this 
biphenyl ring system failed to show any activity towards 
PD-L1 [35].

Preparation of protein–protein complexes
In addition to studying the interactions of PD-L1 with 
small molecules, we also studied the interactions of 
PD-L1 with PD-1 and PD-L1 in the absence of small mol-
ecule inhibitors. This was done to understand the molec-
ular mechanism utilized by such inhibitors to induce a 
new receptor-side dimer formation in PD-L1. Towards 
this goal, we studied the structures of three additional 
PD-L1-mediated complexes. This included an X-ray crys-
tal structure of human PD-1/PD-L1 complex (PDB code: 
4ZQK) [36, 37]; a physiological PD-L1/PD-L1 dimer 
(the back-to-back dimer as described in PDB code: 5JDR 
[38]), and a small molecule induced dimer (face-to-face 
dimer), after removing the bound small molecule. For the 
third system, the PDB: 5J89 structure was used as a start-
ing structure, and the small molecule gluing ligand was 
removed from this complex [28].

Molecular dynamics simulations
In total, we ran seven classical MD simulations for the 
above-mentioned systems. That is four MD simulations 
for PD-L1 with bound ligands and three simulations for 

Fig. 1  The chemical structures of the molecules under study; #5J89LIG, #BMS135, #BMS136, and BMSMINA



Page 4 of 20Ahmed et al. BMC Chemistry           (2022) 16:49 

PD-L1 in complex with either PD-1 or PD-L1 with no 
ligands bound. Before starting any MD simulation, each 
protein–ligand/protein–protein complex was prepared 
through the tleap module in AMBER16 [39]. For each 
protein–ligand complex, the atomic partial charges of the 
ligand were assigned from the resulting electronic wave 
functions calculated through the semi-empirical AM1 
method and fitted to the atomic centers by the restrained 
electrostatic potential (RESP) procedures in antechamber 
[40, 41]. Each complex was then immersed in a cubic box 
of TIP3P water model with a minimum of 12 Å distance 
between the box boundaries and the closest protein/
ligand atoms, neutralized with counter ions and made 
ready for simulation.

Our explicit solvent MD simulation protocol involved 
four main stages: (i) energy minimization, (ii) NVT heat-
ing, (iii) NPT equilibration and (iv) NPT production sim-
ulations. The energy minimization stage was performed 
over 4 consecutive rounds. The first minimization round 
was conducted for 5000 minimization steps, for which 
the first 4000 steps were performed according to the 
steepest descent (SD) protocol and the last 1000 steps 
were conducted according to the conjugated gradient 
(CG) protocol. In the first minimization round, a strong 
100 kcal  mol−1 Å−2 harmonic constraint was applied to 
the protein and ligand atoms. This constraint was gradu-
ally released in the following three minimization rounds 
to 50, 5 and 0  kcal  mol−1  Å−2. Following minimization, 
each system was gradually heated to 300  K in 50,000 
steps using the NVT ensemble, performed with an inte-
gration timestep of 1 fs and a weak harmonic restraint of 
5  kcal  mol−1  Å−2. The equilibration phase of the simu-
lation was performed over 4 consecutive rounds. In the 
first round, 25,000 equilibration steps were performed 
using the NPT ensemble with an integration timestep of 
2 fs and a force constant of 1 kcal mol−1 Å−2 on the heavy 
atoms of the protein and ligand involved in the complex. 
These constraints were gradually reduced sequentially 
as 0.1 kcal  mol−1 Å−2 for 50 ps, 0.01 kcal  mol−1 Å−2 for 
50 ps and finally 0 kcal  mol−1 Å−2 for 1 ns. For the pro-
duction simulation, the 120  ns long MD trajectory was 
generated by combining 6*20 ns MD simulation trajecto-
ries, using an integration timestep of 2 fs. Throughout the 
simulation, temperature was controlled through the Lan-
gevin thermostat [42] and the pressure was kept at 1 bar 
using the Berendsen barostate [43].

Binding free energy calculations
All MM-GBSA calculations in this work were carried out 
using the MMPBSA.py utility in AMBERTools16 [44]. 
The last 100  ns of the 120  ns long MD simulations tra-
jectory was selected to carry out the MM-GBSA binding 

free energy calculations as well as other dynamics’ analy-
ses. The MM-GBSA method for estimating binding free 
energies has been applied in several studies with various 
levels of success [45–47].

According to the MM-GBSA protocol, implemented in 
AMBER, the protein–ligand binding affinity (ΔGbind) is 
calculated as follows:

In the aforementioned equation, Gcomplex, Gprotein and 
Gligand are the calculated free energies of the complex, 
the protein and the ligand, respectively, over the con-
sidered portion of the MD simulation trajectory. ΔEMM 
is the gas-phase interaction energy between the protein 
and the bound ligand, which represents the summation 
of the electrostatic (ΔEELE) and van der Waals (ΔEvdW) 
energy terms. ΔGsol is the solvation energy term that 
includes the polar (ΔGpol) and the non-polar (ΔGnonpol) 
contributions. In this work, the polar contribution to the 
solvation free energy was calculated with the Generalized 
Born (GB) approximation model. The non-polar part was 
obtained as (ΔGnonpol = γSASA + β). In this equation, 
SASA is the calculated solvent-accessible surface area; γ 
and β are constants and were fixed to 0.0072 kcal/mol/Å 
and 0.0  kcal/mol, respectively. The MMGBSA binding 
energies were estimated in two different scenarios; (i) 
the small molecule is a ligand that binds to the receptor 
which is formed from two loosely bound PDL1 protein 
monomers; and scenario (ii) the second chain of PD-L1 
is a ligand that binds to a receptor formed from a small 
molecule which is loosely bound to another PD-L1 pro-
tein monomer. Unless otherwise specified, all binding 
energy calculations displayed in the figures or discussed 
in the text are the mean AMBER-MMGBSA binding 
energy values collected over 12,488 MD frames, with 
error bars denoting standard deviations from the mean. 
12 MD frames were evenly sampled from the MD trajec-
tory to carry out the normal mode analysis and estimate 
the entropic changes.

Computational solvent mapping through grid 
inhomogeneous solvation theory (GIST) and hydration site 
analysis (HSA)
All protein–ligand/protein–protein binding reactions 
are usually preceded by displacing water molecules from 
the corresponding hydration sites at the interacting sur-
faces [48, 49]. Given the unique binding mechanism of the 
reported PD-L1 inhibitors, we were interested in investigat-
ing if water has any effect on triggering this unusual bind-
ing mode. Towards that, we analyzed the thermodynamic 
properties of water molecules surrounding the PD-L1 pro-
tein, through quantifying their enthalpy and entropy. A 

�Gbind = �EMM + �Gsolv−T�S
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deep understanding of these two terms can shed light on 
the observed binding mechanism and help designing better 
molecules with enhanced biological activities.

From the plethora of computational techniques avail-
able in the literature to investigate the thermodynamic 
properties of water molecules in biological systems, the 
Grid Inhomogeneous Solvation Theory (GIST) and Hydra-
tion Site Analysis (HSA) stand out. Whereas HSA outputs 
these thermodynamic properties per hydration site, GIST 
discretizes these quantities onto three-dimensional grids. 
GIST was first proposed by Nguyen et al. [50] in a semi-
nal study aimed at understanding the hydration proper-
ties of the cucurbit[7]uril receptor. The method has been 
applied successfully in a number of biomolecular research 
studies aimed at quantifying the thermodynamic proper-
ties of water molecules at various ligand-binding as well as 
enzyme active sites [51, 52].

From a technical point of view, GIST and HSA accepts 
the output (MD frames) of a restrained, explicit solvent 
biomolecular MD simulation and uses these MD frames to 
calculate localized thermodynamic properties of water at a 
given hydration site. In GIST, these thermodynamic prop-
erties include water densities, enthalpies, entropies, and 
free energies within discretized three-dimensional rectan-
gular grid boxes (voxels, k), usually of a ~ 1 A3 volume. The 
outputs of a GIST and HSA analyses are immense, includ-
ing water occupancies and several thermodynamic quan-
tities to estimate solute–solute as well as solute–solvent 
interactions. For a detailed list of full GIST and HSA out-
puts, please refer to the literature, examples given here [52], 
here [52] and here [51]. The corresponding AMBER docu-
mentation on GIST and HSA analyses (GIST and HSA are 
implemented in CPPTRAJ) is another valuable source to 
serve that purpose. A short list of these thermodynamic 
quantities that we found useful is the following:

ΔEsw: Average absolute solute-water binding energy at 
hydration site.

ΔEww: ½ Average absolute water-water binding energy at 
hydration site. The one-half factor is added to prevent the 
double counting.

 − TΔSsw: single-body (one-water) translational and ori-
entational entropies in, relative to bulk, normalized to the 
number of waters in the hydration site.

In this context, the absolute total enthalpies (ΔH) of 
water molecules (normalized to a single water molecule) 
can be written as:

Therefore, the free energies of water molecules (normal-
ized to a single water molecule) at can be written as:

�H =�Esw + 2 ∗ (�Eww −�Ebulk)

�G =�H − T�Ssw

Thus, unfavourable waters (easy to displace, unhappy 
water) will generally have higher free energies than 
favourable (hard to displace, happy water) ones [52, 53].

We have also implemented a scoring system to quantify 
the effect of each site. Multiplying the water occupancies 
at a given site by the total energies (ΔEsw + ΔEww) should 
give an estimate of this effect, provided that the energy of 
bulk water is considered. In our subsequent analysis, we 
will refer to this score as the site score (kss), which could 
be given by:

Where −  9.565 is the TIP3P water model mean energy 
(Eww,bulk) (kcal/mol/water) of a single water molecule, as 
suggested by a study from Nakano et al. [54]. The lower 
the Kss score the harder the displacement of water mol-
ecules from this site, and vice versa.

In the current study, we used a single chain of the 5J89 
PD-L1 protein structure as an input for a restrained MD 
simulation. All simulation details, including simulations 
set-up, minimization and equilibration simulations are 
similar to what was discussed earlier in this study with 
the exception that the production simulation was per-
formed for 120 ns (6*20 ns) ns with a 2 kcal  mol−1 Å−2 
restrains on protein heavy atoms. Prior to performing 
the GIST and HSA analyses, all frames of the trajec-
tory were RMS-fitted to the starting structure of the 
trajectory. This was critical to eliminate the effect of the 
global translational and rotational motions of the protein 
atoms. Fitting was performed on the Cartesian coordi-
nates of all protein heavy atoms. We used a grid spacing 
of 0.5 Å, and the calculations were performed for 60,000 
frames spaced at 2  ps interval. GIST and HSA analyses 
were performed using the CPPTRAJ implementation in 
AMBER16.

2D QSAR modeling: Free Wilson analysis and virtual library 
enumeration
To further investigate the impact of the different func-
tional group substitutions on the biological activities of 
PD-L1 inhibitors, we employed 2D QSAR modeling. Spe-
cifically, we adopted the Free Wilson analysis (FWA) on 
the 3-(Phenoxymethyl)biphenyl series. In the FWA, the 
structural features of the ligands are directly correlated 
with the observed biological activities. In practice, the 
chemical structures of a closely related series of bioactive 
ligands are decomposed into several R-groups, decorat-
ing a core scaffold. Once the core scaffold has been deter-
mined, each substitution site in each molecule in the 
series is one-hot encoded (i.e. featurized) according to 
the presence or absence of a given functional group from 
the pool of R-groups substitutions in the entire series. 

Kss = SiteOccupancy (�Esw + �Eww−9.565)
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Subsequently, an explainable regression model is built 
to correlate the biological activities (dependent variable) 
to the structural features (independent variables). The 
signs of coefficients of this model represent the correla-
tion direction and the values represent the magnitude to 
which the corresponding functional group modulates the 
biological activity. Free-Wilson analysis is a gold stand-
ard technique in 2D QSAR modeling and has been suc-
cessfully applied in many studies to understand the effect 
of functional groups substitutions in several medicinal 
chemistry campaigns [55–57].

Our analysis started by collecting a representative 
dataset with corresponding activities. For this purpose, 
a local copy of the entire BindingDB was downloaded 
from (https://​www.​bindi​ngdb.​org/​bind/​chems​earch/​
marvin/​SDFdo​wnload.​jsp?​all_​downl​oad=​yes) as a sin-
gle tab-separated file (BindingDB_All_2021m7.tsv.zip). 
Records with activity flags against the Programmed cell 
death ligand 1 protein (PD-L1) were selected. Our QSAR 
analysis was focused only on the original, BMS series 
that had the 3-(Phenoxymethyl)biphenyl core, therefore, 
dimerized ligands, ligands that belong to other core scaf-
folds, or ligands that bear the dioxane-biphenyl core, as 
well as ligands missing activity or structural information, 
were not included. Furthermore, the bioactivity values of 
ligands with multiple activity records were averaged and 
duplicate records were dropped (a single record for each 
ligand was kept for analysis). The final dataset contained 
403 unique ligands with an IC50 values range of 4.55 nM 
to 14,250.0  nM. The IC50 values were converted to the 
log scale (pIC50 = −  log(IC50)). The dataset was used as 
the input for building the Free-Wilson-based regression 
model.

For the Free-Wilson analysis, the 3-(Phenoxymethyl)
biphenyl scaffold was considered as a core scaffold for 
the selected dataset, and seven R groups substitutions 
sites were determined on this core. Although many novel 
and potent BMS-like scaffolds have been recently dis-
closed by several groups that are actively working in the 
field [58, 59], the scarcity of available datasets prevented 
us from performing similar analyses for these scaffolds. 
We are currently working on collecting more data on 
these scaffolds and the results will be presented in future 
studies.

The Free-Wilson GitHub repository (https://​github.​
com/​PatWa​lters/​Free-​Wilson) was used to; (i) decom-
pose the input chemical series to the corresponding, 
R-groups one-hot encoded vector, (ii) build the ridge 
regression model of the input molecules; ii) enumerate 
a virtual library of unexplored substituent combinations 
to create novel molecules and predict the pIC50 values 
of these novel molecules using the developed regres-
sion model. Functional groups’ coefficients (variable 

weights) were also generated. For the regression model, 
the RidgeCV model was used. RidgeCV is a regression 
model with a built-in Leave-One-Out Cross-Validation 
protocol to prevent overfitting. For more details about 
the model, please refer to the corresponding scikit-learn 
documentation:

https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​
rn.​linear_​model.​Ridge​CV.​html

Results and discussion
One of the hallmarks of cancer is the ability of tumors to 
evade immune responses [60]. CD8+ cytotoxic T lym-
phocytes (CTLs) play a crucial role in eliminating tumor 
cells. However, the destructive capacity of CTLs is pro-
gressively dampened and CTLs become dysfunctional 
during cancer development. This is mediated by expres-
sion of several receptors (e.g. PD-1 and CTLA-4) on 
CTLs, called immune checkpoints. Tumors can attenu-
ate the activity of CTLs by upregulating ligands for these 
receptors [61] and, hence, blocking these interactions 
restores exhausted CTL function and reactivates the 
immune system to recognize and kill tumor cells [62, 63].

In this context, monoclonal antibodies targeting the 
immune checkpoints’ receptors have revolutionized 
cancer therapy for the last decade. However, their cost 
and frequent severe side effects represent a vast barrier 
against their broad adoption in healthcare systems. Small 
molecule immune checkpoints inhibitors, hence, offer a 
practical rectification to this problem, with inhibitors tar-
geting PD-L1 leading the way towards this goal. In order 
to understand the mode of action of current PD-L1 small 
molecule inhibitors, with the ultimate goal of translating 
this knowledge to other immune checkpoints’ targets, we 
focused on studying the binding of several PD-L1 inhibi-
tors. The chemical structures of these compounds are 
shown in Fig. 1. We used the co-crystalized compound, 
namely #5J89LIG (PDB ID: 5J89) as the basis of compari-
son for all other small molecules. #5J89LIG is an efficient 
hPD-1/hPD-L1 inhibitor with an IC50 value that is given 
by 18.0  nM (CHEMBL Assay ID: CHEMBL4017391). 
Compound #BMSMINA has been described in a recent 
study by Skalniak et al. [35], confirming the importance 
of the biphenyl ring moiety as the minimal structural ele-
ment required to elicit a bio-molecular association sig-
nal in NMR based binding experiments. The study also 
showed that a mono-phenyl ring system failed to show 
any binding activity in the performed 2D-NMR binding 
experiment.

Conventional and non‑conventional protein–protein 
interaction (PPI) inhibitors
The observed inhibition mechanism of the hPD-1/hPD-
L1 PPI by the molecules reported by BMS is relatively 

https://www.bindingdb.org/bind/chemsearch/marvin/SDFdownload.jsp?all_download=yes
https://www.bindingdb.org/bind/chemsearch/marvin/SDFdownload.jsp?all_download=yes
https://github.com/PatWalters/Free-Wilson
https://github.com/PatWalters/Free-Wilson
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
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uncommon compared to classical PPI inhibition. The 
vast majority of “conventional” PPI interaction inhibi-
tors tend to bind to one of the interacting proteins at 
the binding interface with the other protein, hence, pre-
venting the PPI [64–66]. An example of this approach 
is navitoclax (ABT263), a small molecule discovered by 
Abbott laboratories, which disrupts the interactions of 
the antiapoptotic protein, Bcl-2, with apoptosis-execut-
ing proteins (e.g. Bad, Bid and Bak) [67]. In addition to 
this classical PPI inhibition approach, certain examples 
in the literature show that it is also possible to disrupt 
a PPI through stabilizing protein–protein complexes. 
This strategy relies on the fact that proteins are highly 
dynamical macromolecules that usually exert their bio-
logical functions through a tightly controlled cascade of 
association-dissociation events with their bio-molecular 
partners [68]. Therefore, an extra stabilization of a physi-
ologically relevant protein–protein complex or the for-
mation of a non-physiological complex can lead to the 
same overall biological effects resulting from a conven-
tional PPI inhibition. That is disrupting the physiologi-
cal pathway. Examples of small molecules that achieve 
PPI inhibition through this protein–protein stabiliza-
tion approach include dexrazoxane, which stabilizes 
the closed conformation of the DNA topoisomerase II 
homodimer [69], and 1EBIO, which stabilizes calmo-
dulin: potassium-channel interactions [70, 71]. In these 
complexes, the small molecule works as a “bio-molecular 
glue”, usually by occupying a pocket between the two pro-
teins and preventing them from performing their normal 
biological functions. PPI inhibition through a protein–
protein stabilization mechanism is the one harnessed by 
the reported PD-L1 small molecule inhibitors discussed 
in the current study. They act by stabilizing a non-physio-
logical hPD-L1/h–PD-L1 protein–protein dimer.

The structural organization Of hPD‑L1
Human programmed cell death 1 protein (hPD-L1) is a 
290 amino acid long protein that belongs to the B7 fam-
ily. Structurally, hPD-L1 spans the cellular membrane 
from inside (a cytoplasmic domain), to the extracellular 
matrix (an extracellular domain) through a membrane 
spanning ⍺-helix [30, 72]. Its extracellular domain is com-
posed of two main domains; an Ig-like V-type domain 
(IgV domain, amino acids 19–127) and an Ig-like C2-type 
domain (IgC domain, amino acids 133–225). These two 
subdomains adopt the known sandwich-like β-sheet 
composition (immunoglobulin fold). The IgV domain of 
hPD-L1 is the functionally relevant structure of hPD-L1 
and is responsible for the binding activities of hPD-L1 to 
endogenous bio-molecules (e.g. hPD-1 and B7-1) as well 
as exogenous molecules, including antibodies as well as 

small molecules. For more details regarding the structure 
and dynamics of the IgV domain of hPD-L1, please con-
sult our recently published paper [30].

Under physiological conditions, there is strong experi-
mental evidence that the extracellular domain of soluble 
and membrane-bound hPD-L1 exists as a back-to-back 
dimer [73]. Intriguingly, the hPD-1/h-PDL1 crystal 
structure showed that it is only the monomeric form of 
hPD-L1 that forms a complex with hPD-1 [36]. It is not 
yet obvious, however, whether it is a true or a mislead-
ing observation arising from the fact that hPDL-1 in the 
hPD-1/h-PDL1 co-crystal structure (e.g. PDB: 4ZQK) 
only comprised from the IgV domain, i.e. truncated. 
Regardless of its oligomeric state, a physiologically active 
hPD-L1 has its IgV exposing a free interface to bind to 
hPD-1. In the presence of small molecule PD-L1 inhibi-
tors such as those discussed in this work, the two PD-L1 
IgV subdomains form a sandwich-like hPD-L1/BMS/
hPD-L1 complex. In this complex the compound binds 
at the hPD-1 binding interface within hPD-L1, blocking 
hPD-L1 from binding to hPD-1; hence the name non-
physiological dimer.

Molecular dynamics simulations of a small‑molecule 
bound to hPD‑L1 dimers
Overall, we ran seven MD simulations, comprising five 
small molecule-bound systems and three protein–protein 
interaction systems (see “Methods” section for details). 
To confirm the suitability of the generated MD simula-
tions’ trajectories for further analysis, we first calculated 
the average root mean square deviation (RMSD) values 
for all studied systems. To do that we used the first frame 
of each production simulation as a reference. Our RMSD 
analysis revealed that the conformational dynamics of the 
complexes were consistent throughout the entire trajec-
tories (see Fig. 2). For example, the average ligand RMSD 
values for compounds 5J89LIG, BMS135, BMS136, BMS-
MINA are 1.1 Å, 0.63 Å, 0.46 Å, and 0.39 Å, respectively. 
Being a small rigid fragment, BMSMINA showed a sta-
ble ligand RMSD value, which was comparable to the rest 
of investigated compounds. From a protein’s perspec-
tive, among all hPD-L1 RMSD values, the BMSMINA 
system demonstrated the least stability overall with an 
average protein backbone RMSD value of 2.62  Å and a 
maximum of 4.15 Å. The average RMSD values for other 
compounds ranged from 1.37 Å for 5J89LIG to 2.06 Å for 
BMS135 and their maximum RMSD values ranged from 
2.14 Å for 5J89LIG to 3.22 Å for BMS136 (see Fig. 2 for 
details).

Figure  3 shows the modes of binding of the studied 
compounds as predicted by MD simulations. As shown 
in Fig.  3, for all compounds, the terminal phenyl ring 
occupies a shallow pocket at chainA formed by residues 
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MET115A, SER117A, ILE54A and TYR56A. The second 
phenyl ring of the biphenyl ring system is located closer 
to chainB, interacting with residues MET115B, SER117B, 
and ILE54B. Although the formed complexes lack the 
symmetry with respect to the orientation of the hPD-L1 

IgV domains, it is evident that the majority of the amino 
acid residues at the interface surrounding the bound mol-
ecules are common between the two hPD-L1 monomers. 
Additionally, it is obvious that the biphenyl ring system 
is shared between the two hPD-L1 monomers. This can 

Fig. 2  a Ligand and b receptor RMSD profiles of the studied structural complexes during the 100 ns production MD simulations
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explain the necessity for the presence of the biphenyl 
ring system as a minimal structural element required for 
binding to hPD-L1. The second part of the molecule, (i.e. 
the methoxy-pyridine-amino-ethyl-acetamide tail) occu-
pies a rather hydrophilic site of the dimer. This hydro-
philic tail forms strong H-bonds with the surrounding 
residues, including ASP122A and LYS124A. The pyridine 
ring is strongly π-stacked with TYR56B.

Free binding energy analysis
To shed more light on the binding energetics of the stud-
ied molecules, we performed binding energy analyses 
using the MM-GBSA approach (see “methods” section 
for details). As shown in Fig.  4a, the total binding free 
energy values of the different ligands under study are 
quite comparable. All ligands exhibited binding affini-
ties less than − 15 kcal/mol. While the minimum biphe-
nyl fragment (#BMSMINA) showed a binding energy of 
− 16.7 ± 6.8 kcal/mol, as expected, all other larger ligands 

(i.e. #5J89LIG, #BMS135, #BMS136) showed better bind-
ing affinities of less than − 19.0 kcal/mol, with compound 
#BMS136 shows the lowest binding affinity that is given 
by − 26.7 ± 6.5 kcal/mol.

The above free energy analyses assumed that the small 
molecules are bound to a hPD-L1 dimer, stabilizing the 
interactions of the two monomers. However, it is also 
possible that a small molecule can bind to this dimer in 
a different scenario. That is, a small molecule can ini-
tially associate with a PD-L1 monomer and this transient 
complex and then recruit another PD-L1 monomer to 
seal the binding site and form a stable small molecule-
sandwiched PD-L1 dimer. To mimic this scenario, and 
to study its free energy of binding, we re-calculated the 
MM-GBSA scores of the different complexes, after con-
sidering one a monomer (e.g. chain A of hPD-L1) bound 
to a small molecule as a receptor and the second hPD-
L1 chain (e.g. chain B) as the ligand. This is illustrated in 
Fig. 4b, which shows the association of chain B with chain 

Fig. 3  Structural comparison of the protein ligand complexes. a The binding geometry of the 5J89LIG ligand in the 5J89 crystal structure, b–d 
the predicted binding geometries of the corresponding ligands within the PD-L1 binding sites. Ligand atoms are shown in the blue and sticks 
representation (carbon: pink, oxygen:red, nitrogen:blue, hydrogen: white), receptor atoms are displayed in the stick representation (carbon: grey, 
oxygen:red, nitrogen:blue, hydrogen: white)
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A of hPD-L1 in the presence of any of the small mole-
cules (i.e. #5J89LIG, #BMS135, #BMS136, and #BMS-
MINA). For example, the presence of #BMSMINA lead 
to a free energy of −  22.2 ± 13.5  kcal/mol for the hPD-
L1 dimer formation, indicating that the minimal active 
fragment that occupies the symmetric pockets on the 
surfaces of the two hPD-L1 chains is sufficient to induce 
a stable dimer formation. Any further improvement 
to the binding free energies of the formed complexes is 
due to the extra stabilization gained from the interac-
tions of the additional pharmacophoric features in the 
larger small molecules with that present in hPD-L1 sur-
face (as described above). For example, in the presence of 
compound #5J89LIG, the free energy was estimated by 

− 31.3 ± 10.8 kcal/mol (i.e., an improvement of ~ 11 kcal/
mol from that of #BMSMINA). Similarly, the esti-
mated binding free energies for the complexes involving 
#BMS135, and #BMS136 are − 35.5 ± 11.3 kcal/mol, and 
− 25.3 ± 11.07 kcal/mol, respectively. From the perspec-
tive of chainB recruitment to chainA-ligand mechanism 
of complex formation, the free binding energy is con-
sistent with our recent IC50 measurements that showed 
#BMS135 to be a better inhibitor for the h-PD1/h-PD1 
interaction with an IC50 that is given by 79.1  nM com-
pared to #BMS136 with an IC50 of 96.7 nM. To the best 
of our knowledge, no IC50 measurement was conducted 
for #BMSMINA, which is expected to be a weak inhibitor 
anyway being a small fragment. Whether the agreement 

Fig. 4  The estimated total AMBER/MM-GBSA (kcal/mol) binding energies of the protein ligand complexes. The binding energies were estimated 
according to two different scenarios; a the small molecule ligand is binding to a receptor composed of the PD-L1 dimer and b the second chain of 
the dimer (chainB) is treated as a ligand whereas chainA complex with the small molecule was treated as the receptor
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is a support of the proposed mechanism of complex for-
mation or just a mere coincidence requires simulating a 
large number of ligands with known inhibition data and 
this will be the focus of a future work.

Interactions of PD‑L1 chains in the absence of a small 
molecule
It is well-known that the affinity and specificity of PPIs 
are often determined and enhanced by the levels of geo-
metric and chemical complementarities of two proteins. 
In particular, the electrostatic forces are considered as 
important factors in protein–protein complex forma-
tion [74–77]. In the case of immune checkpoints proteins 
such as hPD-L1, their surfaces display multiple charac-
teristics such that they could interact with the same type 
of proteins on one side to form oligomer complexes. They 
can interact with other protein partners (e.g. hPD-1 in 
the case of hPD-L1) on the opposite face to form hetero-
meric complexes. However, the small molecules studied 
here tend to induce a dimerization of two hPD-L1 mono-
mers on their heteromeric complexation faces, thereby 
preventing a normal hPD-1/hPD-L1 interaction. While 
our MD simulations-based binding free energy analy-
ses presented above was able to identify key residues on 
the hPD-L1 surface that are involved in small molecule-
induced dimerization, it is not clear which mechanism 
is preferred for such binding. That is whether the small 
molecule inhibitor binds to an existing hPD-L1: hPD-L1 
dimer, or it binds first to a hPD-L1 monomer and then 
attracts another monomer to form a dimer complex. 
To answer this question, we studied the interactions 
of an apo hPD-L1 dimer (i.e., a hPD-L1 dimer struc-
ture obtained after removing the small molecule from 
the complex) using 75  ns long MD simulations. Dur-
ing these simulations, we applied a physical restraint of 
0.5 kcal mol−1 Å−2 on the backbone of the residues form-
ing the GF strands (i.e. residues 33–42 and 93–105) in the 
two PD-L1 chains. Since these minimal restraints were 
applied on the face opposite to where the small molecule 
binds (see Additional file  1: Fig. S1a), these restraints 
help compensate for the loss of the bound small mol-
ecule, which mediates the binding of and tether the sur-
faces of two hPD-L1 chains at a close distance during the 
simulation.

Initially, we tested the stability of the apo-systems using 
MD simulations. The backbone RMSD of the restrained 
apo-hPD-L1 dimer was almost similar to that of a ligand-
bound hPD-L1 complex with an average RMS fluctuation 
of ~ 0.26 nm (see Additional file 1: Fig. S1b). We then ana-
lyzed the interactions of hPD-L1 chains (through their 
heteromeric complexation faces) in the absence of a small 
molecule and compared them against those in a small 
molecule-bound complex (see Fig.  5 and the Additional 

file  1: Fig. S2). Our analyses indicated that two strong 
salt bridge interactions mediated by ARG113A/GLU58B 
(see Fig.  5a) and ASP61A/ARG113B (see Fig.  5b) made 
significant contributions to the stability of the bound 
systems (see in Fig.  2). These salt bridges are weakened 
by the absence of a small molecule in the apo-system. As 
shown in Fig.  5a, in the small molecule-bound system, 
the hydrogen bond (H-bond) distance between ARG113A 
and GLU58B throughout the simulation remains at dis-
tance less than 3.5 Å (a generally accepted threshold for 
H-bonds) [78]. However, the frequency of the ARG113A/
GLU58B H-bond within this threshold (i.e., ≤ 3.5 Å) was 
reduced by at least 40% in the apo simulation. Similar 
behaviour was observed in the H-bond distance for the 
ASP61A/ARG113B pair (see Fig. 5b), where the frequency 
of H-bond interactions between these two residues fell 
by ~ 40% in the simulation of apo complex. On the other 
hand, in the absence of a small-molecule intervention, 
the two hPD-L1 chains established unique inter-pro-
tein H-bonds that were not seen in the small molecule-
bound complex. For example, H-bonds within the two 
residual pairs such as ARG126A/GLU58B (see Fig.  5c) 
and ASP61A/TYR123B (see Fig.  5d) were only seen in 
the absence of a bound small molecule. This is evident 
from the clear shifts in the H-bond distances of the two 
pairs in the small molecule-bound and unbound com-
plex; the distances mostly stayed > 3.5 Å threshold in the 
former whereas it predominantly dropped within the 
threshold in the case of the latter (see Fig. 5c, d). In addi-
tion, two new H-bonds such as SER117A/GLY119B (see 
Fig. 5e) and TYR56A/ALA121B (see Figs. 5f ) were found 
to be strongly formed between the hPD-L1 chains in the 
absence of a small molecule. It is important to note that 
some of the residues that are involved in forming these 
H-bonds are only interacting in the apo complex. This 
includes TYR56, TYR123, and ALA121, which exhib-
ited significant contributions in the interactions with the 
bound small molecules (see Fig.  3). Taken together, our 
restrained MD simulations suggest that it is not possible 
for a small molecule to bind to an existing PD-L1 dimer 
(see Additional file 1: Fig. S2) and, therefore, it is hypoth-
esized that a small molecule most likely binds first to a 
hPD-L1 monomer and subsequently attracts another sol-
uble monomer to form a stable dimer complex.

Preferential binding of hPD‑L1 to other protein partners
At the molecular level, the biological environment is a 
densely packed crowd of thousands of bio-macromol-
ecules, with a high opportunity of frequent encoun-
ters [79]. Many of these encounters are non-specific in 
nature and do not lead to any physiological function. In 
particular, multiple potential protein partners, includ-
ing hPD-L1 itself, hPD-1, B7-1 and more, may surround 
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a hPD-L1 monomer. The balance between free hPD-L1 
and its affinity towards such potential binding partners 
firmly regulates the physiological functions of hPD-L1. 
To investigate the preference of hPD-L1 to bind any of 

these potential partners, we estimated the affinities of 
a hPD-L1 monomer to both hPD-L1 and hPD-1 in dif-
ferent settings. This included testing a hPD-L1/hPD-1 
complex, a physiological back-to-back hPD-L1/hPD-L1 

Fig. 5  The analyses of key hydrogen bond (H-bond) interactions in the small molecule-bound and unbound systems. The frequency of H-bond 
distances staying within or over a 3.5 Å threshold in different residue-residue pairs such as ARG113A/GLU58B (a), ASP61A/ARG113B (b), ARG126A/
GLU58B (c), ASP61A/TYR123B (d), SER117A/GLY119B (e), and TYR56A/ALA121B (f) are provided. Single letter codes of amino acids are used in the figure
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complex, and the non-physiological, small molecule-
mediated face-to-face hPD-L1/hPD-L1 dimer with and 
without bound small molecules. As discussed in the 
methods sections, the starting conformations of all these 
complexes were adopted from their corresponding crys-
tal structures. The simulations were then performed for 
120 ns and the last 100 ns of the simulations’ trajectories 
were used for analysis. Cartoon representations of these 
complexes are shown in Fig. 6a–d.

Figure 6e shows the estimated MMGBSA binding free 
energies for hPD-L1 in complex with different protein 
partners. The data represents the binding affinities of 
hPD-L1 in two physiological complexes, (a) with hPD-1 
and (b) with hPD-L1 (i.e. the back-to-back dimer). The 
figure also shows the estimated energies for two non-
physiological complexes induced by a small molecule in 
the absence of the bound molecule (c) and in the pres-
ence of the bound molecule (d). As shown in Fig. 6, it is 
clear that hPD-L1 has a strong preference to form a pro-
tein–protein complex in the presence of a bound small 
molecule over other potential complexes. The bind-
ing energies of hPD-L1 in the studied complexes adopt 
the following trend: hPD-L1/BMS/hPD-L1 <  < hPD-
L1/hPD-1 < hPD-L1/hPD-L1 (non-physiological pro-
tein dimer) <  < hPDL1/hPDL1 (physiological protein 
dimer). The average MMGBSA binding free energies 
of the hPD-L1/BMS/hPD-L1 complex is estimated to 
be −  31.3 ± 10.8  kcal/mol. That is almost 15  kcal/mol 
stronger than that of the hPD-L1 in complex with hPD-1, 
which is estimated to be −  16.3 ± 11.7 kcal/mol. This is 
followed by the hPD-L1/hPD-L1 in the BMS bound-like 
complex (without the small molecule, i.e. non-physiologi-
cal protein dimer), that was found to be − 14.2 ± 9.3 kcal/

mol, and finally the physiological protein dimer (back-to-
back) that was found to be unfavorable, 10.4 ± 14.4 kcal/
mol. This data is consistent with the expected rank-
ing of binding strengths of hPD-L1 in the different pro-
tein–protein complexes. The Kd value of hPD-1/hPD-L1 
binding is reported as 8.20 ± 0.10  μM [72]. As recently 
disclosed, the IC50 value of the small molecule induced 
hPD-L1/hPD-L1 dimer is generally in the nano-molar 
range for efficient inhibitors. Note that entropy estima-
tion was included in this calculation through normal 
mode analysis. The lowest binding affinities achieved in 
the hPD-L1/BMS/hPD-L1 demonstrates that, at least 
in theory, BMS small molecules are capable of breaking 
down the preformed immune-inhibitory hPD-L1/hPD-1 
complex, which can eventually lead to a reactivation of 
the immune system to fight against cancer. Other con-
tributing factors to the structural preference may be the 
expression level of the different proteins in different bio-
logical contexts.

Computational water mapping through GIST and HSA
For many computational structural biologists, modeling a 
biomolecular system in explicit water has a strong appeal 
over implicit solvent modelling. This mainly due to the 
ability to observe and monitor water-mediated interac-
tions throughout an MD simulation in an explicit water 
setting. With the advent of robust computational infra-
structure (computing clusters and algorithms) capable 
of performing explicit water simulations at a relatively 
short time scale, explicit methods are gradually replac-
ing the implicit methods for solvent mapping. A clear 
example showing the “fall of the implicit water empire” 
has been recently demonstrated in a study by Bucher 

Fig. 6  Calculated binding energies of the PD-L1 protein in different protein–protein or protein–ligand complexes. The most stable complex of 
PD-L1 was found to be its complex with the PD-L1 small molecule complex (d), followed by its complex with PD-1 (a). The panel (e) represents the 
estimated binding affinities for each complex using MM-GBSA
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et  al. [80]. In this study, four different commercially 
available solvent mapping tools (SZMAP, WaterFLAP, 
3D-RISM, and WaterMap) were compared for their abil-
ity to correctly identify the critical hydration sites in 
three different protein targets relevant to drug discovery 
problems in industrial settings. In all the studied exam-
ples, the simulation(explicit)-based approach, exempli-
fied by WaterMap [81], from Schrodinger, offered a clear 
advantage over existing grid(implicit)-based approaches. 
In particular, the authors highlighted the fact that cer-
tain water-solute, or water-mediated H-bonding inter-
actions, which are obviously lacking in the grid-based 
approaches, are indispensable for correctly identifying 
the critical hydration sites.

Solvent mapping enables researchers to classify water 
molecules surrounding the protein into two categories. 
The first category includes energetically unfavourable 
water molecules (i.e. unhappy water) and second includes 
those water molecules that are hard to displace (i.e. ener-
getically favourable, happy water) [82]. One can use the 
information gained from the solvent mapping analysis to 
rationally perform further rounds of lead optimization, 
virtual screening, selectivity analysis, ligand pose predic-
tion, and druggability assessments. In many cases, bound 
water molecules are extremely hard to displace by a small 
molecule [83, 84]. Furthermore, relocating enthalpically 
favorable solvating water molecules from the binding 
site to bulk solvent has been reported as the rate-limiting 
step for ligand–protein binding in many protein targets 
[85]. One can exploit such water molecules to engineer 
an additional interaction with the target or decide to 
ignore them and look for other innovative solutions.

Given the exceptional potency of the reported hPD-L1 
inhibitors (e.g. BMS compounds) in facilitating the bind-
ing of two hPD-L1 monomers, we examined the role of 
water in triggering this interaction. Towards this goal, we 
performed a 100 ns restrained explicit water MD simula-
tion for the free hPD-L1 protein in a box of TIP3P water. 
The generated MD trajectory was further analyzed using 
GIST and HSA to identify critical hydration sites at the 
surface of the hPD-L1 protein. The output of this analy-
sis, a csv file, was further processed using ambertools 
and a score (Kss) was generated to quantify the extent of 
hydration site favorness, taking the mean water-water 
interaction energies of bulk water, and the site occupan-
cies with water molecules into account. The full output 
of HSA combined with the Kss scores is listed in Table 1.

As shown in Table 1, our analysis identified 32 poten-
tial hydration sites surrounding the surface of hPD-L1. 
Table  1 provides a complete list of all these sites and 
their associated thermodynamic quantities. For a visual 
representation for some important sites at the surface 

of the hPD-L1 protein, Fig.  7 displays the identified 
hydration sites using the most probable water configu-
ration at each site as a static water molecule. The des-
ignated water molecules are colored according to their 
corresponding Kss scores, where water molecules with 
positive scores (Kss > 0, unfavorable hydration sites) are 
colored in blue, and water molecules with negative Kss 
scores (favorable hydration sites) are colored in red. In 
the same figure, the co-crystallized pose of #5J89LIG is 
overlaid on the surface of the protein to provide a direct 
structural insight, and the protein surface is colored by 
heteroatoms, whereas grey surface means carbon atoms 
(usually associated with lipophilic residue batches).

A closer look at Fig.  7 shows that a ligand does not 
interfere with any of the tightly bound water molecules 
(i.e. energetically favourable, red coloured). Further-
more, one of the most energetically unfavourable water 
molecules, W13 (Kss = 0.52) is positioned exactly at the 
tip of the binding cleft that accommodates the phenyl 
ring of the small molecule ligand. Other high-energy 
water molecules are occupying nearby surface cavities. 
On the contrary from these enthalpically unfavourable 
waters, a trail of energetically favourable waters (W5, 
W8, W9, W11, W17, W19, W20, W25) is occupying the 
C–C′ turn at the surface of hPD-L1. As also shown in 
Table1, these waters take advantage of a strong inter-
action with a surrounding group of charged residues, 
such as GLU58, ASP61, ARG113 and ARG125. These 
water molecules also form local water clusters, hence, 
lowering their total energies while making these clus-
ters very energetically favourable. In a recent x-ray 
crystallography study by Zhang et al. some of these sites 
have been shown experimentally to stabilize the hPDL1 
complex with an engineered nanobody (KN035). For 
example, the Zhang study unambiguously identified 
the involvement of a bridging water molecule to stabi-
lize the polar interaction between ASP61 on the surface 
of hPD-L1 with SER108 on the surface of the KN035 
nanobody [38]. A similar observation was also made for 
the interaction of hPD-L1 with hPD-1, where a strong 
water-mediated interaction was observed between the 
carboxyl group of GLU58 on the surface of hPD-L1 and 
the carbonyl group of carbonyl of ILE134 and on the 
surface of hPD-1 [36].

In a typical scenario and ignoring the impact of the 
presence of a second protein chain to sandwich the 
small molecule ligand, extending the small molecules to 
the energetically favourable hydration sites will result 
in a significant reduction in the overall affinity of the 
small molecules to the protein target. On the other 
hand, extending the terminal phenyl ring by additional 
substitution, as is the case in new BMS derivatives, 
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should enhance the binding affinities, as it will lead to 
displacing unfavourable water molecules to the bulk. 
Some of the more recent PD-L1 inhibitors empirically 
exploited this fact through extending the biphenyl ring 
by an additional alicyclic 1,4-dioxane ring, as in the 
#BMSMINA fragment.

2D QSAR analysis
To augment the structural data with a more generalized 
data-driven analysis, we employed a 2D QSAR approach 
to study the entire BMS series of ligands listed in the lit-
erature. A diagram representing the developed 2D QSAR 
workflow is shown in Fig. 8. We primarily focused on the 
3-(Phenoxymethyl)biphenyl series as a prototype. This 
series also has the largest number of annotated activity 
records in the literature. Bioactivity data of 403 unique 
ligands were collected from the BindingDB database. The 
full dataset is given in the Additional file 2: as a CSV file 
(S3). The IC50 values were transformed to the log scale 

(i.e. pIC50). Figure  8 shows the chemical structures of a 
few sample ligands with their corresponding measured 
experimental pIC50 values. The model was built through 
the ridge regression protocol and achieved Pearson cor-
relation (R) value of 0.95, and a 0.91 for the coefficient of 
determination (R2) value. A scatter plot of the regression 
model showing the experimental versus the predicted 
pIC50 values is given in Fig. 8.

The functional groups with maximum coefficients on 
the positive and negative sides of the Free-Wilson anal-
ysis were selected for further investigation (full results 
are given as Additional files CSV files; Additional file 3: 
S4: R-groups decomposition, and Additional file  4: S5: 
R-groups coefficients). Positive coefficients denote activ-
ity boosters, whereas negative values denote activity 
degraders. As shown in Fig. 8, it is clear that a maximum 
activity gain or loss originates from substituents at the 
terminal phenoxy group, namely, the R4, R5, R6, and R7 
sites. For the R5 and R7 sites, an optimum activity gain is 

Table 1  Thermodynamic properties for water hydration sites

Site index Occupancy Esw Eww Etot TSsw_trans TSsw_orient TStot Kss_Score

W13 0.56 − 2.73 − 5.87 − 8.60 1.09 − 0.98 0.11 0.52

W3 0.99 − 4.63 − 4.38 − 9.01 2.20 − 1.86 0.33 0.51

W28 0.34 − 1.72 − 7.00 − 8.72 0.66 − 0.43 0.23 0.27

W14 0.52 − 2.41 − 6.87 − 9.28 1.02 − 0.77 0.25 0.13

W26 0.35 − 1.28 − 7.92 − 9.20 0.62 − 0.54 0.08 0.11

W16 0.49 − 3.98 − 5.33 − 9.31 1.23 − 0.93 0.31 0.11

W23 0.45 − 3.33 − 6.33 − 9.66 0.92 − 0.91 0.00 − 0.06

W29 0.32 − 0.74 − 9.08 − 9.83 0.60 − 0.40 0.19 − 0.10

W31 0.29 − 8.19 − 1.68 − 9.87 1.01 − 1.03 − 0.01 − 0.10

W30 0.28 − 1.57 − 8.34 − 9.91 0.54 − 0.63 − 0.08 − 0.11

W12 0.59 − 7.43 − 2.33 − 9.76 1.95 − 2.25 − 0.30 − 0.13

W25 0.34 − 4.94 − 5.13 − 10.07 0.81 − 1.00 − 0.19 − 0.18

W10 0.69 − 6.03 − 3.79 − 9.82 1.54 − 1.29 0.25 − 0.20

W17 0.48 − 3.17 − 6.84 − 10.01 0.90 − 1.16 − 0.26 − 0.23

W21 0.43 − 12.59 2.45 − 10.14 1.46 − 1.50 − 0.04 − 0.26

W18 0.48 − 3.63 − 6.47 − 10.10 1.08 − 0.50 0.59 − 0.27

W24 0.4 − 2.96 − 7.46 − 10.42 0.98 − 0.46 0.53 − 0.36

W19 0.45 − 7.74 − 2.79 − 10.54 1.09 − 1.27 − 0.17 − 0.45

W27 0.37 − 9.48 − 1.46 − 10.94 0.96 − 1.49 − 0.52 − 0.52

W7 0.81 -8.44 − 1.92 − 10.36 1.69 − 1.55 0.14 − 0.67

W15 0.5 − 8.53 − 2.45 − 10.98 1.27 − 1.27 0.01 − 0.72

W20 0.45 − 9.11 − 2.07 − 11.18 1.23 − 1.64 − 0.41 − 0.74

W11 0.67 − 8.69 − 2.23 − 10.91 1.56 − 2.04 − 0.48 − 0.93

W8 0.8 − 4.73 − 6.01 − 10.74 1.60 − 2.27 − 0.68 − 0.97

W9 0.77 − 6.54 − 4.30 − 10.84 2.13 − 2.56 − 0.43 − 1.01

W22 0.43 − 13.37 0.82 − 12.55 1.29 − 2.04 − 0.75 − 1.30

W5 0.95 − 6.73 − 5.82 − 12.55 1.94 − 2.72 − 0.79 − 2.87

W2 1 − 15.69 1.85 − 13.83 2.44 − 2.99 − 0.55 − 4.30
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Fig. 7  Computational solvent mapping analysis for the PD-L1 protein using GIST over 100 ns restrained MD simulation. Water molecules are 
coloured according to the sign of their corresponding Kss scores where blue colour means energetically unfavourable hydration sites (unhappy/
easy to displace water) and red coloured waters designates the favourable hydration sites (happy/hard to displace water). The 5J89LIG small 
molecule is overplayed to the structure to provide a direct structural interpretation of the hydration site. Surface residue patches are coloured 
according to their corresponding properties, where red patches indicate negatively charged residues, blue patches indicate positively charged 
residues, grey patches indicate neutral residues

Fig. 8  A diagram summarizing the steps of the entire ligand-based analysis workflows, including the Free-Wilson analysis
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achieved by the methoxy and the methoxy-cyanopyridine 
groups with a coefficient of 0.47 and 1.65, respectively. 
A substitution with the bulky methoxy-cyanophenyl at 
the R5 site results in a significant loss in the biological 
activities (coefficient = −  1.23). The R7 site seems to be 
sensitive to charged substitution where the piperidine-
carboxylate group results in a significant reduction in the 
biological activities (coefficient = −  0.3). The R6 site, on 
the contrary, has a strong preference for a charged hydro-
philic functional group, for example, the alkylamino-
3-hydroxy-2-methyl propionate functional group 
(coefficient = 0.61) probably as a result of the engage-
ment of this group with hydrophilic residues cluster at 
the PD-L1/PD-L1 interface. Please note that the nature of 
interaction at this site is both direct electrostatic as well 
as water-mediated interactions as the site itself is solvent-
exposed; this gives rise to potential charge-assisted inter-
actions of any signs, positive or negative. Non-charged 
terminal motif substitution at R6 seems to deteriorate the 
activity of the series where the N-alkyl acetamido group 
exhibited a coefficient of -0.65.

Substitutions at the biphenyl core (e.g. R1, R2, and 
R3) exhibited a distinct pattern. The R1 site seems to 
have more preference for the unsubstituted derivatiza-
tion, with substitution with hydrogen gives a coefficient 
of 0.48. For substitutions at the R2 and R3 sites, it seems 
that only small substitutions have been explored at these 
two sites. This is not surprising given the relatively small 
allowed volume of the binding cavity, where the biphenyl 
core is perfectly sandwiched between the two PD-L1 IgV 
monomers. There is a clear advantage of the methyl sub-
stitution at the R2 site (coefficient = 0.23 versus − 0.23 for 
the unsubstituted site). For the R3 site, the nitrile group 
gives a moderate preference (coefficient = 0.16) versus 
the methyl group substitution (coefficient = − 0.53). The 
SP2 nitrile group is a known powerful water displacing 
motif [86, 87] and based on our hydration analysis (see 
above), displacing binding site water at this site is a pre-
requisite for binding in this class of PD-L1 dimerization 
inducers. This could explain the preference of the cyano 
group at the R3 site compared to the methyl group. It 
was also interesting to find no unsubstituted biphenyl 
derivatives existed within the analyzed set of inhibi-
tors, particularly at the R3 site. Although this could be 
a limitation in the selected datasets, a more convincing 
explanation seems to be that the non-coplanarity of the 
biphenyl core is the conformationally preferred struc-
ture to induce PD-L1 dimerization and is essential for 
activity. Clearly, the R2/R3-ortho-ortho substitution is a 
trigger for this non-coplanarity that results from steric 
hindrance. Other common substitution patterns on the 
biphenyl core, such as the para–para and para–ortho will 
eventually lead to linear or disc-like molecules [88]. As 

of August 2021, there have been approximately 11 pro-
tein–ligand co-crystal structures from the 3-(Phenoxy-
methyl)biphenyl anti-PDL1 series deposited in the PDB. 
Nevertheless, we could not find a single protein–ligand 
crystal structure from this series where the biphenyl core 
is unsubstituted at the R3 site. The biphenyl fragment is a 
very common fragment in drug/drug-like molecules, and 
is usually introduced into organic compounds through 
the renowned Suzuki–Miyaura coupling reaction. Nota-
bly, this fragment was also the core fragment that inaugu-
rated the discovery of a very potent class of direct-acting 
NS5A inhibitors that are clinically used for hepatitis C 
Virus (HCV) treatment [89]. Daclatasvir, the prototype 
of this class of direct-acting NS5A inhibitors and is one 
of the best-known biphenyl-containing drugs, and its 
analogs are believed to target the dimeric form of the 
NS5A protein [46, 90]. Whether there is something spe-
cial about the biphenyl core making it a preferred bind-
ing partner for dimer-forming proteins, or this is a mere 
coincidence is a question that is worth further investiga-
tion. As such, one can suggest including ligands contain-
ing the biphenyl core fragment as an essential component 
of focused chemical libraries that aim at targeting dimer-
forming proteins. This is a question to be answered in 
future research by our group and others.

Given the strong coefficient of determination (R_
squared = 0.91) obtained from the regression model, we 
moved ahead and enumerated a virtual library of unex-
plored derivatives (76,322,736 molecules) with all pos-
sible R-groups permutations and predicted their pIC50 
values. A random subset of ligands that achieved a pre-
dicted pIC50 values >  = 8 is given in Additional file 5: (S6).

Conclusions
This paper aims at answering a few fundamental ques-
tions regarding the specific molecular interactions 
responsible for triggering the formation of the non-
physiological, small molecules induced PD-L1 dimer. By 
conducting a blend of structural and ligand-based analy-
ses, we were able to investigate the role played by surface 
residues, the role of desolvation and functional group 
substitutions in the observed potencies of anti-PD-L1 
ligands bearing the phenoxy-methyl biphenyl core. Our 
molecular dynamics simulations and binding free energy 
analyses revealed several interesting observations. The 
data explains the reasons for the need of a biphenyl core 
to be shared among the two PD-L1 monomers to trig-
ger complex formation. Furthermore, the binding energy 
decomposition analysis highlighted the possible role of 
the cluster of charged, salt-bridge forming residues at the 
G,F,C,C′ strands of the surface of the PD-L1 protein as 
the main driving forces for the formation of the protein–
ligand-protein complex. The performed computational 
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solvent mapping analysis revealed that the first step of 
the molecular association involves the desolvation of a 
highly energetic hydration site at the centre of the hPD-
L1 interface.

Our ligands-based analyses revealed the importance 
of each reported substitution around the biphenyl-core 
scaffold. For example, substitutions around the termi-
nal phenoxy group are more diverse than those allowed 
around the biphenyl core. The cyano group substitution 
at the R3 site seems to be more favourable than methyl 
group substitution. Substitution at the R3 site seems 
to be mandatory for activity, presumably as a trigger to 
ensure the non-coplanarity of the biphenyl core. The 
Free-Wilson enumerated chemical library could provide 
an additional mine of potentially active molecules and 
the library (~ 76 M) molecules is available free of charge 
for academic purposes.

We finally hope that the data presented here can foster 
the ongoing research efforts aiming at finding small mol-
ecule drugs active against immune checkpoint receptors 
and the immuno-therapy drug discovery field in general.
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